Finite Ring Of Characteristic 2 And Cryptography

Abdelhakim CHILLALI
FST, USMBA, FES
MORROCO
chil2007@voila.fr

Abstract - In [1] and [2] we defined the elliptic curve over the ring $\mathrm{F}_{3^{d}}[\varepsilon], \varepsilon^{2}=0$. In this work we will give some properties of the elliptic curve over the special ideal ring of characteristic 2 and an application in cryptography. Our future work will focus on the study of the general case of these rings, which seem to be beneficial and interesting in cryptography, specially the one based on the identity (IBE) [6], [7], [8].

Keywords- Elliptic curves; finite ring; characteristic 3; cryptography.

I. INTRODUCTION

Let d be a positive integer. We consider the quotient ring

II. The ring

Similar as in [3] we have the following lemmas:
Lemma 1. Let $X=\sum_{i=0}^{n-1} x_{i} \varepsilon^{i}$.
X is invertible in A_{n} if and only if $x_{0} \neq 0$.

Lemma 2. A_{n} is a local ring, its maximal ideal is $\mathrm{M}=(\varepsilon)$.
Lemma 3. A_{n} is a vector space over, and $\left(1, \varepsilon, \ldots, \varepsilon^{n-1}\right)$ is a basis of A_{n}.
Remark 1. We denote $I_{j}=\left(\varepsilon^{j}\right)$, where $j=1, \ldots, n-1$. then: $\left(I_{j}\right)_{1 \leq j, n-1}$ is a decreasing sequence of ideals of A_{n} and $I_{1}=\mathrm{M}$.

$$
\mathrm{M}=I_{1} \supseteq I_{2} \ldots \supseteq I_{n-1}
$$

III. ELLIPTIC CURVES OVER THE RING

We consider the elliptic curve over the ring A_{3} which is given by the equation: where $a, b \in A_{3}$ and $-a^{3} b$ is invertible in A_{3}.

A. Notations

We denote the elliptic curve over A_{3} by, and we write:
B. Classification of elements of $E_{a, b}^{3}$

Proposition 1. Every element of $E_{a, b}^{3}$ is of the form
 $y \in \mathrm{~F}_{3^{d}}$. We write:

Proof: Let , where X, Y and $Z \in A_{3}$.
We have two cases for Z :

- Z invertible: then
$[X: Y: Z]=\left[X Z^{-1}: Y Z^{-1}: 1\right] \sim[X: Y: 1]$.
- $\quad Z$ non invertible: so $Z \in M$ (see lemma 1), then we have two cases for Y :

o Y invertible:

$[X: Y: Z]=\left[X Y^{-1}: 1: Z Y^{-1}\right] \sim[X: 1: Z]$. Since
$[X: 1: Z] \in E_{a, b}^{3}$, then
$X^{3}=Z\left(1-a X^{2}-b Z^{2}\right)$, so $X^{3} \in \mathrm{M}$.
But $X^{3}=\sum_{i=0}^{2} x_{i}{ }^{3} \varepsilon^{3 i} \in \mathrm{M}$ implies that $x_{0}{ }^{3}=0$, then $x_{0}=0$, this means that $X \in \mathrm{M}$. So $X^{3}=x_{0}{ }^{3}=0$, we deduce that $Z=0$ and $X=x \varepsilon+y \varepsilon^{2}$, where $x \in \mathrm{~F}_{3^{d}}$ and $y \in \mathrm{~F}_{3^{d}}$.
At last, $[X: Y: Z] \sim\left[x \varepsilon+y \varepsilon^{2}: 1: 0\right]$

o Y non invertible:

We have Y and $Z \in M$, since:
$X^{3}=Z\left(Y^{2}-a X^{2}-b Z^{2}\right) \in \mathrm{M}$ then $x_{0}{ }^{3}=0$ and so $X \in \mathrm{M}$.
We deduce that $[X: Y: Z]$ isn't a projective point since (X, Y, Z) isn't a primitive triple.[5,p.104-105]

We consider the canonical projection π defined by:
$\pi: \mathrm{F}_{3^{d}}[\varepsilon] \rightarrow \mathrm{F}_{3^{d}}$

$$
x_{0}+x_{1} \varepsilon+x_{2} \varepsilon^{2} \rightarrow x
$$

We define the mapping π by :

$$
\begin{array}{ccc}
E_{a, b}^{3} & \xrightarrow{\pi} & E_{\pi(a), \pi(b)}^{1} \\
{[X: Y: Z]} & \rightarrow & {[\pi(X): \pi(Y): \pi(Z)]}
\end{array}
$$

theorem 1. Let $P=\left[X_{1}: Y_{1}: Z_{1}\right]$ and $Q=\left[X_{2}: Y_{2}: Z_{2}\right]$ two points in $E_{a, b}^{3}$, and $P+Q=\left[X_{3}: Y_{3}: Z_{3}\right]$.

- If $\tilde{\pi}(P)=\tilde{\pi}(Q)$ then :
- If $\tilde{\pi}(P) \neq \tilde{\pi}(Q)$ then :

Proof: By using the explicit formulas in W.Bosma and H.W. Lenstra's article [4, p.236-238] we prove the theorem.
C. The π_{3} homomorphism

Theorem 2. Let $X=\tilde{X}+x_{2} \varepsilon^{2}, Y=\tilde{Y}+y_{2} \varepsilon^{2}$, $Z=\tilde{Z}+Z_{2} \varepsilon^{2}, a=\tilde{a}+a_{2} \varepsilon^{2}$ and $b=\tilde{b}+b_{2} \varepsilon^{2}$ are elements in A_{3}.

$$
\text { If }[X: Y: Z] \in E_{a, b}^{3} \text { then: }
$$

$$
\tilde{Y^{2}} \tilde{Z}=\tilde{X}^{3}+\tilde{a} \tilde{X}^{2} \tilde{Z}+\tilde{b} \tilde{Z}^{3}-\left[A x_{2}+B y_{2}+C z_{2}+D\right] \varepsilon^{2}
$$

where $A=a_{0} x_{0} z_{0}, B=2 y_{0} z_{0} C=y_{0}{ }^{2}-a_{0} x_{0}^{2}$ and $D=2 a_{2} x_{0}{ }^{2} z_{0}+2 b_{2} z_{0}{ }^{3}$
Proof: Since $[X: Y: Z] \in E_{a, b}^{2}$ then:

$$
Y^{2} Z=X^{3}+a X^{2} Z+b Z^{3}, \text { so }
$$

$\tilde{Y}^{2} \tilde{Z}=\tilde{X}^{3}+\tilde{a} \tilde{X}^{2} \tilde{Z}+\tilde{b}^{3}+$
$\left[\tilde{a}\left(x_{0}{ }^{2} z_{2}+2 x_{0} x_{2} z_{0}\right)+a_{2} x_{0}{ }^{2} z_{0}\right] \varepsilon^{2}+b_{2} z_{0}{ }^{3} \varepsilon^{2}$
then
$\tilde{Y^{2}} \tilde{Z}=\tilde{X}^{3}+\tilde{a} \tilde{X}{ }^{2} \tilde{Z}+\tilde{b} \tilde{Z}^{3}+\left[\left(a_{2} X_{0}{ }^{2} Z_{0}+b_{2} z_{0}{ }^{3}\right)+\right.$ $\left.\left(2 a_{0} x_{0} z_{0}\right) x_{2}-\left(2 y_{0} z_{0}\right) y_{2}+\left(a_{0} x_{0}{ }^{2}-y_{0}{ }^{2}\right) z_{2}\right] \varepsilon^{2}$

Then we deduce the theorem.
Definition 1. We define the map π_{3} as follows:

$$
\begin{array}{clc}
A_{3} & \xrightarrow{\pi_{3}} & A_{2} \\
\sum_{i=0}^{2} x_{i} \varepsilon^{i} & \rightarrow & \sum_{i=0}^{1} x_{i} \delta^{i}
\end{array}
$$

where $\varepsilon^{3}=0$ and $\delta^{2}=0$.

Lemma 4. π_{3} is a surjective morphism of rings.
We have the following lemma
Lemma 5. The map:
is a surjective homomorphism of groups.
Proof: Let $[X: Y: Z] \in E_{a, b}^{3}$.

- From theorem $2, \pi_{3}$ is well defined.

Then, let $Q=\left[\begin{array}{l}X: Y: Z] \in E_{\pi_{3}(a), \pi_{3}(b)}^{2} \text {, where }\end{array}\right.$ $X=x_{0}+x_{1} \delta, Y=y_{0}+y_{1} \delta$ and $Z=z_{0}+z_{1} \delta$.
We consider in $\mathrm{F}_{3^{d}}$, the equation:
where A, B, C and D are as in theorem 2 .
Since A, B and C are partial derivatives of the function $F(X, Y, Z)=Y^{2} Z-X^{3}-a_{0} X^{2} Z-b_{0} Z^{3}$ at the point $\left(x_{0}, y_{0}, z_{0}\right)$, and since $\left[x_{0}: y_{0}: z_{0}\right] \in E_{a_{0}, b_{0}}^{1}$ (the elliptic curve over A_{1} which is defined by the equation:
$F(X, Y, Z)=0)$; then A, B and C can't be all null, so the equation (1) has at least a solution in $\mathrm{F}_{3^{d}}{ }^{3}$ which we denote $\left(x_{2}, y_{2}, z_{2}\right)$; then:

$$
P=\left[x_{0}+x_{1} \varepsilon+x_{2} \varepsilon^{2}: y_{0}+y_{1} \varepsilon+y_{2} \varepsilon^{2}: z_{0}+z_{1} \varepsilon+z_{2} \varepsilon^{2}\right] \text { in } E_{a, b}^{3}
$$

and $\pi_{3}(P)=Q$. So:

- π_{3} is surjective.

Lemma 6. The mapping:

$$
\begin{array}{ccc}
\mathrm{F}_{3^{d}} & \xrightarrow{\theta_{3}} & E_{a, b}^{3} \\
x & \rightarrow & {\left[x \varepsilon^{2}: 1: 0\right]}
\end{array}
$$

is an injective morphism of groups.
Proof: We have from the subsection II-B:
$\left(\forall x \in \mathrm{~F}_{3^{d}}\right):\left[x \varepsilon^{2}: 1: 0\right] \in E_{a, b}^{3}$
Then :

- $\quad \theta_{3}$ is well defined.

And since $\left[l \varepsilon^{2}: 1: 0\right]+\left[h \varepsilon^{2}: 1: 0\right]=\left[(l+h) \varepsilon^{2}: 1: 0\right]$ then :

- θ_{3} is a morphism of groups.
$l \in \mathrm{~F}_{3^{d}}$, we have: $\theta_{3}(l)=[0: 1: 0]$, which implies that $l=0 . \mathrm{ie}$,
- θ_{3} is injective.

Corollary 1. $\operatorname{ker}\left(\pi_{3}\right)=\theta_{3}\left(\mathrm{~F}_{3^{d}}\right)$

Proof: Let $\left[l \varepsilon^{2}: 1: 0\right] \in \theta_{3}\left(\mathrm{~F}_{3^{d}}\right)$, then
$\tilde{\pi}_{3}\left(\left[l \varepsilon^{2}: 1: 0\right]\right)=[0: 1: 0]$, so:

- $\operatorname{ker}\left(\pi_{3}\right) \supseteq \theta_{3}\left(\mathrm{~F}_{3^{d}}\right)$.

Now let $[X: Y: Z] \in \operatorname{ker}\left(\pi_{3}\right)$, then
$\pi_{3}([X: Y: Z])=[0: 1: 0]$; and by using the same notations as in theorem 2 we obtain:
$[\tilde{X}: \tilde{Y}: \tilde{Z}]=[0: 1: 0]$; then
$\tilde{X}=0, \tilde{Z}=0$, and \tilde{Y} is invertible in A_{2}, so
$X=x_{2} \varepsilon^{2}, Z=z_{2} \varepsilon^{2}$ and Y is invertible in A_{3}; we deduce that:
$[X: Y: Z] \sim\left[x_{2} \varepsilon^{2}: 1: Z_{2} \varepsilon^{2}\right] \in E_{a, b}^{3}$,
this means: $Z_{2} \varepsilon^{2}=0$, so
$[X: Y: Z] \sim\left[x_{2} \varepsilon^{2}: 1: 0\right]$. ie:

- $\operatorname{ker}\left(\pi_{k}\right) \subseteq \theta_{k}\left(\mathrm{~F}_{3^{d}}\right)$.

We conclude that $\operatorname{ker}\left(\pi_{k}\right)=\theta_{k}\left(\mathrm{~F}_{3^{d}}\right)$.

From corollary 1, we deduce the following corollary:
Corollary 2. The sequence :
is a short exact sequence which defines the group extension $E_{a, b}^{3}$ of $E_{\pi_{3}(a), \pi_{3}(b)}^{2}$ by $\operatorname{Ker}\left(\tilde{\pi}_{3}\right)$, where \mathbf{i}_{3} is the canonical injection.

The last corollary allows us to calculate the cardinal of $E_{a, b}^{3}$ depending of the cardinals of $E_{\pi_{3}(a), \pi_{3}(b)}^{2}$ and $\operatorname{ker}\left(\tilde{\pi}_{3}\right)$.

IV. CRyptographic application

Let $E_{a, b}^{3}$ an elliptic curve over A_{3} and $P \in E_{a, b}^{3}$ of order l. We will use the subgroup $\langle P\rangle$ of $E_{a, b}^{3}$ to encrypt messages, and we denote $G=\langle P\rangle$.

A. Coding of elements of G

We will give a code to each element $Q=m P \in G$ where $m \in\{1, \ldots, l\}$ defined as it follows:
if $Q=\left[x_{0}+x_{1} \varepsilon+x_{2} \varepsilon^{2}: y_{0}+y_{1} \varepsilon+y_{2} \varepsilon^{2}: z_{0}\right]$ where $x_{i}, y_{i} \in \mathrm{~F}_{3^{d}}$ for $i=0,1$ or 2 and $z_{0}=0$ or 1 .
We set:
$x_{i}=c_{0 i}+c_{1 i} \alpha+\ldots+c_{(d-1) i} \alpha^{d-1}$
$y_{i}=f_{0 i}+f_{1 i} \alpha+\ldots+f_{(d-1) i} \alpha^{d-1}$
where α is primitive root of an irreducible polynomial of degree d over F_{3}, and $c_{i j}, f_{i j} \in \mathrm{~F}_{3}$.
Then we code Q as it follows:

- If $Z_{0}=1$, then:
- If $Z_{0}=0$, then:

Remark 2. The security of this encryption is based on the discrete logarithm problem.

B. Example

Let $a=(2+\alpha)+\varepsilon+\varepsilon^{2}, b=1+\alpha \varepsilon+2 \varepsilon^{2}$ in A_{3}, so the elliptic curve $E_{a, b}^{3}$ has 1134 elements, and the elliptic curve $E_{\tilde{a}, \tilde{b}}^{2}$ has 126 .

Let $P=[1: 2 \alpha+\alpha \varepsilon: 1]$ and $G=\langle P\rangle$.
G is a subgroup of order 42 of $E_{\tilde{a}, \tilde{b}}^{2}$.
$(\forall Q \in G)(\exists m \in\{1, \ldots, 42\}): Q=m P$

C. Encryption and decryption of messages

Let the following message:

"jns3 rabat"

Its encryption is:
112000010100100100010000002
102000102001122100101100121
010002200011121000201001100
000020100112010010220011000 0002010010011001002001

Let the following message:
210100011000100100010000001 122000200001210100022000110 020002220010001001002001210 100022000100110010020010021 002001001210100011000121010 002200010011001002001100000 020100112210020220010112002 200001

Its decryption is:

"end of the talk"

Remark 2. With this application, we can encrypt and decrypt any message of any length.
This application was implemented by Maple.

V. CONCLUSION

In this work we defined the ring A_{3}, given its properties, and we used the elliptic curve defined on it to encrypt and decrypt a message.

We reveal that there is enormous tasks to do about this subject, we cite:

- A generalization to the case of the ring $A_{n}, n . .3$.
- Create new Cryptosystems.
- Discrete logarithm attack.
- Cryptography over the elliptic curve defined over the ring $A_{n}, n . .3$.

References

[1] Abdelhakim Chillali, The j-invariant over $E_{3^{d}}^{n}$, Int. J. Open Problems Compt. Math., Vol. 5, No. 4, December 2012, ISSN 19986262; Copyright ICSRS Publication, www.i-csrs.org, pp. 106-111 (2012).
[2] M.H. Hassib and A. Chillali, Example of cryptography over the ring $\mathrm{F}_{2^{d}}[\varepsilon], \varepsilon^{2}=0$, Latest trends in Applied Informatics and Computing, p. ${ }^{\text {d d }} 1-73$, ISBN 978-1-61804-130-2, (2012).
[3] Abdelhakim Chillali, Elliptic Curves of the Ring $\mathrm{F}_{q}[\varepsilon], \varepsilon^{n}=0$, International Mathematical Forum, (2011).
[4] W.Bosma and H.W. Lenstra, Complete System of Two Addition Laws for Elliptic Curved, Journal of Number Theory,(1995).
[5] J. Lenstra, H.W, Elliptic curves and number-theoretic algorithms, Processing of the International Congress of Mathematicians, Berkely, California, USA, (1986).
[6] Nicolas Meloni, Arithmétique pour la Cryptographie basée sur les Courbes Elliptiques, Thèse Doctorat

Université Montpellier II, FRANCE, (2007).
[7] D. Boneh and M. Franklin, Identity based encryption from the Weill pairing, Advanced in Cryptography- CRYPTO 2001, Springer-Verlag LNCS 2139, 213-229, (2001).
[8] Giray Komurcu and Erkay Savas, An efficient Hardware Implementation of the Tate Pairing in Characteristic Tree, Third International Conference on Systems, DOI 10.109/ICONS.2008.27, IEEE (2008).

