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Abstract— In [1] and [2] we defined the elliptic curve over 
the ring 2

3
[ ], 0d ε ε =F . In this work we will give some 

properties of the elliptic curve over the special ideal ring of 
characteristic 2  and an application in cryptography. Our 
future work will focus on the study of the general case of 
these rings, which seem to be beneficial and interesting in 

cryptography, specially the one based on the identity (IBE) 
[6], [7], [8]. 
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I.  INTRODUCTION  

Let d  be a positive integer. We consider the quotient ring 
 
 

II. THE RING 
 
 

Similar as in [3] we have the following lemmas: 

Lemma 1.   Let 
1

0

n
i

i
i

X x ε
−

=

=∑ . 

X  is invertible in nA  if and only if 0 0x ≠ . 
 
Lemma 2.     nA  is a local ring, its maximal ideal is  

( )ε=M . 

Lemma 3.   nA  is a vector space over 
 
, and  1(1, , , )nε ε −…  

is  a basis of nA  . 

Remark 1.   We denote ( )j
jI ε= ,where 1, , 1j n= … − . 

then: 1 1( )j j nI ≤ −„  is a decreasing sequence of ideals of nA  

and 1I = M . 

     1 2 1nI I I −= ⊇ …⊇M  
 

III. ELLIPTIC CURVES OVER THE RING 
 
 

 
We consider the elliptic curve over the ring 3A  which is given  

by the equation:   where 3,a b A∈  and 3a b−  is invertible in 

3A . 

A. Notations 

We denote the elliptic curve over 3A  by 
 
, and we write: 

 
 

B. Classification of elements of 3
,a bE  

Proposition 1.   Every element of 3
,a bE   is of the form 

[ : :1]X Y or 2[ :1: 0]x yε ε+ , where 
3dx ∈F  and 

3
.dy ∈F  We write: 

 

  
Proof:   Let 

 
 , where ,X Y  and 3.Z A∈  

We have two cases for Z : 
• Z  invertible: then

1 1[ : : ] [ : :1]~[ : :1].X Y Z XZ YZ X Y− −=  
• Z  non invertible: so Z ∈M  (see lemma 1), then  

we have two cases for Y : 
 

o Y  invertible: 
1 1[ : : ] [ :1: ] ~ [ :1: ]X Y Z XY ZY X Z− −= . Since 

3
,[ :1: ] a bX Z E∈ , then 

 3 2 2(1 )X Z aX bZ= − − , so 3X ∈M . 

But 
2

3 3 3

0

i
i

i

X x ε
=

= ∈∑ M  implies that 3
0 0x = , then 

0 0,x =  this means that .X ∈M  So 3 3
0 0,X x= =  

 we deduce that 0Z =  and 2X x yε ε= + , where 

3dx ∈F  and 
3dy ∈F . 

At last, 2[ : : ] ~ [ :1: 0]X Y Z x yε ε+   
 

o Y  non invertible: 
We have Y  and ,Z ∈M   since: 

3 2 2 2( )X Z Y aX bZ= − − ∈M  then 3
0 0x =  and so 

X ∈M . 
 We deduce that [ : : ]X Y Z  isn't a projective point since 
( , , )X Y Z  isn't a primitive triple.[5,p.104-105]                   ■ 
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We consider the canonical projection π  defined by: 

3 3
2

0 1 2

: [ ]d d

x x x x

π ε

ε ε

→

+ + →

F F
    

We define the mapping 
~
π    by : 

~

3 1
, ( ), ( )

[ : : ] [ ( ) : ( ) : ( )]
a b a bE E

X Y Z X Y Z

π

π π

π π π
→
→

 

 
theorem 1.  Let 1 1 1[ : : ]P X Y Z=  and 

2 2 2[ : : ]Q X Y Z=  two points in 3
,a bE , and  

3 3 3[ : : ].P Q X Y Z+ =  

• If 
~ ~
( ) ( )P Qπ π=  then : 

 
 

   

 
 

• If 
~ ~
( ) ( )P Qπ π≠  then : 

 
  

 
  

  Proof :  By using the explicit formulas in W.Bosma and H.W. 
Lenstra's article [4, p.236-238] we prove the theorem.            ■ 

C. The  
~

3π  homomorphism 

Theorem 2.   Let 2
2X X x ε= +% , 2

2Y Y y ε= +% , 
2

2Z Z z ε= +%  , 2
2a a a ε= +%  and  2

2b b b ε= +%  are 

elements in 3A . 

   If 3
,[ : : ] a bX Y Z E∈  then:  

   2 3 2 3 2
2 2 2[ ]Y Z X aX Z bZ Ax By Cz D ε= + + − + + +%% % % % % %%  

where 0 0 0A a x z=  , 0 02B y z= 2 2
0 0 0C y a x= −  and 

2 3
2 0 0 2 02 2D a x z b z= +  

Proof :    Since 2
,[ : : ] a bX Y Z E∈  then: 

 2 3 2 3,Y Z X aX Z bZ= + + so 
2 3 2 3

2 2 2 3 2
0 2 0 2 0 2 0 0 2 0[ ( 2 ) ]

Y Z X aX Z bZ
a x z x x z a x z b zε ε

= + + +

+ + +

%% % % % % %%

%
  

then  
 

2 3 2 3 2 3
2 0 0 2 0

2 2 2
0 0 0 2 0 0 2 0 0 0 2

[( )
(2 ) (2 ) ( ) ]

Y Z X aX Z bZ a x z b z
a x z x y z y a x y z ε

= + + + + +
− + −

%% % % % % %%
 

Then we deduce the theorem.                                                   ■ 
 

Definition 1.  We define the map 3π   as follows: 
3

3 2
2 1

0 0

i i
i i

i i

A A

x x

π

ε δ
= =

→

→∑ ∑
 

where 3 0ε =  and 2 0δ = . 
 
Lemma  4.  3π   is a surjective morphism of rings. 

 
We have the following lemma 

 
Lemma  5.   The map: 

 

 
is a surjective homomorphism of groups. 
  
Proof :   Let 3

,[ : : ] a bX Y Z E∈ . 

• From  theorem  2,  
~

3π  is well defined. 
Then, let 

3 3

2
( ), ( )[ : : ] a bQ X Y Z Eπ π= ∈ , where 

0 1X x x δ= + , 0 1Y y y δ= +  and 0 1Z z z δ= + . 

We consider in 
3dF , the equation: 

                                    (1)   
where , ,A B C  and D  are as in theorem 2. 
 Since A , B  and C  are partial derivatives of the function 

2 3 2 3
0 0( , , )F X Y Z Y Z X a X Z b Z= − − −  at the point 

0 0 0( , , )x y z , and since 
0 0

1
0 0 0 ,[ : : ] a bx y z E∈  (the elliptic 

curve over 1A  which is defined by the equation:  

( , , ) 0F X Y Z = ); then A , B  and C  can't be all null, so 

the equation  (1)  has at least a solution in 3
3dF  which we 

denote 2 2 2( , , )x y z ; then: 

 2 2 2
0 1 2 0 1 2 0 1 2[ : : ]P x x x y y y z z zε ε ε ε ε ε= + + + + + +  in  3

,a bE  

and 
~

3( )P Qπ = . So: 

• 
~

3π  is surjective. 
                                                                                                  ■ 
 
Lemma 6.  The mapping:  

3
3
,3

2[ :1: 0]
d a bE

x x

θ

ε
→
→

F      

is an injective morphism of groups. 
 
Proof :    We have from the subsection II-B: 
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  2 3
,3

( ) :[ :1: 0]d a bx x Eε∀ ∈ ∈F  
Then : 

• 3θ  is well defined. 

And since 2 2 2[ :1: 0] [ :1: 0] [( ) :1: 0]l h l hε ε ε+ = +   
then :  

• 3θ  is a morphism of groups. 

3dl ∈F , we have:  3 ( ) [0 :1: 0]lθ = , which implies that 

0l = . ie, 
• 3θ  is injective.  

                                                                                   ■                                   

Corollary 1.   
~

3 3 3
( ) ( )dker π θ= F            

     
Proof :     Let 2

3 3
[ :1: 0] ( )dlε θ∈ F , then 

 
~

2
3 ([ :1: 0]) [0 :1: 0]lπ ε = , so: 

• 
~

3 3 3
( ) ( )dker π θ⊇ F . 

Now let 
~

3[ : : ] ( )X Y Z ker π∈ , then  
~

3 ([ : : ]) [0 :1: 0]X Y Zπ = ; and by using the same 
notations as in theorem 2 we obtain: 
 [ : : ] [0 :1: 0]X Y Z =% % % ; then  

 0X =% , 0Z =% , and Y%  is invertible in 2A , so  

 2
2X x ε= , 2

2Z z ε=  and Y is invertible in 3A ; we 
deduce that: 
 2 2 3

2 2 ,[ : : ] ~ [ :1: ] a bX Y Z x z Eε ε ∈ , 

  this means: 2
2 0z ε = , so  

   2
2[ : : ] ~ [ :1: 0]X Y Z x ε . ie: 

• 
~

3
( ) ( )dk kker π θ⊆ F . 

We conclude that 
~

3
( ) ( )dk kker π θ= F .                               ■                    

 
From corollary 1, we deduce the following corollary: 
 
Corollary 2.  The sequence : 
 
 
 

 is a short exact sequence which defines the group extension 
3
,a bE   of 

3 3

2
( ), ( )a bEπ π  by 

~

3( ),Ker π  where 3i  is the 
canonical injection.  
  

The last corollary allows us to calculate the cardinal of  3
,a bE   

depending of the cardinals of  
3 3

2
( ), ( )a bEπ π   and 

~

3( )ker π . 
 

IV. CRYPTOGRAPHIC APPLICATION 
 

       Let 3
,a bE  an elliptic curve over 3A  and 3

,a bP E∈  of 

order l . We will use the subgroup P〈 〉  of 3
,a bE   to encrypt 

messages, and we denote G P= 〈 〉 . 

A. Coding of elements of G  
 
     We will give a code to each element Q mP G= ∈  where 

{1, , }m l∈ …  defined as it follows: 

if  2 2
0 1 2 0 1 2 0[ : : ]Q x x x y y y zε ε ε ε= + + + +  where 

3
, di ix y ∈F  for 0,1i =  or 2  and 0 0 or 1.z =  

We set: 
1

0 1 ( 1)
d

i i i d ix c c cα α −
−= + +…+  

1
0 1 ( 1)

d
i i i d iy f f fα α −

−= + +…+  
where α  is primitive root of an irreducible polynomial of 
degree d  over 3F , and 3,ij ijc f ∈F . 

Then we code Q  as it follows:  

• If 0 1,z =  then:  
 
 
  

• If 0 0,z =  then: 
  

 
 

 
Remark 2.  The security of this  encryption is based on the 
discrete logarithm problem. 

B. Example 

Let 2(2 )a α ε ε= + + + , 21 2b αε ε= + +  in 3A , so the 

elliptic curve 3
,a bE  has 1134  elements, and the elliptic curve 

2
,a bE %%

 has 126 .  

Let [1: 2 :1]P α αε= +  and G P= 〈 〉 . 

G  is a subgroup of order 42  of 2
,a bE %%

 . 

( )( {1, , 42}) :Q G m Q mP∀ ∈ ∃ ∈ … =  
 
 
 

C. Encryption and decryption of messages 
 
Let the following message: 
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"jns3 rabat" 

 
Its encryption is: 
 
112000010100100100010000002 
102000102001122100101100121 
010002200011121000201001100 
000020100112010010220011000 
0002010010011001002001 
 
Let the following message: 
 
210100011000100100010000001 
122000200001210100022000110 
020002220010001001002001210 
100022000100110010020010021 
002001001210100011000121010 
002200010011001002001100000 
020100112210020220010112002 
200001 
 
Its decryption is: 
 

"end of the talk" 
 
Remark 2.   With this application, we can encrypt and decrypt 
any message of any length. 
This application was implemented by Maple. 
 

V. CONCLUSION 

In this work we defined the ring 3A , given its properties, and 
we used the elliptic curve defined on it to encrypt and decrypt 
a message.  

 We reveal that there is enormous  tasks to do about this 
subject, we cite: 

• A generalization to the case of the ring , 3nA n… . 
• Create new Cryptosystems. 
• Discrete logarithm attack. 
• Cryptography over the elliptic curve defined over the 

ring , 3nA n… . 
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