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Abstract—In this paper, a type-2 adaptive fuzzy tracking
control (T2AFC) via H∞ control algorithm is developed for
permanent magnet DC (PMDC) motor systems with dead-zone
nonlinearity, plant uncertainties, and external disturbances. The
type-2 fuzzy dynamic model with adaptation capability is used
to approximate the PMDC motor system, where the weighting
factors of the fuzzy model are obtained from both of the
fuzzy inference and online update law. Then, the control law is
developed based on Lyapunov criterion and Riccati-inequalities
to overcome the nonlinearities and external disturbances such
that the uniform ultimate boundedness (UUB) of all signals in
the closed loop andH∞ tracking performance are achieved. The
advantage of employing T2AFC is that it can better handle the
vagueness or uncertainties inherent in linguistic words by the use
of fuzzy membership functions with adaptation to track the the
specified reference inputs by linear analytical results instead of
estimating non-linear system functions as the system parameters
are unknown. Finally, a PMDC motor systems is used as an
example to illustrate the validity and confirm the performance
of the proposed scheme.

Keywords–Permanent magnet DC motor systems, type-2
adaptive fuzzy logic system,H∞ tracking performance, dead-
zone.

I. I NTRODUCTION

PMDC motor systems have been extensively used in con-
trol systems applications, e.g. automobile industry (electric
vehicle), weak power using battery system (motor of toy),
and the electric traction in the multi-machine systems, etc.
From the control point of view, PMDC motor systems exhibit
excellent control characteristics because of the decoupled
nature of the field. Over the past decades, many techniques
have been developed for the PMDC motor systems control,
some of these methods were based on classical and also
intelligent approaches. In [3], the authors proposed a high-
order neural network functions (HONNFs) are used for the
neuro-fuzzy indirect control of nonlinear dynamical systems,
which comprises two interrelated phases: first the identification
of the model and second the control of the plant. Also, [4]
was used novel motor drive system proposed in this paper
will be based on model reference adaptive control (MRAC)
structure. A load torque observer using the model reference
adaptive system is employed to obtain the better performance
from the brushless dc motor in a precision position control
[5] and application to chaotic PMDC Motor systems Drives
[6]. Hence, there has been a growing interest in studying the
problems of stability for non-linear systems, including sliding-
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Mode control [7, 8] and the authors also proposed an interval
type-2 fuzzy neural network (IT2FNN) [9].

Type-2 adaptive fuzzy logic system (T2AFC) have recently
been utilized in many control processes due to their ability
to model uncertainties [10, 11]. Similar to a type-1 adaptive
fuzzy logic system (T1FALS), T2AFC includes a fuzzifier, a
rule base, a fuzzy inference engine, an output processor of
type-reducer and defuzzifier, and is also characterized by IF-
THEN rules, but its antecedent or consequent sets are type-
2. The uncertainty in the primary memberships of a type-2
fuzzy set, and consists of a bounded region that is called the
footprint of uncertainty (FOU). Furthermore, to simplify the
computation, the secondary (MFs) can be set to either zero or
one and called interval type-2 secondary MFs. In [12]-[14],
the authors proposed an interval type-2 TS fuzzy logic system
(IT2TSFLS) for the adaptive tracking control to confront
uncertainties in the inference mechanisms, and to design the
adaptive laws with compensate the interconnection effects and
the reconstruction errors for a permanent magnet synchronous
motor (PMSM) [15]. Therefore the T2AFC that are based
on type-2 fuzzy sets has the potential to produce a better
performance than T1FALS when dealing with uncertainties
such as noisy data and changing environments.

Input dead-zone nonlinearity is a common phenomenon
that appears in actuators as well as sensors. However, some
parameters, e.g., the maximum and the minimum values of
dead-zone slopes, have to be known for control design and in
order to investigate the key features of the dead-zone in the
control problems, it is assumed that the slopes of the dead-zone
are the same. As a result, how to deal with these nonlinearities
remains a practically challenging problem for the design of
closed-loop controller for the PMDC motor systems drives,
especially where a high dynamic performance requirement is
important in many industrial processes, its presence severely
limits system performance, and many scholars try to use
different ways to improve the performance of control systems.
In [16, 17], the authors proposed a robust adaptive neural
network (NN) control based backstepping control [18]-[20]
for a class of uncertain multiple-input-multiple-output MIMO
nonlinear systems with unknown control coefficient matrices.
The success of the approach in [21] proposed a rigorous design
procedure with proofs is given that results in a proportional
integral (PI) tracking loop with an adaptive fuzzy logic system
in the feedforward loop for dead-zone compensation, but also
more challenging hard nonlinearities such as the uncertain
nonlinear time-delay functions [22].

To attenuate the effects caused by unmodelled dynamics,
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uncertainties and disturbances, we adopt an T2AFC of the
PMDC motor systems with dead-zone nonlinearity at the input
of a linear plant to achieveH∞ tracking performance. First, a
PMDC motor systems is approximated by the Takagi-Sugeno
(T-S) type fuzzy linear models with adaptation capability. In
order to reduce the effect of dead-zone nonlinearity, a new
model for dead-zone is developed and used in any conventional
controllers, uncertainties and, external disturbances such that
the H∞ tracking performance is achieved. The advantage
of employing T2AFC is that we can utilise the linguistic
information by setting the MFs of fuzzy logical system and
the adaptation parameters to force the model uncertainties and
plant parameters to track the the specified values for using
linear analytical results instead of estimating non-linear system
functions as the system parameters are unknown, and the
system input is with dead-zone. Thus, a parameter estimation
scheme applicable to the T2AFC and controllers for stabilizing
nonlinear systems with dead zone nonlinearities in the control
input is needed. Based on Lyapunov criterion and Riccati-
inequality, some sufficient conditions are derived so that all
states of the system are uniformly ultimately bounded (UUB)
and the effect of the external disturbance on the tracking error
can be attenuated to any prescribed level and consequently
anH∞ tracking control is achieved. Finally, a PMDC motor
systems as a simulation example is given to illustrate the
validity and effectiveness of the proposed method.

II. M ODEL OF THEPMDC MOTOR WITH DEAD-ZONE
Let the dynamic model of the permanent magnet DC

(PMDC) motor system be described as follows [23]:
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1
x

2
x

3
]⊤, the torque equation

of the system with sector uncertainty of nonlinearities by the
dead-zone can be expressed as follows:





ẋ
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III. TYPE-2 ADAPTIVE FUZZY CONTROL DESIGN

A type-2 fuzzy logic system (T2FLS) is very similar to
a type-1 fuzzy logic system (T1FLS), the major structural
difference is that the defuzzifier block of a T1FLS is replaced
by the output processing block in a T2FLS which consists of
type reduction followed by defuzzification. Consider a T2FLS
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h
f
i

are the point at whichµGl

f
i

(y
f
i
),

µGl
g
i

(y
g
i
), andµGl

h
f
i

(y
h
f
i

), respectively, achieves its max-

imum values, without loss of generality, we assume that
µ̄Gl

f
i

(ŷ
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To obtain a crisp output from the T2FLSf l
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g
i

, andhl
h
f
i

, we

must defuzzify the type-reduced set. Since this type-reduced
set is an interval set, therefore, the defuzzified output off l

f
i

,

gl
g
i

, andhl
h
f
i

will be the average of̄f l
f
i

, f l
fi

, ḡl
g
i

, gl
g
i

, and

h̄l
h
f
i

, hl
h
f
i

as follows:

f l

f
i

=
1

2
(f̄ l

f
i
+ f l

fi
) (15)

gl
g
i

=
1

2
(ḡl

g
i
+ gl

g
i

) (16)

hl

h
f
i

=
1

2
(h̄l

h
f
i

+ hl

h
f
i

) (17)

By the (12)-(17), we obtain

f̂
i
(x, θ̂

f
i
) =

∑M

l=1 f
l
f
i
ŷl
f
i

∑M

l=1 f
l
f
i

= ξ
⊤

f
i

(x)θ̂
f
i

(18)

ĝ
i
(x, θ̂g

i
) =

∑M

l=1 g
l
g
i
ŷl
g
i

∑M

l=1 g
l
g
i

= ξ
⊤

g
i

(x)θ̂g
i

(19)

ĥ
f
i
(x, θ̂

h
f
i

) =

∑M

l=1 h
l
h
f
i

ŷl
h
f
i

∑M

l=1 h
l
h
f
i

= ξ
⊤

h
f
i

(x)θ̂
h
f
i

(20)

where θ̂
f
i

= [ŷl
f
i
· · · ŷM

f
i
]⊤, θ̂g

i
= [ŷl

g
i
· · · ŷM

g
i
]⊤, θ̂

h
f
i

=

[ŷl
h
f
i

· · · ŷM
h
f
i

]⊤ are adaptive parameter vectors,ξ
f
i

(x) =

[ξ1
f
i
(x) · · · ξM

f
i
(x)]⊤, ξ

g
i

(x) = [ξ1
g
i
(x) · · · ξM

g
i
(x)]⊤, ξ

h
f
i

(x) =

[ξ1
h
f
i

(x) · · · ξM
h
f
i

(x)]⊤ are T2 fuzzy regressive vectors,ŷl
f
i
, ŷl

g
i
,

ŷl
h
f
i

are points of the T2 fuzzy system output variablesy
f
i
, yg

i
,

y
h
f
i

at which µGl
f
i

(y
f
i
), µGl

g
i

(yg
i
), µGl

h
f
i

(y
h
f
i

) achieves its

maximum value, respectively,f l
f
i
, gl

g
i
, hl

h
f
i

are the firing interval

of the l-th rule, and ξl
f
i
(x) =

f l

f
i∑

M
l=1

f l
f
i

, ξl
g
i
(x) =

gl
g
i∑

M
l=1

gl
g
i

,

ξl
h
f
i

(x) =

hl

h
f
i∑

M
l=1

hl
h
f
i

.

Let the reference signalxm =[xm
1
xm

2
xm

3
]⊤ and ē= [xm1

−
x

1
xm2

− x
2
xm3

− x
3
] = [e

1
e
2
e
3
]⊤ ∈ R

3. If the functionsf
i

andG
i

in (2) are known, then the control law can be given by

u
∗
i
= (α

i
G

i
(x

i
))−1(−f

i
(x

i
)−∆f

i
(x

i
) +x

(r)
mi

−K
⊤
ai
ē

i
) (21)

for i = 1, 2, 3, r = 1, 2, wherex(r)
mi

= [xm
2
xm

3
]⊤, ē

1
[e

1
e
2
]⊤

andē
2
= e

3
, K⊤

a
=

[

ka
1
ka

2
ka

3

ka
4
ka

5
ka

6

]

, k⊤
a1

=
[

ka
1
ka

2

]

, k⊤
a2

=

ka
6

. In this situation, to approximationf
i
, g

i
by fuzzy logic systems,

f
i
, g

i
, and∆f

i
in (21) can be replaced by the fuzzy logic systems

f̂
i
(x, θ̂

fi
), ĝ

i
(x, θ̂gi

), andĥ
fi
(x, θ̂

h
fi

), respectively. Based on the

given plant (2) and dead-zone models under the assumptions 1-3 are
available for measurement, the proposed T2AFC can be given as

u
i
=(α

i
ĝ
i
(x, θ̂gi

))−1(−f̂
i
(x, θ̂

fi
)+z

i
−k

⊤
ai
ē

i

+u
hfi

+ uwi
+ uai

+ ueqi
), i = 1, 2 (22)

where u
hfi

, uwi
, uai

, and ueqi
are compensator controllers for

uncertainties, approximation error,H∞ robust control to attenuate
the effect on system, and compensation of the adaptive dead-zone
respectively. Thus, from (2) and (4), the tracking error dynamic
equation can be expressed as

˙̄ei =ami
ēi + bi

(

f̂i(x, θ̂fi
)− fi(x)− f̂i(x, θ̂fi

)

+α
i
(ĝ

i
(x, θ̂gi

)− g
i
(x))u

i
− α

i
ĝ
i
(x, θ̂gi

)u
i
−∆f

i
(x)− d

i

−k
⊤
ai
ēi + zi − giψ1i

(ui)
)

(23)

where,

Am =





0 1 0
ka

1
ka

2
ka

3

ka
4

ka
5

ka
6



 , am1
=

[

0 1
ka

1
ka

2

]

, am2
=ka

6
,

the feedback gain matrixk⊤
ai

is to make the eigenvalues of the matrix
ami

,a
i
−b

i
k⊤

ai
are with negative real part and substitute (22) into

(23) the tracking error vector as
˙̄e
i
= ami

ē
i
+ b

i

(

f̂
i
(x, θ̂

fi
)− f

i
(x) + α

i
(ĝ

i
(x, θ̂gi

)− g
i
(x))u

i

−∆f
i
(x)− d

i
− u

hfi

− uwi
− uai

− ueqi
− g

i
ψ

1i
(u

i
)
)

(24)

The control objective is to make the fuzzy controllerui and some
adaptive laws for adjusting the parameter vectorsθ̂

fi
, θ̂gi

, andθ̂
h
fi

such that the following conditions and assumptions are met:

Assumption 4: The g
i
6= 0 and f

i
, g

i
are bounded for all x∈R

3,
and the plant is feedback linearizable by static state feedback.

Assumption 5: |∆f
i
(x)| ≤ h

fi
(x), where h

fi
(x) is an unknown

continuous function and can be estimated by an adaptive law in the
latter.

We design an adaptive fuzzy controllerui to control the plant output
to follow a reference trajectoryxm and f̂i(x, θ̂fi

), ĝi(x, θ̂gi
),

ĥ
fi
(x, θ̂

h
fi

) are three T2 fuzzy universal approximators tof
i
(x),

gi(x), hfi
(x), respectively.

Define the optimal parameter vectorsθ∗
fi

, θ∗
gi

, and θ∗
h
fi

as

follows:


































θ∗
fi
=arg min̂

θ
fi

∈Ω
fi

{sup
x∈R3‖fi(x)− f̂i(x, θ̂fi

)‖}

θ∗
gi
=arg min̂

θgi
∈Ωgi

{sup
x∈R3‖gi − ĝ

i
(x, θ̂gi

)‖}

θ∗
h
fi

=arg min̂
θ

h
fi

∈Ω
h
fi

{sup
x∈R3‖hfi

(x)− ĥ
fi
(x, θ̂

h
fi

)‖}

(25)
whereΩ

fi
= {θ̂

fi
: ‖θ̂

fi
‖ ≤M

fi
}, Ωgi

= {θ̂gi
: ‖θ̂gi

‖ ≤Mgi
},

andΩ
h
fi

= {θ̂
h
fi

: ‖θ̂
h
fi

‖ ≤ M
h
fi

} are proper closed sets, also

the parameter estimation errors are defined asθ̃
fi

= θ̂
fi
−θ∗

fi
, θ̃gi

=

θ̂gi
− θ∗

gi
, and θ̃

h
fi

= θ̂
h
fi

− θ∗
h
fi

. We should note that perfect

matching of the unknown functions is almost impossible even with
the optimal parameter vectors, the optimal matching error between
fuzzy logic approximation model and the plant is denoted by











ω
1i

= f̂
i
(x, θ∗

fi
)− f

i
(x)

ω
2i

= ĥ
fi
(x,θ∗

h
fi

)− h
fi
(x)

(26)

as the minimum approximation errors, which correspond to approx-
imation errors obtained when optimal parameters are used. Based on
the approximation theory, the approximation errors are assumed as
bounded |ω

1i
+ ω

2i
| ≤ ω

i
(27)

For the reduction of the learning, the unknown approximation error
(27) and its corresponding learning error is defined as follows:

ω̃
i
= ω

i
− ω̂

i
(28)

whereω̂
i

is the learning ofω
i
. Then, the adaptive control laws can

be obtained as
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˙̂
θ

fi
= −γ

fi
ξ
fi
(x)b⊤

i
p

i
ēi (29)

˙̂
θgi

= −γgi
ξ
gi
(x)b⊤

i
p

i
ē

i
u

i
(30)

˙̂
θ

h
fi

= γ
h
fi

ξ
h
fi

(x)|b⊤
i
p

i
ē

i
| (31)

˙̂ω
i
= −γωi

|b⊤
i
p

i
ē

i
| (32)

whereγ
fi

, γgi
, γ

h
fi

, γωi
, are adaption rates, andp

i
= p⊤

i
> 0 is

the positive solution of the Riccati-like equation described later. Let
the T2AFC law can be given in (22) with

uai
= − 1

γ
i

b
⊤
i
p

i
ē

i
(33)

u
hfi

=
|ē⊤

i
p

i
b
i
|

ē⊤
i
p

i
b
i

ĥ
fi
(x, θ̂

hfi

) (34)

uwi
=

|ē⊤
i
p

i
b
i
|

ē⊤
i
p

i
b
i

ω̂
i

(35)

ueqi
=

|ē⊤
i
p

i
b
i
|

ē⊤
i
p

i
b
i

ζ
i

(36)

where ζ
i
≥ |α

i
(ĝ

i
(x,θ∗

gi
)−g

i
(x))u

i
−g

i
(x)(−α

i
ǫ
i
+κ

i
)|, γ

i
> 0

is a gain parameter to be designed,p
i
= p⊤

i
> 0 is a symmetric

positive definite matrix satisfying the following Riccati-like equation:

a
⊤
mi

p
i
+ p

i
ami

+Q
i
− 1

γi

p
i
b
i
b
⊤
i
p

i
+

1

η2
i

p
i
b
i
b
⊤
i
p

i
≤ 0 (37)

for which η
i
> 0 is attenuation level parameters for coping with

the errord
i
(t) andQ

i
= Q⊤

i
≥ 0 is a prescribed weighting matrix.

Then, for anyt ≥ 0, ē
i
, θ̃

fi
, θ̃gi

, θ̃
h
fi

, and ω̃
i

are uniformly

ultimately bounded (UUB), and theH∞ tracking performance within
a prescribed valueη2

i
for the overall system satisfies the following

relationship:

J=

∫ tf

0

ē
⊤
i
(t)Q

i
ē

i
(t)dt ≤ ē

⊤
i
(0)p

i
ē

i
(0)dt+

1

γ
fi

θ̃
⊤

fi
(0)θ̃

fi
(0)

+
1

γgi

θ̃
⊤

gi
(0)θ̃gi

(0)+
1

γ
h
fi

θ̃
⊤

h
fi

(0)θ̃
h
fi

(0)+
1

γωi

ω̃2
i
(0)+η2

i

∫ tf

0

d2
i
dt

(38)

IV. A NALYSIS OF SYSTEM STABILITY

Proof: The following Lyapunov function candidate is considered

Vi=
1

2α
i

(

ē
⊤
i
p

i
ēi+

1

γ
fi

θ̃
⊤

fi
θ̃

fi
+
α

i

γgi

θ̃
⊤

gi
θ̃gi

+
1

γ
h
fi

θ̃
⊤

h
fi

θ̃
h
fi

+
1

γωi

ω̃2
i

)

(39)Taking time derivative of in (39), we have

V̇
i
=

1

α
i

˙̄e
⊤

i
p

i
ē

i
+

1

α
i
γ
fi

θ̃
⊤

fi

˙̃
θ

fi
+

1

γgi

θ̃
⊤

gi

˙̃
θgi

+
1

α
i
γ
h
fi

θ̃
⊤

h
fi

˙̃
θ

h
fi

+
1

α
i
γωi

ω̃
i
˙̃ω
i

The above equation along the trajectory of (24) is given by:

V̇
i
=

1

2αi

(

ami
ē

i
+b

i
(f̂

i
(x, θ̂

fi
)−f

i
(x)+α

i
(ĝ

i
(x, θ̂gi

)−g
i
(x))u

i

−∆f
i
(x)−d

i
−u

hfi

−uwi
−uai

−ueqi
−g

i
ψ

1i
(u

i
))
)⊤

p
i
ē

i

+
1

2α
i

ē
⊤
i
p

i

(

ami
ē

i
+b

i
(f̂

i
(x, θ̂

fi
)−f

i
(x) + α

i
(ĝ

i
(x, θ̂gi

)

−gi(x))ui−∆fi(x)−di−uhfi

−uwi
−uai

−ueqi
−giψ1i

(ui))
)

+
1

α
i
γ
fi

θ̃
⊤

fi

˙̃
θ

fi
+

1

γgi

θ̃
⊤

gi

˙̃
θgi

+
1

α
i
γ
h
fi

θ̃
⊤

h
fi

˙̃
θ

h
fi

+
1

α
i
γωi

ω̃i
˙̃ωi

By the fact ˙̃θ
fi

=
˙̂
θ

fi
, ˙̃
θgi

=
˙̂
θgi

, ˙̃
θ

h
fi

=
˙̂
θ

h
fi

, and ˙̃ω
i
= ˙̂ω

i
, the

above equation becomes

V̇i =
1

2α
i

ē
⊤
i
a
⊤
mi

p
i
ēi +

1

2α
i

ē
⊤
i
p

i
ami

ēi −
1

2α
i
γ
i

ē
⊤
i
p

i
bib

⊤
i
p

i
ēi

− 1

2α
i
γ
i

ē
⊤
i
p

i
b
i
b
⊤
i
p

i
ē

i
− 1

2α
i

d⊤
i
b
⊤
i
p

i
ē

i
− 1

2α
i

ē
⊤
i
p

i
b
i
d
i

+
1

α
i

ē
⊤
i
p

i
b
i
(f̂

i
(x, θ̂

fi
)− f

i
(x) + α

i
(ĝ

i
(x, θ̂gi

)− g
i
(x))u

i

−∆f
i
(x)− u

hfi

− uwi
− ueqi

− g
i
ψ

1i
(u

i
))

+
1

α
i
γ
fi

θ̃
⊤

fi

˙̂
θ

fi
+

1

γgi

θ̃
⊤

gi

˙̂
θgi

+
1

α
i
γ
h
fi

θ̃
⊤

h
fi

˙̂
θ

h
fi

+
1

α
i
γωi

ω̃
i
˙̂ω
i

≤ − 1

2α
i

ē
⊤
i
Q

i
ē

i
+

1

2α
i

η2
i
d2
i
+

1

α
i

ē
⊤
i
p

i
b
i
ξ
⊤

fi
(x)θ̃

fi
+

1

α
i
γ
fi

θ̃
⊤

fi

˙̂
θ

fi

+ē
⊤
i
p

i
biξ

⊤
gi
(x)θ̃gi

ui +
1

γgi

θ̃
⊤

gi

˙̂
θgi

− 1

α
i

|ē⊤

i
p

i
bi |ξ⊤

hfi

(x)θ̃
hfi

+
1

α
i
γ
h
fi

θ̃
⊤

h
fi

˙̂
θ

h
fi

+
1

|α
i
| |ē

⊤
i
p

i
b
i
|ω̃

i
+

1

α
i
γωi

ω̃
i
˙̂ω
i
+

1

|α
i
| |ē

⊤
i
p

i
b
i
|ω̂

i

− 1

αi

ē
⊤
i
p

i
b
i
uwi

+
1

αi

|ē⊤

i
p

i
b
i
|ĥ

fi
(x, θ̂

hfi

)− 1

αi

ē
⊤
i
p

i
b
i
u

hfi

+|ē⊤
i
p

i
b
i
|ζ

i
− ē

⊤
i
p

i
b
i
ueqi

Hence, applying the adaptive control laws (29)-(32), the T2AFC law
in (22), Form the Riccati-like equation (37), we can obtain

V̇i ≤ − 1

2α
i

ē
⊤
i
Qi ēi +

1

2α
i

η2
i
d2
i

(40)

whereλimin
(Qi) denotes the minimal eigenvalue ofQi . Therefore,

whenever
||ēi || ≥

η
√

d2
i
(t)

λ
imin

(Q
i
)

(41)

we haveV̇
i
≤ 0. Therefore, the overall system satisfies the following

relationship:
∫ tf

0

ē
⊤
i
(t)Q

i
ē

i
(t)dt ≤ ē

⊤
i
(0)p

i
ē

i
(0)dt

+
1

γ
fi

θ̃
⊤

fi
(0)θ̃

fi
(0) +

1

γgi

θ̃
⊤

gi
(0)θ̃gi

(0) +
1

γ
h
fi

θ̃
⊤

h
fi

(0)θ̃
h
fi

(0)

+
1

γωi

ω̃2
i
(0) + η2

i

∫ tf

0

d2
i
dt. (42)

In light of Lyapunov stability theory to the retarded functional differ-
ential equation [24, 26],e andxm as well as the parameter estimation
errors f̂

i
(x, θ̂

fi
), ĝ

i
(x, θ̂gi

), ĥ
fi
(x, θ̂

h
fi

), and ω̂
i

are guaranteed

to be uniformly ultimately bounded (UUB) for all realizations of
uncertainties [25]. This completes the proof. �

V. SIMULATIONS

In this section, a PMDC motor system in Fig. 3 with sector
uncertainty of nonlinearities by the dead-zone is used to illustrates
the effectiveness of the proposed scheme. The PMDC motor
dynamic is given by (1) where the parameters are as follows:
R

aN
= 1.1Ω, R

a∆
= 1.1Ω, La = 0.4mH , kt = 0.05Nm/A,

k
E

= 0.05V/rad/s, F
dN

= 1.0 × 10−4Nm/rad/s,
F

d∆
= 1.0 × 10−4Nm/rad/s, J = 1.0338 × 10−5kgm2,

and ς
1

= 0.175. The external disturbance isd
1

= (1/J)ς,
Φ(u) = [Φ

1
(u

1
) Φ

2
(u

2
)]⊤ are the load torque and armature

voltage with dead zone (22), respectively. Based on the design
procedure illustrated previously, the T2AFC design is synthesize as
follows:

Step 1: For high penalty on initial parameter errors,
select design parameters as: the adaptive control laws (29)
and (30), we chooseγ

f
= 1, γ

f
∆

= 0.1, γg
1

= 0.1,
γg

2
= 0.1, and γε = 0.5. The initial conditions are chosen

as x(0) = [x
1
(0) x

2
(0) x

3
(0)]⊤ = [−π/3 1 1]⊤ are
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PMDC Motor Drive System in (3)

ẋ = A
i
x + B

i
(f

i
+∆f

i
+ G

i
Φ

i
(u

i
) + d

i
)

Dead-zone in (7)

Φ(u)

u

Φ(u)

u

u
i
= (αĜ

i
(x, Θ̂

G
))−1(−f̂

i
(x, θ̂

f
) + x(r)

m

+K⊤

a
e + u

h
f
i

+ u
eq

i
+ u

ε
i
+ u

a
i
)

T2 Adaptive Fuzzy Controller in (18)

T2 Fuzzy Logic System ξ
f
i
, ξ

g
i
, ξ

h
f
i

˙̂
θ
f
i
= −γ

f
ξ
f
i
(x)B⊤Pe

Adaptive Control Laws in (34)− (38)

˙̂
θ
h
f
i

= −γ
h
f
ξ
h
f
i

(x)||B⊤Pe||

f̂
i
(x, θ̂

f
) = ξ⊤

f
i

(x)θ̂
f
i

ĥ
f
i

(x, θ̂
h
f
) = ξ⊤

h
f
i

(x)θ̂
h
f
i

Ĝ
i
(x, Θ̂

G
) = ξ⊤

G
i

(x)Θ̂
G
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Fig. 2. Overall closed control system of the type-2 adaptive fuzzyH∞

tracking control with dead-zone.
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Fig. 3. PMDC motor system [23].

the rotational angle, rotational speed, and armature current,
respectively, the control objective is to makex

1
, x

2
, x

3
follow

the reference trajectoriesxm(0) = [xm
1
(0) xm

2
(0) xm

3
(0)]⊤ =

[π
2
sin(t) π

2
cos(t) − π

6
sin(t)]⊤, θ

f
1

= 0.5, θ
f
2

= 0.5, θ
h
f
1

= 1.5,

θ
h
f
2

= 1.5, θg
11

= 0.5, θg
22

= 0.5, and step size ish = 0.01.

According to the boundary conditions of the PMDC motor system,
the boundsh

f
1

= 15, h
f
2

= 25, M
f

= 100, M
hf

= 800, and
Mg = 100.

Step 2: In the simulation, the beam is actuated by a PMDC motor
system with sector uncertainty of nonlinearities by the dead-zone
being ǫ+

1
= 0.8, ǫ−

1
= −0.8, ǫ+

2
= 0.5, ǫ−

2
= −0.5, κ̄

1
= 0.8,

κ
1
= −0.8, κ̄

2
= 0.5, κ

2
= −0.5, andα′ = α = ᾱ = α = 1.

And the bounds of them are chosen asαmax = 1.25, α
min

= 0.85,
ǫ+
1imax

= 0.9, ǫ−
1imin

= −0.9, ǫ+
2imax

= 0.9, ǫ−
2imin

= −0.9,
κ̄

1imax
= 0.9, κ

1imin
= −0.9, κ̄

2imax
= 0.9, κ

2imin
= −0.9,

ρ
1

= max{αmaxǫ
+
1max

+ κ̄
1max

, αmaxǫ
−
1min

+ κ
1min

}, and

ρ
2
= max{αmaxǫ

+
2max

+ κ̄
2max

, αmaxǫ
−
2min

+ κ
2min

}

Step 3: Select the feedback gainK⊤=

[

−100 −15 55
15 15 0.55

]

such that all the roots of the characteristic polynomials ofAm =
A − BK⊤ are with negative real part. We choose the prescribed
attenuation levelsη = 0.5, η = 0.7, and η = 0.9 for performance
comparisons, the weighting matrixQ = 0.009I

3X3
, and γ = 0.8.

Then, the positive definite symmetric matricespi for η = 0.5 can be
obtained as

pi =





12.4554 0.3060 1.6390
0.3060 0.3675 0.1057
1.6390 0.1057 1.5450





for η = 0.7

pi =





11.7080 0.3758 2.0491
0.3758 0.4159 0.0980
2.0491 0.0980 1.6794





for η = 0.9

pi =





4.5103 0.1127 0.6535
0.1127 0.1359 0.0279
0.6535 0.0279 0.5354





Step 4: In order to approximate the unknown nonlinear functions
F

N
(x), F

∆
(x), and G(x), select µ̄Cℓ

f
Ni

(ŷ
f
Ni

), µ̄Cℓ
h
f
i

(ŷ
h
f
i

),

µ̄Cℓ
g
ii

(ŷg
ii
), andµ

Cℓ
f
Ni

(ŷ
f
Ni

), µ
Cℓ

h
f
i

(ŷ
h
f
i

), µ
Cℓ

g
ii

(ŷg
ii
) in (6)-

(8) are upper and lower membership functions, respectively, where
these parameters are subject toσ

fp
= σ

gp
= σ

hfp

= π/24 and

σ̄
fp

= σ̄gp
= σ̄

hfp
= π/18 are fixed standard deviations of the

lower and upper membership functions which characterize the shape
of µF l

fp

(xp), µF l
gp

(xp), µF l
hfp

(xp), respectively,a
f
N1

= a
f
N2

=

a
f
N3

= a
h
f
1

= a
h
f
2

= a
h
f
3

= ag
11

= ag
22

= ag
33

= 0.1

are the FOU width coefficient which defines the FOU width between
the upper membership function and the lower membership function,
m

fp
= mgp

= m
hfp

= [−π/6,+π/6] are the means of the T2FS,
and we select the FOU width coefficients for the consequence fuzzy
set membership functions asb

f
N1

= b
f
N2

= b
h
f
1

= b
h
f
2

= bg
1
=

bg
2

= 0.1. The mathematical mean of the defuzzified output are
f ℓ
f
N1

= 1
2
(f̄ ℓ

f
N1

+ f ℓ

f
N1

), f ℓ
f
N2

= 1
2
(f̄ ℓ

f
N2

+ f ℓ

f
N2

), hℓ
h
f
1

=

1
2
(h̄ℓ

h
f
1

+hℓ
h
f
1

), hℓ
h
f
2

= 1
2
(h̄ℓ

h
f
2

+hℓ
h
f
2

), gℓ
g
11

= 1
2
(ḡℓ

g
11

+gℓ
g
11

),

andgℓ
g
22

= 1
2
(ḡℓ

g
22

+ gℓ
g
22

), l = 1, · · · ,M .

Step 5: Apply the control force in (42) to the PMDC motor system.
Then, computed the adaptive laws in (29)-(32) to adjust parameter
Θ

f
, Θ

f
∆

, Θg , and ω̂i

According to Riccati-inequality equation (37), we choose the
prescribed attenuation levelsη = 0.5, η = 0.7, and η = 0.9
for performance comparisons. To illustrate the efficacy of theH∞

performances forη = 0.5, η = 0.7, andη = 0.9 (see Figs. 4-6). Fig.
4 shows the trajectories of the rotational angle,x

1
. The responses

of the rotational speed,x
2
, are depicted in Fig. 5. Fig. 6 show the

armature current,x
3
. x

1
converges to the neighborhood of sinusoidal

function in about3s for η = 0.5 as shown in Fig. 4. Fig. 5 shows that
the trajectories ofx

2
also converge to the neighborhood of cosine

function in about 2s forη = 0.5. It is seen thatx
3

converges to
the vicinity of sinusoidal function converge to the neighborhood of
sinusoidal function in about 6s forη = 0.5 as shown Fig. 6. It should
be mentioned that good performance was achieved when using the
proposed control scheme (22) as in Figs. 7 and 8 and show that the
control inputsu

1
andu

2
eventually drop down to zero and reduce

the tracking errore
1
(t), e

2
(t), and e

3
(t) to very small values (see

Figs. 11-13). It is seen that theH∞ tracking performance is better in
the vaule ofη = 0.5 then in the other two vaules, i.e.,η = 0.7 and
η = 0.9. The desired and actual trajectories are almost identical in
the vaule ofη = 0.5 and the proposed T2AFC guarantees both the
stability and good tracking performance of the PMDC motor system.
Further, to further analyse the efficiency and feasibility of theH∞

control scheme, we define the performance index,STE, as follows:

STE =
∑

|xmp
(t)− xp(t)|, for p = 1, 2, 3

where t is the time from0 − 50s, and the sampling rate is0.01s.
From Table 1, theSTE values forη = 0.5, η = 0.7 and η = 0.9
are e

1
=208.8817, 247.5688, and 296.5253,e

2
=53.59040, 107.0801,

and 156.8613,e
3
=882.8061, 885.6963, and 885.8151, respectively. It
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TABLE I
COMPARISONS OFSTEFOR DIFFERENT ATTENUATION LEVELSρ

STE for xm
1

− x
1

STE for xm
2

− x
2

STE for xm
3

− x
3

η = 0.5 208.8817 53.59040 882.8061
η = 0.7 247.5688 107.0801 885.6963
η = 0.9 296.5253 156.8613 885.8151
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Fig. 4. The trajectories ofx1(t) and xm1
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Fig. 5. The trajectories ofx2(t) and xm2
(t) for three attenuation levels

η = 0.5, η = 0.7, andη = 0.9.

is seen that the smallerη is the better the performance of the system
when it comes to steady state error. In other words, the performance
of theH∞ control scheme is better when using smallerη for T2AFC
weights of the PMDC motor system. However, the actual states track
the reference trajectory closely, and thus, the controller successfully
controls the rotational angle, rotational speed, and armature current of
the PMDC motor system and achieve satisfactoryH∞ tracking per-
formance in the presence of the deadzone and external disturbances.

VI. CONCLUSION

In this paper, we have proposed the T2AFC control scheme for
PMDC motor systems with dead-zone nonlinearity at the input of a
linear plant to achieveH∞ tracking performance. First, a PMDC
motor systems is approximated by the Takagi-Sugeno (T-S)-type
fuzzy linear models with adaptation capability. In order to reduce
the effect of dead-zone nonlinearity, a new model for dead-zone
is developed and used in any conventional controllers, uncertainties
and external disturbances such that theH∞ tracking performance is
achieved. The advantage of employing T2AFC is that we can utilise
the linguistic information by setting the MFs of fuzzy logical system
and the adaptation parameters to force the model uncertainties and
plant parameters to track the the specified values for using linear
analytical results instead of estimating non-linear system functions
as the system parameters are unknown, and the system input is with
dead-zone. Thus, a parameter estimation scheme applicable to the
T2AFC and controllers for stabilizing nonlinear systems with dead
zone nonlinearities in the control input is needed. Based on Lyapunov
criterion and Riccati-inequality, some sufficient conditions are derived
so that all states of the system are UUB and the effect of the external
disturbance on the tracking error can be attenuated to any prescribed
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Fig. 6. The trajectories ofx3(t) and xm3
(t) for three attenuation levels

η = 0.5, η = 0.7, andη = 0.9.
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Fig. 7. The trajectories of control inputu1 with a dead-zone for three
attenuation levelsη = 0.5, η = 0.7, andη = 0.9.
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Fig. 8. The trajectories of control inputu2 with a dead-zone for three
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Fig. 9. The trajectories of control inputu1 with a dead-zone.

level and consequently anH∞ tracking control is achieved. Finally, a
PMDC motor systems as a simulation example and some comparisons
are given to illustrate the validity and effectiveness of the proposed
method.
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