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Abstract—This paper presents an analysis of the impact of 

intermittent measurement to the Simultaneous Localization and 

Mapping (SLAM) of a mobile robot. Intermittent measurement is 

a condition when the mobile robot lost its measurement data 

during observation due to sensor failure or imperfection of the 

system. This is crucial, since SLAM requires measurement data 

recursively for data update in estimating its current states. In this 

study, the analysis focused on the effect of intermittent 

measurement on the state error covariance matrix for two basic 

conditions; mobile robot is stationary and moving. The impact on 

the determinant of covariance matrix is observed. From the 

analysis, it can be concluded that intermittent measurement may 

lead to incorrect estimation of robot position and increment of 

state error covariance matrix. 

Keywords—intermittent measurement; SLAM; Kalman filter; 

covariance matrix 

I.  INTRODUCTION 

A process of building a map of an environment whilst 
consequently estimating the location of a robot is known as 
‘simultaneous localisation and mapping’ (SLAM). Using 
SLAM, a mobile robot has the fundamental ability to locate 
itself as well as environmental features (landmarks) without a 
known map. In 2D SLAM, the mobile robot is set to move in 
an environment comprising of population of landmarks. 
Proprioceptive and exteroceptive sensors are installed on the 
robot. The former sensor is used in measuring the robot’s own 
motion whilst the latter measures the relative location between 
the robot and nearby landmarks. Thus, the objective of SLAM 
is to estimate the position and orientation of the robot (robot 
pose) together with the locations of all the landmarks [1]. 

SLAM was first mathematically formulated as an 
estimation problem to understand the relationship between 
mobile robot and landmarks. All landmark positions and the 
robot pose were presented in a common state vector and a 
complete covariance matrix. A statistical basis for describing 
relationships between landmarks and manipulating geometric 
uncertainty was established prior to that, showing that there 
must be a high degree of correlation between estimates of the 

location of different landmarks and these correlations would 
grow with successive observations [1][2]. The correlations 
were crucial to achieve an efficient estimation. The more these 
correlations grow, the better the solution [3]. Stochastic 
estimation techniques such as the Kalman Filter (KF) [4], 
Particle Filter [5], H∞ Filter [6] or Information Filter (IF) [7] 
have been used to solve the SLAM problem. Kalman filter is 
the most used method due to the simplicity of algorithm and 
lower computational cost compared to other filters [8]. 

In this paper, we have studied the KF-based SLAM 
behaviour under intermittent measurement. Intermittent 
measurement is a condition when the mobile robot lost its 
measurement data during observations due to sensor failure or 
imperfection of the system. The issue is important, since this 
condition may lead to erroneous result [9]. The research of 
intermittent measurement have been focused mainly for 
network system [10] [11] and there has been very limited 
studies on mobile robot application [12]. 

The paper is structured as follows. Section II presents the 
model of the system and the Kalman filter based algorithm to 
the SLAM problem. Section III shows the analysis of KF-based 
SLAM under normal and intermittent measurement conditions 
for stationary and moving robot. Finally section IV concludes 
the study. 

II. KALMAN FILTER BASED SLAM 

A. SLAM Model 

SLAM is represented through discrete time dynamical 
system equation using process and observation model. The 
process model describes the motion of the mobile robot while 
the observation model defines the measurement of the map 
features or landmarks with respect to the mobile robot position. 
Fig. 1 shows the setup of the SLAM that is represented by 
these models. 

For a linear system, the process model of SLAM from time 
k to time k + 1 is described as 
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where Xk is the state of  the mobile robot and landmarks, Fk is 
the state transition matrix, Bk is the control matrix, uk is the 
control inputs, Gk is the noise covariance matrix and wk is the 
zero-mean Gaussian process noise with covariance Q. 

 

Fig. 1 : SLAM model 
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where 
k

x  and 
k

y  are the coordinates of the centre of the 

mobile robot with respect to global coordinate frame and 
k

  is 

the heading angle of the mobile robot. The landmarks are 
model as point landmarks and represented by Cartesian 

coordinate (
i

x ,
i

y ), i = 1, 2,…, m where m is number of 

landmarks. 

In this study, a model of two-wheel mobile robot is used. 
T]    [

kkkr
yxX  is used to represent the robot position or in 

this study sometimes we denote it as robot pose. The process 
model to describe the kinematic motion of mobile robot is 

defined as ),,,(
)()1(


kkrkr

uXfX 


 and  T
kkk

u   in 

which 

)sin()(

)cos()(

)(

1

1

1

kkkk

kkkk

kkk

Tyy

Txx

T



















 

with control inputs ωk  is mobile robot angular acceleration 
and υk is its velocity with associated process noises, δω and δυ. 
T is the sampling rate or the time interval of one movement 
step. 

The process model for the landmarks T]  [
iim

yxX  for  

i = 1, 2,…, m is unchanged with zero noise as landmarks are 
assumed to be stationary. 

)()1( kmkm
XX 


 

The state observation or measurement process is represents 
using observation model  
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where Hk  is the measurement matrix and 
iir

v
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is the zero-mean 

Gaussian noise with covariance matrix R. At time k + 1, the 
observation of i-th landmark is a range ri and bearing φi which 
indicates relative distance and angle from mobile robot to any 
observed landmarks. It is assumed that the sensors on the robot 
are equipped with a range and bearing sensors that make the 
observations of the landmarks in the environment and also 
encoders at the wheels for the measurement of vehicle speed. 
Range and bearing are defined as 
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where (
1k

x ,
1k

y ,
1k

 ) is current robot position, (
i

x ,
i

y ) is 

position of observed landmark, 
ir

v and 
i

v


are the noises on the 

measurements. 

B. State Error Covariance Matrix 

Generally the covariance of two variants is the 
measurement on how strongly these two variables are 
correlated. The correlation on the other hand is a concept used 
to measure the degree of linear dependencies between 
variables. The covariance matrix of a state estimation in SLAM 
is a combination matrix of robot and landmark position 
covariance matrixes and correlation between robot and 
landmarks. The covariance matrix in SLAM, P is defined as 


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MMMR

RMRR

PP

PP
P  

PRR : Covariance matrix of the robot position 

PMM : Covariance matrix of the landmark position 

PRM : Cross-covariance matrix of the robot and landmark      
   position or cross-correlation between them 

  In SLAM, the covariance matrix indicates the error 
associated with the robot and landmark state estimations. 
From the covariance matrix, researchers can observe the 
uncertainties and errors of the estimation either grow or 
decline, in which represent the precision and consistency of 
the estimation. Therefore the study on the behaviour of 
covariance matrix is one of the important issues in SLAM. 
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C. Kalman Filter Algortihm 

Kalman filter is used to provide estimates of mobile robot 
pose and landmark location. Kalman filter recursively 
computes estimates for a state Xk according to the process and 
observation model in (1) and (5) respectively. The stages of 
Kalman filter algorithm are as follows: 

 Prediction (time update) to estimate priori estimation 

of state and its error covariance matrix: 
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 Update (measurement update) to provide a correction 
based on the measurement zk to yield a posteriori state 
estimate and its error covariance: 
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where µk+1 is the difference between the measurement 
from the sensor and predicted measurement from 
Kalman filter (normally is called as innovation), Sk+1 

is associated covariance for the innovation and Kk+1 is 
Kalman gain.  

D. Kalman Filter Algorithm with Intermittent Measurement 

The measurements from the sensor may be lost due to 
sensor failure or miscommunication between sensor and 
controller. During this condition, the estimator will not receive 
the observation, which could lead to estimation error. 
Intermittent measurement has always been modelled either as 
Markov chain or Bernoulli process [10]. Based on the 
representation through Bernoulli process, to compensate the 
missing measurements, the update algorithm for Kalman filter 
is modified into 
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where γk+1 is a Bernoulli random variable and has value either 
one or zero [10]. 

III. ANALYSIS OF INTERMITTENT MEASUREMENT 

This paper attempts to prove that if there are some missing 
measurement data during robot observation, the estimations of 
mobile robot pose and landmarks locations are not correct [13] 
and the covariance of the estimation is increased, determined 
by the determinant of covariance matrix. The analysis was 
conducted during the intermittent measurement occurred at 
time k = a and after intermittent measurement at time k = a + n. 
The impact on covariance matrix is observed and analysed. 

Definition 1: Measurement data lost is defined whenever 
measurement data is not successfully retrieved after one sample 
time and occurred randomly in mobile robot observations [14]. 

The above definition describes that if a measurement is 

unavailable at time k, then the measurement matrix  0
k

H , 

where  0  denotes a zero matrix. We now demonstrate how the 

covariance matrix of state estimation behaves if this is partially 
happened during mobile robot observation. 

A. Robot is stationary 

For the first case of study, robot is considered to be 
stationary and observed one landmark in its environment for n 
times. Since robot is not moving, there are no control input for 
the mobile robot’s motion, therefore uk = 0. Under this 
scenario, two conditions are observed; with and without 
existence of process noise. 

1) No process noise 

Since mobile robot is stationary, some researchers 
assumed that there are no process noises for that moment as no 
movement is involved [15]. 

Proposition 1: Covariance of process noise Qk is the 
summation of the covariance of control noise δω and δυ. Since 
the mobile robot is assumed to remain stationary, so no control 
noise is injected to the system, therefore Qk is assumed to be 
zero. Thus under this assumption, covariance matrix under 
intermittent measurement is larger than covariance matrix 
under normal condition, in which the measurement data is 
consistently available. 

Proof: The state error covariance matrix is predicted through 
(10). Since the robot is stationary, the state transition matrix Fk 

possesses normally an identity matrix. Thus, priori covariance 
matrix at time k + 1 is equal to posterior covariance matrix at 
time k, since no process noise is added to the system. 
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Matrixes in the algorithm are positive semidefinite (psd) 
matrix [4]. If the measurement data is consistently available at 
1 < k < ∞ time, updated covariance at time k + 1 has smaller 
value than priori covariance because of the correction done by 
Kalman filter. From (15) and (18)1 

kkn

kkn

kkkkkn

PP

PP

PHKPP





















)1(

1)1(

1111)1(

 

If intermittent measurement occurred, there is no 
observation available, hence from the explanation of 
Definition 1 measurement matrix Hk+1 → [0] and γk+1 = 0 in 
(17). Under this assumption, posterior covariance matrix with 
intermittent measurement is equal to the priori covariance 
matrix, which is similar to the covariance matrix at time k.  

1Subscript i and n denote a parameter during intermittent measurement 
and under normal condition respectively. 
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Suppose in measurement update, the covariance is corrected 
through Kalman gain, but this cannot be done due to 
unavailability of measurement data.                                        □ 

Definition 2: The determinant of the state error covariance 
matrix is a measure of the volume of the uncertainty ellipsoid 
associated with the state estimate [4]. 

From (21) and (22), it shows that determinant of state error 
covariance during intermittent measurement is larger than 
determinant of state error covariance under normal condition. 
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This denotes the total uncertainty is increasing if the 
measurement data was suddenly unavailable, which indicates 
imprecise estimation of current state. Thus, under intermittent 
measurement the mobile robot may incorrectly estimates its 
current position. 

2) With process noise 

In a real situation, it is hard to obtain a noise-free system. 
Although the mobile robot is not moving, process noise may 
also exist in the SLAM system, e.g. noises from the 
environment or encoder attached to the robot. In this section, 

the analysis is continued with 0
k

Q . 

From (10) priori covariance matrix at time k + 1 is no 
longer equal to posterior covariance matrix at time k, since 
process noise is added to the system. The priori covariance at 
k + 1 is larger than covariance at k. 
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This is true for both cases; normal and intermittent 
measurement. Under normal condition, priori covariance 
matrix is updated using (12) – (15) and possesses smaller 
value of posterior covariance matrix. This is true as k → ∞ 
covariance matrix is decreasing and converging. 

However, the effect is not similar if measurements are not 
available. Using (17) with Hk+1 → [0] and γk+1 = 0, covariance 
matrix is not able to be updated and remains with the value of 
priori covariance. The covariance matrix will accumulate if 
the measurement is still not available, since process noise is 
injected to the system for each time update (10). 

Since covariance matrix under normal condition is 
decreasing and converging as k → ∞ where else covariance 
matrix with intermittent measurement is increasing as long as 
measurement is not available, the determinant for both 
covariances have a similar trend;  

   
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This proves that uncertainty of the state estimation when data 
is not available is higher than normal condition, indicates 
erroneous prediction of robot pose. Therefore some sort of 
control strategies should be proposed to compensate this error. 

B. Robot is moving 

The mobile robot moves from stationary position and 
observes one landmark in its environment for n times. Since 
robot is moving, there is control input applied to the system 

for mobile robot’s motion, therefore 0
k

u  and 0
k

Q . 

Since control input is concerned only in the prediction of 
priori state estimates (9), the effect on the covariance matrix is 
not significant. However, the process noise under this 
condition is possibly larger than process noise under stationary 
condition, due to existence of δω and δυ. Therefore covariance 
matrix when mobile robot moves is greater than covariance 
matrix under stationary situation.2 
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The behaviour of covariance matrix under normal and 
intermittent measurement when robot moves is similar with 
the behaviour when robot is stationary. Covariance matrix 
when measurement data is not available is higher than normal 
condition. The characteristic is also analogous for the 
determinant of the covariance matrix. This analysis can be 
proved in a similar way to the case one i.e. under stationary 
condition. Therefore the details of the proof are omitted. 

IV. CONCLUSION 

This paper presented the analysis of Kalman filter-based 
SLAM for the instant that measurements data may be 
randomly unavailable. It has been shown that although the 
measurements data is not available intermittently during 
mobile robot observation, the estimation is still possible, but 
possesses erroneous result. This is proved by the increment of 
state error covariance matrix and its determinant, in 
comparison to the normal condition. The analysis proved that 
the measurement matrix Hk highly affects the performance of 
KF based SLAM during intermittent measurement. Therefore 
a control strategy for this situation should be implemented to 
compensate the error. As future works we are planning to 
prove the analysis in this study through simulation and 
investigate the effect of intermittent measurement on the 
correlation between mobile robot and landmarks. 
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