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H., Based on Adaptive Fuzzy Control design for Four
Degree-of-Freedom of Drill-String System

Hsuan-Yi Chef, Mansour Karkoub, and Tzu-Sung Wu

Abstract—The reduced-order models of a flexible drill-string bending and torsion motions of the drill-string as well as
systems allow for radial, bending, and torsion motions with stick-  the interactions with the outer shell. This kind of drill-string
slip interactions between the drill-string and the outer shell is system is highly nonlinear and classified as under-actuated and

highly nonlinear and classified as under-actuated. Therefore, the 7. the difficulty of th troller desi S
drill-string system are very complex mechanical systems and have a Increase tne dimcuity ot the controller design. some re-

been the subject of research investigations for several decades.S€archers hold the structure of bit is a major cause of the stick-
In this paper, a H. based adaptive fuzzy control is proposed slip vibration, so they study to the mechanical structure [6]-[7].
to control the four degree-of-freedom of the drill-string system. Thus, various solutions have been proposed in the literature
The advantage of employing an adaptive fuzzy system is Using o controlling rotary system vibrations and to manipulate this

linear analytical results in place of estimating the dynamics of the . I . L
drill-string system with an online update law. A robust control problem of instability. Such as, adaptive control [3], sliding-

law combined with a variable structure (VS) and H., control mode control to conduct drill-string vibrations [3] and [8],

scheme is derived based on a Lyapunov criterion and the Riccai- classical controller as PID [9], and back-stepping control [10].
inequality to overcome the system uncertainties, and external |t js worth to mention, the dynamics of system are assumed
disturbances so that all signals of the closed-loop system areown in the above literature, however, most of the dynamics

uniformly ultimately bounded (UUB). Simulations show that the f th tical t K Th it is i tant
proposed control scheme is effective in reducing the phenomenon0 € paratical system are unknown. us, 1t IS Importan

of the drill-string system hitting with outer shell due to the drill- ~ Work that how to design the controller for unknown dynamic
string system be_nding such that the rotation of a drill-string keep  system.
close to the radial center. Adaptive fuzzy control techniques combine the advantages

Index Terms — Nonlinear systems: adaptive fuzzy control©f fuzzy control and adaptive control methods resulting in an
H- control: VS scheme: driII-string’system efficient algorithm to estimate the unknown nonlinear system
oo 1 1 .

[11]-[12]. It also designed to guarantee that the system outputs
|. INTRODUCTION could track the anticipant signals. However, the matching error
may diminish the tracking performance. Therefore, robust

The dnll-_st_rmg _system is a part of the roFary drill rlgadaptive fuzzy scheme design for nonlinear systems with
.US.Ed for mining .OII wells. A_reprgsentatlve dnll-ng SySte.munknown or uncertain models have been attracted in last
s illustrated in Fig. 1 The drill-string system Com?"”es W'tr(]jecade [13]-[14]. The VS scheme is a robust design method-
thrt_—ee s_,ubsystems, W'.th one of them being the driving SySteS(?jbgy and used to deal with external disturbances, quickly
which includes the drill-string and bottom-hole-assembly used =: :

. : .~ varying parameters and unmodeled dynamics [13]. However,
to carry out the_ drl!lmg proce_ss._StructuraIIy, the_ drlll-strmqhe external disturbance may be of finite-energy only, but not
co_mpopent, Wh'Ch is housed _msu;le a drill pipe, includes ﬂEJeounded. In recently, thél, robust control theory has been
gggtfc}gngf ?r:'g ((;cr)illlli,trand ignlrleg :'rezhfougzetrhzn3ri||(|)_n?eédeveloped and applied extensively in the efficient treatment

g IS rete PIP€4t robust stabilisation and disturbance rejection problems, to
The lower part of the drill-string is called the Bottom Hole

Assembly (BHA) [1]. The drillstring is mainly used forsolve the nonlinear control design problem under a state-

. . ! pace structure with bounded unknown or uncertain parameters

creating a bore hole, which runs miles below the ground:; : :
. . : . anhd external disturbances such that the tracking error can be
This system is surrounded by soil and rock, which can b .
: . aftenuated to a prescribed level and system performance can
considered as a core covered by outer shell pipes. When:
S . 7 . e improved [14].

the drill rig is in operation, the driving torque is not always

constant and there is contact between the drill-string and tl'*eIn this paper, the proposed robust control law for drill-

outer shell as well as between the drill-string and the wel ring system s based on VS adaptive fuzzy control. The
bottom. adaptive fuzzy scheme uses a VS scheme to resolve the system

During drilling. the main vibrations and failures oceur inuncertainties, and external disturbances suchihattracking
the BHA? wheregé:ontact between the drill-strina and the We@erformance is achieved. The control laws are derived based
g n a Lyapunov criteria and the Riccati-inequality such that

[1]’ [Zh]t MOStth oqulrllll-tsmng Sytstemsf %f thj %”"(;p'pei are(zja" states of the system are UUB. Therefore, the effect can
straight like the drill-string system of [3]. [4]-[5] develope e reduced to a prescribed level to achiéygtracking per-

the four degree-of-freedom reduced-order model to study e, .o Finally, simulations show that the proposed control

Department of Mechanical Engineering, Texas A & M University at Qataﬁcheme is effec.ti\(e in r_educing the phenomenon Of_the qri"'
hsuan-yi . chen@at ar . t anu. edu string system hitting with outer shell due to the drill-string
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system bending such that the rotation of a drill-string keep -
close b the radial center. P

1. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

The drill-string systems is comprised of spatially continuous
members and discrete elements, in an effort to understand
the stick-slip interactions in this system, reduced-order models
have been developed in this effort. A section of the spatially
continuous and rotating drill-string is modeled as a system
of two rotating sections with an unbalanced mass attached to
one of them. The parameters used in the development of the

 §
1
|
PR Section I
: (Rotor)

Section I E

(Stator) |

\
{
|
|
|
|
|
|
1
1
|
|
i |
1
1
1
|
|
|
|
|
|
T
1
1
|
|
|
1
|

----______-__-__________-___,\
S N e S S SRR S ——
) /(
4
=)

.

L | ! (i ———

four degree-of-freedom model and the diagrams of model are , ;:"‘d&.}é{,ﬁ;,j =~ Quter Shell

shown in Figs. 2 and 3. In this drill-string systems, Section 2 is _________ e

referred to as the rotor, and Section 1 is referred to as the stator

throughout this paper as shown in Fig. (3). This the radial Fig. 2. lllustration of two section model.

<«—— rill Pipe

Drill String

Drill Collar

<«—— Drill Bit

Fig. 1. Representative schematic of a rotary drill rig. Fig. 3. Schematic of model with four degrees of freedom.

or lateral displacementj is the rotation angle associated with

the first sectiong is the rotation due to bending, andis the glemen and taking into account only the stifiness properties of

rotation angle associated with the second section. In additigRe continuous element and the unbalanced mass, the energy
my, is the unbalanced mass located at a distané®m the expressions for the system are formed as given next. The

axis of rotation of the second section, as shown in Fig. 3. &ystem kinetic energy is constructed as

linear spring contact model is used to depict the interactions

between the drill-string and the outer shell or borehole that is Thotar ~ {discrete elleme“t 1+ Taiscrete clement 11 )
created. For the system shown in Fig. 2, by accounting for the Tyoia = =116%+ = (m + mp) (5% + p2 (04 $)?) + = [
continuous and the discrete elements, the Lagrangian can be 2 2 2

1 : .
formed as + §mb62d2—l—mbed[p(H—i—gb)COS—pSIn

X (a=0-¢)] )

where the different inertia parameters are appropriately de-
fined. The system potential energy is constructed as

Lsystem - Lcontinuous element+Ldiscrete element 1411

l
= / (Tcontinuous clcmcnt_‘/continuous clcmcnt)dz
0

Viotal = Veonti lement T Vdiscrete element I+11
+ Tdiscrete element T T Tdiscrete element II ota continuous elemen iscrete element I+

1 1 1
- Vdiscrctc element I — Vdiscrctc element I (1) ~ §KT (p_p0)2+EKt(p(p)z—i_EKtOT(a_e)z
V\(her_eL represent§ the system Lagrangidhand V/ are the + l)\Kp[p _ l(D — )2 3)
kinetic and potential energy components, respectively, and 2 2

is a parameter along the axial direction of the drill-string offhere the different stiffness constants are appropriately de-
lengthl. Overlooking the inertia properties of the continuouBned and\ is a parameter used to capture the contact between
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the rotor and the outer shell. This parameter takes a value of O Foormal = {2{ (v 3) p= ((55 (12)
p P P>

when ttere is no contact between the rotor and the outer shell
and 1 when there is contact. The virtual work associated with
the external forces and moments is given by

IWewt =—AF:[R(6)+p(60+0p)|+ Mezidx (4)

A. Four Degree-of-freedom Model

By using the extended Hamilton’s principle, the equations
of motion are obtained as follows:

(m +mp)p — (m+mp)p(0 + ) + Kr(p = po) + A,
x(p—08) + Kipp?* — emy[éisin(B) + ¢2cos(B)] =0  (5)

L0+ (m+mp)p?(0 + @) + 2(m + mp) pp(0 + @)
—Kior(a — 0) — empp(a2sin(B) — écos(B)) = —AF;p(6)

(m +mp)p(0 + @) + 2(m +my)p(0 + @) + Ky pp

—emy [dotazsin(ﬂ) — dcos(ﬂ)} = —\F; (7) Fig. 4. lllustration of contact scenarios between drill-string and outer shell:
(a) two contact scenarios, (b) rotation with no sliding, and (c) pure sliding
with no rotation.

emy[—psin(B)p(0+@)cos(B)+p(0+p)sin(B)+2p(0+ )
xc058(B)] = Meyt — ANFy R+ (I +mpe?)éi+ Kior (o — 6) (8)

o Ftequ; Vrelative = 0 a'nd |thax| S |Ftequ|

where Fy = {thax; else (13)

B=a—(0+¢) 9)
The motions of the drill-string system are described by (5)-(9) Fimax = —sgn(Vielative) * 1 * Frnormal (14)
in terms of the coordinates, 0, ¢, anda. The forceF; is
generated due to contact between the rotor and the outer shell. M,

Fioqu= —57——— (15)

B. Contact Parameter \ and Sick-Sip Interaction. d % +0.5-d

The stick-slip interactions between the drill-string and thgjiher rotation of sliding is the phenomenon of drill-string

outer shell are modeled according to previous studies [1Bjtting outer shell, it can be viewed as the external disturbance
The different cases considered here are as follows: (i) Ng system.

contact between the outer edge of the string and the shell,

ie., )\:(_)_, and thg normal contact fordénom}al is zero in th_is_ C. Dynamics of Four degree-of-freedom Drill-Sring System.
case, (i) there is contact and only rotation, and no sliding,

as shown in Fig. 4(b), and (iii) there is contact and pure Consider the dynamical equation of the four degree-of-
sliding and no rotation, as shown in Fig. 4(c). In the presefieedom drill-string system with disturbance is described as
work, the possibility for combined rolling and slipping is nofollows:

included. Egs. (15)-(20) are use_d to determine and descri%(q)q(t) +C(g,q)q(t) + W(g) =U(t) + d(t) (16)

the contact between the drill-string and the outer shell, and

the tangential force used in Egs. (5)-(8) is determined frowhere M(q) is the 4 x 4 mass matrix,C(q,q) is the
Eq. (13). The parametérin Eq. (10) is the radial separation4 x 4 damping matrix, W(q) is the 4 x 4 stiffness ma-
between the outer shell and the drill-string, and this parametdx, U=[0 0 0 «]' is the input motor torque, and =

is used to judge whether there is contact or not. The relatii§ ds ds d4]T is the disturbance acting on the drill-string
velocity V ,q1ative Detween the two contacting surfaces is usesystem. The matrixM (q) is positive-definite for every.

to determine whether there is sliding or not. Eq. (15) i84(q) andM (q)~! are assumed uniformly bounded. Eq. (16)
determined on the basis of a pure rolling mode. The maximuran be rewritten as

tangential force is denoted &8 ax. ) oo . . . -
§=05-(D—d) (10) q(t) =C'(q,@)q(t) + W'(q) + H(q)U(t) +d'(t) (17)
where C(q,q)g=—M (q)~*C(q,q)q, d'(t)=M(q)~'d(t),

N0 p=o (11) W'(q)=—M(q)"'W(q), and H(q)=M(q) "
L p>4 In order to designs controller in later chapters, effortlessly, we
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rewritten eq. (17) as follows: [1l. INDIRECT ADAPTIVE FUZZY CONTROL
T1, = T2, A fuzzy adaptive system is defined as an fuzzy logic system
&1, = T2, provided with a learning algorithm, where the fuzzy system is
T1, = Ta, builded from a set of fuzzy IF-THEN rules using fuzzy logic
T1, = Ta, (18) laws in the following form:
&2, = f1(@) + g1(x)u+di _ . .
do, = fo(2) + go(2)u + db R* . IF z, is C¥ andz, is C5 and- - -andxs is CF,
B2, = f3(2) + g3(x)u + dj THENwis EF, k=1,2,--- ,N (22)
Lo, = fa(x) + ga(z)u + d))

wherez;, i = 1,2,---,8, andw are the input and output of
where f;(x) and g;(z) are unknown but bounded NoN-e f,77y logic system, respectively, is the number of fuzzy
linear continuous functionsd; is the external disturbance, jes andc*

: k i=1,2,---,8, and E* are fuzzy sets. Using
j=1,---,4. All of the elements off1,---, fu, 91,--- , 94, the product inference engine, center-average defuzzifier, and
and d;’---,ds’ wil be described in section IV. Let

; strategy of singleton fuzzifier, the output of fuzzy system can
— _ L TT— . . T

m_[a.;lTaf;]T._[qTqT]T_[p Opapte O‘]T‘[lel T15 V1 be concluded as

L1, L1, L1, 14 .1'14] =[$C1 Lo X3 T4 X5 e L7 ,Tg]

Thus, Eq. (18) can be written as @) S I, pick ()" 23
wT) = =N 8
& = Aoz + B(F(z) + G(z)u)+d'(1) (19) 2= (imy e (22)
where where p (z;) is the membership function of the kth fuzzy
set for the input andv*=max,cr pgr (W), in which zgx (W)
Ay = [0(4) '(4)] ., B= [0(4)} is the membership function of the jth fuzzy set for the output.
Oay O (1) The fuzzy basis functions can be defined as
jjl g Miiper() ”
F(z)= || = C'a1+ W'as, S (T e (@)
fa

Denoting &(z)=[¢!(z)&2(z) --- &N (2)] T, the learning algo-

g1 0 rithm adjusts the parameters of the fuzzy system based on the
ining i ion@=lmla2 ... oN1T i
G(a)u = 92|, — H(z) 0] _ H(z)U training |nformat|on0—[w W @"]". Then equation (23)
g3 0 can be written as
u

o w(z) = 07 €(x) (25)
andd’(t)=[d} d} d4 d/]". The input matrixG () is assumed
nonsingular and bounded for al € U,, whereU, c R® Sincef; andg;, j =1,---,4, in (18) are unknown, they can

is some compact set. Alsdd’|| < ¢, wheree is a positive be approximated by the fuzzy system (25) and expressed as
constant. The proposed control law in this paper is based fotiows:
VS adaptive fuzzy control. The purpose of the paper is to

R T
synthesize a fuzzy adaptive VS control scheme for drill-string filz)=8 Ry (z)
velocity and rotatio_n vel_ocity (due to bending) of driII-stri_ng gj(x) = 0;_59]_ () (26)
systems so that drill-string systems states can asymptotically _
track the given desired reference signals. Let = Wwheref; andd,, are the adjustable parametervect§5§(m)
[wle]T#wnl Tpy, Ty, Ty, By, By By ¢T14]T=[xrl Ty, andégj (x) are the vector of fuzzy basis functions. Define
Tyy Try, Trs Trg Trr Trg] | DE the tracking reference signal and . . . —
assume that, there is a compact €t such thatz, € €, 1‘;(33) =[fi(x) - fa(x)] =Ef(z)Oy (27)
vt < 0 . Define the output tracking error as G(z) = [gi(z) - du(z)]" = Ey(x)O, (28)
J a1 T T

e=xr—x, = [61 e ] = [61 €2 68] where TEfng) . :T dzag{g}rla_?;;jr{—f;rv S.—f;’ E(](x)
Then, the error dynamic equation can be obtained as diag{€,,,&,,,€05 €gsr O = [04,04,0;0,,]7, and®, =

' oo 0,,0,,0,.0,,]". Then, according to the universal approxima-

é=Aje + B(F(z) + G(z)u+d' — &) (20) tion theorem, there exists optimal approximation parameters

where &, = [i,, iy, &, @r]T. Choose a feedback gain(a; and®; which lead to minimum approximation errors for
T T1 T2 T3 T4 . b .
matrix K =[k; k], ki andk, are4 x 4 matrices such that F(x) and G(x), respectively, and expressed as follows:
the characteristic polynomial of = Ay — BK to be Hurwitz. - N
POy 0 AF(z) = F(z) - F(2)|©}) (29)

é:Ae+B(Ke—|—F(cc)+G(cc)u+d’—d§T) (22) AG(z) = F(z) —G(EL‘)|@;) (30)
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where AF(z) and AG(x) are the minimum approximation

errors assumed to be bounded, and 1
up = TR_lBTPe (36)
©; = arg_min {sup|F( )|®f)—F(x)} (1= )
0, | xeU, Jer(iB) -
us = ————=sgn(B' Pe) (37

©; =arg m|n { sup|G(x)|®,) — G(x)} 1=Ky
O;eQ, xeUy,
where R denotes the robust/,, control gain, M, = |(AF +

AGG*(x|©,)(—F + &, — K "e));| is the absolute value of
©;=0}-0; (31) the gth element oOAF+AGG*(z|0,)(-F+i,—K Te), j =
© —0"-0 (32) 1,...,4,,andP = P" > 0 is a symmetric positive definite

g g matrix and satisfying the Riccati-like equation as follow

The following VS scheme adaptive fuzzy-based control law

can be obtained PA+ATP+Q+PB( I-R°HYB'P<0 (38)

u=G*(x|0,)(~F(z|®©)+&,~ K etu,+u;) (33)

The approximation errors are defined as

. . 7 77 Q@=Q" >0 is aweighting matrix, and) < p < 1 denotes
whereG* denotes the pseudo-inverse@fi.e., GG*G = G, a prescribed attenuation level, and the adaptive parameter
up, andu, are compensators described later for disturbancgljustment laws are chosen as follow:
and uncertainties, respectively. Then, substituting (33) into .
eg. (20), the error dynamic equation can be obtained as @} = WE;BTPe (39)

é=Ae+B(-Z;0;-EF, O u+AF+AGu+u,+u,+d’)
=Ae+ B(-E{O;—E] O,u+AF+AGG*(z|0,)
X (F(x|®;)+&,— K etuy+us)+u,+us+d’) (34) Proof: Consider the Lyapunov Function Candidate

®, = 7,2, B Peu (40)

Throughout this research, we need the following assumptions:

_ , - V= leTPe+ ié}éﬁijéq (41)
Assumption 1 : There are exist positive constants > 2 2y 2y 7
0, kK, > 0, and a positive function0 < a,(x) <1
such that [AF;|<ryf, [Nj(AG(x)G*(x[Oy))| < kg, and ) ) L )
AG()G*(x]®,);| <ay(x), where AF, is the jth ele-  y-liTpeileper LéT0,4 1670, @2
ment of AF, \;(AG(x)G*(x|@,)) is the jth eigenvalue of 2 2 Vo Vg
AG(x)G*(x]©,), andAG(x)G" (x|Oy); is the jth element Substituting (34) into (42) leads to:

of AG(x)G*(x]|9,), j=1,...,4.

The time derivative of V is

_ V== (Ae+B(—_T®, 2, ©yu+AF+AGu+uy, +u,
Theorem 1 : H., Performance: A, performance is con- 2

sidered as follows [16], [17]: +d’))TPe+5eTP(Ae+B(—ET(:)f—E;(:)gu+AF
¢ 1 1 2+~ 1 2+ =
/ e'Qe dt < e'(0)Pe(0)+—O/(0)0(0) +AGu+uy+u+d')) + —0]0;+—0] 0,
0 t%t s Ty 7
1 1 P— A P— A
+7_q@;(0)@g(0)+p2/0 (d'"d’") dt. (35) zieT(ATP + PA)e—eTPB.:}—G)f—eTPB.:;—G)gu

T Ak - T
whereQ > 0, P = P' > 0, and p? is the prescribed +e PB(AF + AGG (Ileg)(_F+mT_K e))
attenuation value which denote the worst case effect of the+eTpB(1+Agg*(x|@g))(us+uh)+i(:)}(:)f
external disturbancad’ on the tracking erroe. The physical ) f
meaning of performance in (35) is that the effectsddfon T L ATE
e. It must be attenuated below a desired lepefrom the e PBd +7 49 43)
energy viewpoint, whether what’ is, i.e., theL,-gain from
d’ to e must be equal to or less than a prescribed vaftie

In general,p is chosen as a positive small value less than oneV< (ATP I PA)e+eTPB(AF+AGG*(x|®q)
for attenuation ofd’. [ | '

Sulstituting adaptive laws (39) and (40) into (43) leads to:

(—F—i—:’i:r—KTe))+eTPB(I+AGG*(x|®g))
Theorem 2 : Consider the four degree-of-freedom of drill- x(up+us)+e PBd’ (44)
string systems (18) and the modeling system (20). Let the
variable structure adaptive fuzzy-based control law be giv&®y completing the squares and using the control inputin
as in (33) with (44) and|\; (AG(x)G*(x|@©,))| < Ky, We have
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TABLE |

SYSTEM PARAMETER VALUES IV. SIMULATION RESULTS
In this section, a four degree-of-freedom of drill-string

Suaniiies Varahe Valie Onits systems is used to as IS|muI<_';1t|on example. The system

Mass of rotor m TR x 10T kg parameter values are given in Table I. The nonlinear

Unbalanced mass on rotor 7x10*33 kg , differential equation of four degree-of-freedom of drill-

Stator moment of inertia I 5.9 x 10~ kgm i i i _

Rotor moment of inertia Ip) 1.9 x 1073 kgm? Smgg Szjztﬁnc]fs(lﬁs) vEn by o (118) Whef@ 5171(506 i

Bending stiffness Ky 27.2 Nm~! r7)” + mimb + ((m+mb£(€2m><mb+l2(m+mb)))(_(m +

_Bren(_:iing f_tfifffness ?t 421763 mmf - mp)(I2 + €2myp)z1 (K, + Ktag + K:) + emp(empar (K, +

orsion stiffness tor . m~lra 2 2

Outer shell stiffness Kp 2.7 x 105 Nm~! Ky + Kc)\)cos(ﬁ.) + ka(m + nﬂigzr(ffwr;(%)flﬁ(@)t)j

Outer shell inner diameter D 1.91 x 1071 kg €Ktmb$15173005(ﬂ)52n(ﬁ)) fo= )

Rotor diameter d 1521071 kg fi= o (Em(-LE@m + m)ey + 2Km(m

t t t 1x 107"

I\r/I“oItE(i)rggrS(;lIJ?eno o io 1.(>]<2>< 102 Ngm mp)(z2 — x4) + 2m(m + mp)zi(—Ktzizs + F ) +
2I(m + my)(—LKixs + (m + mp)(Ka(xe — 24) +
x1(—Kizixs + FN)))) + elimp(—2Ka,(m + mp)(ax2 —
xq)cos(B) + empxy(—Kixs2cos(B) zl— (K, + Ktz +
Kc)\)SZTL(2ﬁ)))] x (211(m-l—mb)(eszmb-l—Ig(m-i—mb))wl) +

1 . - - . 72(m(+mb)ac))(xp+z7) + eznbzgsw)L(B)

- * m-+myp)x m+mp)xy

V§2e (A'P+PA)et+e PB(AF+AGG*(z]|9,) f_Ka m+fnb)1(m2 m4)+em2bzl(walgc(os(B) )(KT-l-KpIg-l-Kc)\)glnzﬂ)

x(F + :iT—KT +e  PBI+AGG*(z(®,))u, p ommeddatmme
( )) ( ( | Q)) dl_((m+mb)(€2mmb+l2(m+mb))) X (m + mb)(I2 +

T’ (45) e2myp) (K,.po + KA8) + emyp (emp(—K,.po — K \)cos(B)? +

F:A(0.5dm + 05dmb - embcos(ﬁ))sm(ﬁ)) dfy=—FzA

d
+2eTPB( I-R Y)B' Pe+p?

Iy
Sukstituting (37) into (45) leads to 4= e ey P (€2 (m 4 0.5my )my, +
) ) ) L(m + my) + (2mmp(m + my) + L(m? +
V<-e'(A"P+PA)et e PB(I-R™) mmy  + mP))zH)A  +  elimp(0.5eFympAcos(28)  +
2 ; 2 p cos(B)(dF,(—0.5m—0.5mp) A +emy (K, po— K N8)sin(B))),
/ / — 1
«BTPetpd 4 46) (e )4 (0.5m 4+ 05m)A -
2 eFymphcos(B)  +  emp(Krpo 4+ K.A)sin(B),
_ empSin _ _ emy,cos
Heme, we have (47) gl_Wg(ﬁ*@ﬂnb)’ 92_0’ g3=— IgmlerIgmbble(rBe)?mmbzl)’
and gi= o0t in which my = m + m,
S g miz = miz = 0, myy = —empsin(f), ma1 = 0,
VS_ie Qe—|—§p d'’d’ A7) mey = I + (m + mp)p®, maz = (m + mp)p?,
= y = O, = = y
Therefore, whenever M2y eTbPCOS(ﬁ) m31 Mz = M (m + my)p
msq = empcos(B),  may = —emypsin(f),
p‘/d/Td/
lell > )\7 (48)
min(Q) Drill-String System
we have V' < 0, where \,;,(Q) denotes the minimum Fm et RPN &
eigenvalue ofQ. Therefore, the overall system satisfies the " )
following relationship: i Control Law 1’.;
t - - 1 - —| u=E(-Pee? - Ke
/ e Qe di < ' (0)Pe(0)+ =07 (0)0(0) - ‘
0 f 3.
1 t [
+—0,(0)0,(0)+p* / d'"d' dt. (49)
Vg 0 =z
In light of the Lyapunov stability theory functional differential 1es
equation and since is the design constant serving as an up, U Adaptive Laws
attenuation level, it can be concluded that for a@ny to, e, Upzm L R-1BPe e aranic
©; and®, are uniformly ultimately bounded (UUB) and the ::'H:J ) . (i
H, tracking performance is within the prescribed attenuation U= To, SON(B"Pe) ) 8}, =58 Peu
level p. This completes the proof. | ;
The flow chart of the overall VS adaptive fuzzy control
system is shown in Fig. 5. Fig. 5. The flow chart of the overall VS adaptive fuzzy control system.
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Mmyz = my3 = emppcos(B), andmay = I + mpe®. c;p = 0, inwhich,k =1,2,...,25, andab = 1,2, ...,5. The range of
cra = —(m 4+ mp)p(0 + @), c13 = —(m + my)p(d + ¢), membership functions of; is 0.0185 to 0.0195, the range
cla = —empccos(B), ca1 = 0, ca2 = 2(m + my)pp, of membership functions oF, and E; are 0 to 2m, the
cas = 2(m + myp)pp, caa = —emppasin(B), ¢z = 0, range of membership functions @3 is -1 to 1, the range
cz2 = ¢33 = 2(m + mp)p, cza = —empasin(B), of membership functions of’s and £; are -0.5 to 0.5, and

ca1 = 2emyp(0 + @)cos(B), caz = cag = empp(0 + ¢)sin(5), the range of membership functions Bf and Es are -1 to 1.
andcyy = 0. w11 = AKp + K, wi2 = 0, wiz = Kipe, 4). The above parameters be substituting (38) into (36) and
wig = 0, w1 = AF, wag = Kior, waz = 0, waa = —Kior,  (37). Apply the control force (33) into the drill-string system.
w3y = wge = wzg = 0, wsz = Kyp, wyy = wys = 0, Then, the adaptive law (39) and (40) can be computed.

Wiy = —Kiop, aNd way = Kiop, di = AKp0 + Krpo, The simulation results are shown in Figs. 6-11. Figs. 6 and
dy =0, d3 = A\F}, dy = AF R. The idea here that, we hope9 correspond to the state variable values time histories of the
stator and rotor of drill-string system have the same velocitgngential component, Figs. 7 and 10 correspond to the veloc-
(zrs=zr,=5rpm). Therefore, there are have the same rotatg time histories of the tangential component, and Figs. 8 and
angle of stator and rotorz(,=x,,=¢nt). Meanwhile, we do 11 correspond to the radial motion phase portrait projections.
not want to produce radial or lateral displacement and velocityis seen that from the figure Figs. 6-8 are shown that the drill-
of rotor (z,,=0.019 andz,,=0), rotation displacement andstring is driven by a fixed external torque. Because there is no

velocity due to bending af., =z,..=0). controller in the system, the flexible part of drill-string appear a
The design procedure of the adaptive fuzzy control substantial swing. Comparing the results of Figs. 8 and 11, it is
synthesize as follows: clear that the results of Figs. 11 show that the rotor stays closer

1). For high penalty on initial parameterto the radial center in the same simulation time. It is seen that
errors, the initial conditions are chosen  asngential velocity jumps in Figs. 7 and 10, which is attributed
©,(0)=0.03L400x1, ©4(0)=0.01I400x1, x1(0)=0.019, and to the impact between the rotor and the outer shell. In addition,

22(0)=23(0)=24(0)=25(0)=24(0)=z7(0)=2s(0)=0. Select the duration of jumping also increases denoting drill-string

design parameters as;=9, 7,=0.1. The bounds of the uncontrolled in Fig. 7. The results presented from Figs. 9-

uncertainties are s = 0.04 andx, = 0.03. 11 demonstrate that the proposed scheme indeed improves the
2). Select the feedback gaiR=[k; k3], system performances including convergence of the estimations

B - and tracking errors such that accomplish flexible part of drill-
kr = Lixa x [505 45.3 40.7 633] string swing suppression and ensure the rotation of a drill-
ks = Lixq x [10.1 9 8.1 13.1] string keeping close to the radial center.

;uch thgt the characteristic polynomials Af= Ay — BK V. CONCLUSION
is Hurwitz. We choose the = 0.1, R = 0.1p?I,.4, the _ _ o
weighting matrix@Q = 0.01Is.s. Then, the positive definite  In this paper, a adaptive fuzzy control scheme with different

symmetric matrixP can be obtained as cases of stick-slip interactions between the drill-string and the
outer shell of a drill-string systems has been developed based

pP— P1laxa pslaxa on the H, tracking design technique. The proposed control
Polaxs  palaxa scheme can elimate the affect of the external disturbances and

where fuzzy approximation errors such that the states of drill-string

[4.1447 3.7940 3.4977 5.2817] system can approach to the_desirgd reference signal exactly. It

[1.2026 1.0846 0.9781 1.5049] can be cqncluded_ from the S|mulat|on_resqlts that the proposed

[1.2026 1.0846 0.9781 1.5049] sc_hemg is e_ff_ectlve_to reduce the vibration phenc_>menpn of

Py = [2.2219 2.1914 2.1610 1.2659] drlll—s_tnng hitting W|th_oute_r shell due to the an_I—stnng

bending and ensure drill-string can close to the radial center.

3). In order to approximate the unknown nonlinear func-

tions F(x) and G(x), select five membership functiong:, REFERENCES
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