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Abstract—This study investigates the hybrid synchronization of 

hyperchaotic Qi systems (2008) via sliding mode control. The 

stability results for the hybrid synchronization schemes derived 

in this paper are established using the sliding mode control 

theory and the Lyapunov stability theory. Since the Lyapunov 

exponents are not required for these calculations, the sliding 

controller design is very effective and convenient to achieve 

global hybrid synchronization of the identical hyperchaotic Qi 

systems. Numerical simulations are presented to demonstrate the 

effectiveness of the synchronization results derived in this paper. 

Keywords- Sliding control, hyperchaos, hybrid synchronization, 

hyperchaotic Qi system. 

I.  INTRODUCTION   

Chaotic systems are nonlinear dynamical systems which are 

highly sensitive to initial conditions. This sensitivity is 

popularly known as the butterfly effect [1].  Chaos is an 

interesting nonlinear phenomenon and has been studied well in 

the last three decades. Chaos theory has wide applications in 

several fields like physical systems [2], chemical systems [3], 

ecological systems [4], secure communications [5-7], etc. 

Hyperchaotic system is usually defined as a chaotic system 

with more than one positive Lyapunov exponent. Since 

hyperchaotic system has the characteristics of high capacity, 

high security and high efficiency, it has the potential of broad 

applications in nonlinear circuits, secure communications, 

lasers, neural networks, biological systems and so on. Thus, the 

studies on hyperchaotic systems, viz. control, synchronization 

and circuit implementation are very challenging works in the 

chaos literature. 

Chaos synchronization is a phenomenon that may occur 

when two or more chaotic oscillators are coupled or a chaotic 

oscillator drives another chaotic oscillator. Because of the 

butterfly effect which causes the exponential divergence of the 

trajectories of two identical chaotic systems started with nearly 

the same initial conditions, synchronizing two chaotic systems 

is seemingly a challenging research problem. 

In most of the chaos synchronization approaches, the 

master-slave or drive-response formalism is used. If a 

particular chaotic system is called the master or drive system 

and another chaotic system is called the slave or response 

system, then the idea of the chaos synchronization is to use the 

output of the master system to control the slave system so that 

the output of the slave system tracks the output of the master 

system asymptotically. 

Since the seminal work by Pecora and Carroll ([8], 1990), 

chaos synchronization problem has been studied intensively 

and extensively in the literature [8-30]. In the last two decades, 

various schemes have been successfully applied for chaos 

synchronization such as OGY method [9], active control 

method [10-13], adaptive control method [14-17], time-delay 

feedback method [18], backstepping design method [19-21], 

sampled-data feedback synchronization method [22], etc. 

So far, many types of synchronization phenomenon have 

been presented such as complete synchronization [8], 

generalized synchronization [23], anti-synchronization [24], 

projective synchronization [25], generalized projective 

synchronization [26], etc. 

Complete synchronization (CS) is characterized by the 

equality of state variables evolving in time, while anti-

synchronization (AS) is characterized by the disappearance of 

the sum of relevant state variables evolving in time.  

Projective synchronization (PS) is characterized by the fast 

that the master and slave systems could be synchronized up to 

a scaling factor. In generalized projective synchronization 

(GPS), the responses of the synchronized dynamical states 

synchronize up to a constant scaling matrix .α It is easy to see 

that the complete synchronization and anti-synchronization are 

special cases of the generalized projective synchronization 

where the scaling matrix Iα = and ,Iα = − respectively. 

In hybrid synchronization of two chaotic systems [27-29], 

one part of the systems is completely synchronized and the 

other part is anti-synchronized so that the complete 

synchronization (CS) and anti-synchronization (AS) co-exist in 

the systems.  

In control theory, sliding mode control, or SMC, is a 

nonlinear control method that alters the dynamics of a 

nonlinear system by application of a discontinuous control 

signal that forces the system to “slide” along a cross-section of 

the system’s normal behaviour. The state-feedback control law 

is not a continuous function of time. Instead, it can switch from 

one continuous structure to another continuous structure based 

on the current position in the state space. Hence, sliding mode 

control is a variable structure control method.  

In robust control systems, sliding mode control is often 

adopted due to its inherent advantages of easy realization, fast 

response and good transient performance as well as its 

insensitivity to parameter uncertainties and disturbances.   
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In this paper, we derive new results based on the sliding 

mode control [30-33] for the hybrid chaos synchronization of 

identical hyperchaotic Qi systems ([34], 2008). Our stability 

results have been established using the Lyapunov stability 

theory [35]. 

This paper has been organized as follows. In Section II, we 

describe the problem statement and our methodology. In 

Section III, we discuss the hybrid synchronization of identical 

hyperchaotic Qi systems (2008). In Section IV, we summarize 

the main results obtained in this paper.  

II. PROBLEM STATEMENT AND OUR METHODOLOGY USING 

SLIDING MODE CONTROL 

In this section, we discuss the master-slave synchronization 

of identical chaotic systems and our methodology of achieving 

hybrid synchronization using sliding mode control (SMC). 

Consider the chaotic system described by the dynamics 

  ( )x Ax f x= +ɺ         (1) 

where 
nx∈R is the state of the system, A is the n n×  

matrix of the system parameters and : n nf →R R is the 

nonlinear part of the system.  We consider the system (1) as the 

master or drive system. 

As the slave or response system, we consider the following 

chaotic system described by the dynamics 

  ( )y Ay f y u= + +ɺ       (2) 

where 
ny∈R is the state of the system and 

mu∈R is the 

controller to be designed.  

In hybrid synchronization, we define the synchronization 

error so that the odd states of the systems (1) and (2) are 

completely synchronized and the even states of the systems (1) 

and (2) are anti-synchronized.  

Thus, we define the hybrid synchronization error as 

, if  is odd.

, if  is even.

i i

i

i i

y x i
e

y x i

−
= 

+
       (3) 

then the error dynamics can be expressed in the form   

    ( , )e Ae x y uη= + +ɺ            (4) 

The objective of the global chaos synchronization problem 

is to find a controller u such that 

  lim ( ) 0
t

e t
→∞

=     for all (0) .ne ∈R     (5) 

To solve this problem, we first define the control u as 

  ( , )u x y Bvη= − +      (6) 

where B is a constant gain vector selected such that  ( , )A B    

is controllable.  

Substituting (6) into (4), the error dynamics simplifies to 

  e Ae Bv= +ɺ      (7) 

which is a linear time-invariant control system with single 

input .v  

Thus, the original hybrid chaos synchronization problem 

can be replaced by an equivalent problem of stabilizing the 

zero solution 0e = of the system (7) by a suitable choice of 

the sliding mode control. 

In the sliding mode control, we define the variable 

     1 1 2 2( ) n ns e Ce c e c e c e= = + + +⋯       (8) 

where 

[ ]1 2 nC c c c= ⋯  

is a constant vector to be determined. 

In the sliding mode control, we constrain the motion of the 

system (7) to the sliding manifold defined by 

{ }| ( ) 0nS x s e= ∈ =R  

which is required to be invariant under the flow of the error 

dynamics (7). 

When in sliding manifold ,S the system (7) satisfies the 

following conditions: 

   ( ) 0s e =     (9) 

which is the defining equation for the manifold S and 

( ) 0s e =ɺ            (10) 

which is the necessary condition for the state trajectory ( )e t  of 

(7) to stay on the sliding manifold .S  

Using (7) and (8), the equation (10) can be rewritten as 

      [ ]( ) 0s e C Ae Bv= + =ɺ       (11) 

Solving (11) for ,v we obtain the equivalent control law  

  
1

eq ( ) ( )  ( )v t CB CA e t−= −    (12) 

where C is chosen such that 0.CB ≠  

Substituting (12) into the error dynamics (7), we obtain the 

closed-loop dynamics as 

   
1( )e I B CB C Ae− = − ɺ    (13) 

The row vector C is selected such that the system matrix of 

the controlled dynamics 
1( )I B CB C A− −  is Hurwitz, i.e. 

it has all eigenvalues with negative real parts. Then the 

controlled system (13) is globally asymptotically stable.  

To design the sliding mode controller for (7), we apply the 

constant plus proportional rate reaching law 

  sgn( )s q s ks= − −ɺ             (14) 

where sgn( )⋅ denotes the sign function and the gains 0,q >  

0k > are determined such that the sliding condition is 

satisfied and sliding motion will occur.  

From equations (11) and (14), we can obtain the control 

( )v t as 

      [ ]1( ) ( ) ( ) sgn( )v t CB C kI A e q s−= − + +      (15) 

which yields 

   
[ ]
[ ]

1

1

( ) ( ) , if ( ) 0
( )

( ) ( ) , if ( ) 0

CB C kI A e q s e
v t

CB C kI A e q s e

−

−

− + + >
=

− + − <





   (16) 
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Theorem 1. The master system (1) and the slave system (2) 

are globally and asymptotically hybrid-synchronized for all 

initial conditions (0), (0) nx y R∈ by the feedback control law 

 ( ) ( , ) ( )u t x y Bv tη= − +         (17) 

where ( )v t is defined by (15) and B is a column vector such 

that ( , )A B is controllable. Also, the sliding mode gains 

,k q are positive. 

Proof.  First, we note that substituting (17) and (15) into 

the error dynamics (4), we obtain the closed-loop error 

dynamics as 

 [ ]1( ) ( ) sgn( )e Ae B CB C kI A e q s−= − + +ɺ    (18) 

To prove that the error dynamics (18) is globally 

asymptotically stable, we consider the candidate Lyapunov 

function defined by the equation 

 
21

( ) ( )
2

V e s e=      (19) 

which is a positive definite function on .nR  

Differentiating V along the trajectories of (18) or the 

equivalent dynamics (14), we get 

2( ) ( ) ( ) sgn( )V e s e s e ks q s s= = − −ɺ ɺ   (20) 

which is a negative definite function on .nR  

This calculation shows that V is a globally defined, 

positive definite, Lyapunov function for the error dynamics 

(18), which has a globally defined, negative definite time 

derivative .Vɺ  

Thus, by Lyapunov stability theory [35], it is immediate 

that the error dynamics (18) is globally asymptotically stable 

for all initial conditions (0) .ne ∈R  

This means that for all initial conditions (0) ,ne R∈ we 

have    

       lim ( ) 0.
t

e t
→∞

=        

Hence, it follows that the master system (1) and the slave 

system (2) are globally and asymptotically hybrid synchronized 

for all initial conditions (0), (0) .nx y ∈R  

This completes the proof. � 

III. HYBRID SYNCHRONIZATION OF IDENTICAL 

HYPERCHAOTIC QI SYSTEMS 

A.  Theoretical Results 

In this section, we apply the sliding mode control results 

derived in Section II for the hybrid synchronization of identical 

hyperchaotic Qi systems ([34], 2008). 

Thus, the master system is described by the 4D Qi 

dynamics 

 

1 2 1 2 3

2 1 2 1 3

3 3 4 1 2

4 4 3 1 2

( )

( )

x a x x x x

x b x x x x

x cx x x x

x dx fx x x

ε

= − +

= + −

= − − +

= − + +

ɺ

ɺ

ɺ

ɺ

             (21) 

where  1 2 3 4, , ,x x x x  are state variables and , , , , ,a b c d e f  

are constant, positive parameters of the system. 

The slave system is also described by the controlled 4D Qi 

dynamics 

        

1 2 1 2 3 1

2 1 2 1 3 2

3 3 4 1 2 3

4 4 3 1 2 4

( )

( )

y a y y y y u

y b y y y y u

y cy y y y u

y dy fy y y u

ε

= − + +

= + − +

= − − + +

= − + + +

ɺ

ɺ

ɺ

ɺ

   (22) 

where 1 2 3 4, , ,y y y y are state variables and 1 2 3 4, , ,u u u u are 

the controllers to be designed. 

The 4D Qi systems (21) and (22) are hyperchaotic when  

 50,  24,  13,  8,  33,  30a b c d fε= = = = = =  

Figure 1 illustrates the phase portrait of the hyperchaotic Qi 

system (21). 

 

Figure 1. Phase Portrait of the Hyperchaotic Qi System 

The hybrid synchronization error is defined by 

           

1 1 1

2 2 2

3 3 3

4 4 4

e

e

e

e

y x

y x

y x

y x

= −

= +

= −

= +

      (23) 

The error dynamics is easily obtained as 

     

1 2 1 2 2 3 2 3 1

2 1 2 1 1 3 1 3 2

3 3 4 4 1 2 1 2 3

4 4 3 3 1 2 1 2 4

( ) 2

( ) 2

2

2

e

e

e

e

a e e ax y y x x u

b e e bx y y x x u

ce e x y y x x u

de fe fx y y x x u

ε ε

= − − + − +

= + + − − +

= − − + + − +

= − + + + + +

ɺ

ɺ

ɺ

ɺ

    (24) 

We write the error dynamics (24) in the matrix notation as 
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( , )e Ae x y uη= + +ɺ
          (25) 

where 

 

0 0

0 0
,   

0 0

0 0

a a

b b
A

c

f d

ε

− 
 
 =
 − −
 

− 

                              (26) 

 

     

2 2 3 2 3

1 1 3 1 3

4 1 2 1 2

3 1 2 1 2

2

2
( , )

2

2

ax y y x x

bx y y x x
x y

x y y x x

fx y y x x

η
ε

− + − 
 − − =
 + −
 

+ + 

  (27) 

  and  

  

1

2

3

4

u

u
u

u

u

 
 
 =
 
 
 

    (28) 

The sliding mode controller design is carried out as detailed 

in Section II. 

First, we set u as 

     ( , )u x y Bvη= − +                                             (29) 

where B is chosen such that ( , )A B is controllable. 

We take B as 

       

1

1

1

1

B

 
 
 =
 
 
 

                                                            (30) 

In the hyperchaotic case, the parameter values are  

50,  24,  13,  8,  33,  30a b c d fε= = = = = =      

The sliding mode variable is selected as 

 [ ]8 1 1 1s Ce e= =         (31) 

which makes the sliding mode state equation asymptotically 

stable.  

We choose the sliding mode gains as 6k = and  0.3.q =  

We note that a large value of k can cause chattering and an 
appropriate value of q is chosen to speed up the time taken to 

reach the sliding manifold as well as to reduce the system 

chattering. 

From Eq. (15), we can obtain ( )v t as 

  
[ ]29.818 39.091 2.091 3.182

     0.0273 sgn( )

v e

s

= − −

−
       (32) 

Thus, the required sliding mode controller is obtained as 

         ( , )u x y Bvη= − +                                            (33) 

where ( , ),x y Bη and ( )v t are defined as in the equations (27), 

(30) and (32). 

By Theorem 1, we obtain the following result. 

Theorem 2. The identical hyperchaotic Qi systems (21) 

and (22) are globally hybrid-synchronized for all initial 

conditions with the sliding controller u defined by (33). � 

B. Numerical Results 

For the numerical simulations, the fourth-order Runge-

Kutta method with time-step 
8

10h
−= is used to solve the  

hyperchaotic Qi systems (21) and (22) with the sliding mode 

controller u given by (33) using MATLAB. 

 The initial values of the master system (21) are taken as 

1 2 3 4(0) 18,   (0) 26,   (0) 4,   (0) 7x x x x= = = =  

The initial values of the slave system (22) are taken as 

1 2 3 4(0) 28,  (0) 10, (0) 16,  (0) 25y y y y= = = =  

Figure 2 illustrates the hybrid synchronization of the 

identical hyperchaotic Qi systems (21) and (22).   

  

 

Figure 3. Hybrid Synchronization of the Hyperchaotic Qi 

Systems 

IV. CONCLUSIONS 

In this study, we have designed sliding controllers to 

achieve hybrid synchronization for the identical hyperchaotic 

Qi systems (2008). Our synchronization results based on the 

sliding mode control have been proved using the Lyapunov 

stability theory. Numerical simulations are also shown to 

validate synchronization results derived in this paper. 
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