
RRTs Postprocessing for Uncertain Environments

Agris Nikitenko
Department of Systems Theory and Design

Riga Technical University
Riga, Latvia

Agris.Nikitenko@rtu.lv
Martins Ekmanis

Department of Systems Theory and Design

Riga Technical University

Riga, Latvia
Martins.Ekmanis@rtu.lv

 Aleksis Liekna
Department of Systems Theory and Design

Riga Technical University
Riga, Latvia

Aleksis.Liekna@rtu.lv

Abstract—Path planning is one of the central tasks to be

solved in mobile robotics. Rapidly Exploring Random Tree is
one of possible alternatives addressing path planning. While it
does not deliver optimal solution it provides a good
performance that is crucial for most cases in mobile robotic
systems. Unfortunately the algorithm may produce
unnecessary or even dangerous waypoints that might lead to
collisions with obstacles or other robotic systems. A significant
part of the possible collisions are caused by uncertainty of
robot positioning or obstacle sensing. In this paper we propose
a set of plan post processing steps to estimate and decrease the
possibility of collisions during plan execution.

Keywords— RRT planner; RRT post processing; Planning
under uncertainty;

I. INTRODUCTION
Path planning is one of the central tasks to be solved in

mobile robotics. Along with methods groups like Potential
field planning [1] and Combinatorial planning [2], Rapidly
Exploring Random Tree [3] (RRT) planning has found its
application in mobile robotics. While it does not ensure
optimal solutions and does not guarantee solution at all it
provides sufficient performance [4] for most applications in
mobile robotics.

Since its first implementations RRT planning has
experienced a variety of modifications [4] that differ with
implementations of particular algorithm steps and provide
different overall performance under particular constraints
[5]. However in real applications the robotic systems operate
with noisy sensor data that leads to uncertainties in
positioning and obstacle position detection. This causes
uncertainties in robot’s environment model and may result in
incorrect assignment of free and occupied space in the map
of the environment. These uncertainties entail collision risks
that are highly unwanted for mobile robotic systems.

Within this paper we propose a set of steps that enables
to estimate and decrease the collision possibility by
modifying the initial plan generated by RRT.

The paper is organized as follows: Section II gives a brief
overview of the RRT algorithm and related work regarding

planning under uncertainty, Section III presents steps of the
proposed method and their descriptions, Section IV provides
experimental evaluation of the proposed method, Section V
gives conclusions and insight of future work.

II. RELATED WORK

A. The essence of RRT
The RRT was introduced as planning technique for wide

range of motion planning problems [3], which can
accommodate particular kinematic or geometric constraints
of a given system. The planning goal is to generate a path
from initial configuration q0 to the goal configuration qg. At
each iteration i, a random configuration qrnd is selected. Then
the closest configuration qc from the graph is found and
algorithm tries to extend the planning graph towards qrnd, by
adding an arc from qc towards qrnd with length d. Thereby a
new configuration qi is added to the planning graph. This
step is depicted in Fig. 1.

q0

qg

qrndqi

d
qc

Fig. 1. RRT extending towards qrnd

The planning stops when the newly added configuration
qi is in a predefined proximity from the goal configuration
qg. A number of variations of the RRT exist [4], which
provide better performance under particular constraints [5].
Unfortunately the considered modifications and extensions
[4,5] do not provide means to consider uncertainties of the
planning environment or the robotic systems itself.

B. Planning under uncertainty
In mobile robotics one of the fundamental problems is

robot pose (position and heading) estimation, which due to
imperfection of the used sensors and physical

ISSN: 2766-9823 Volume 1, 2019

18

mailto:Agris.Nikitenko@rtu.lv
mailto:Martins.Ekmanis@rtu.lv
mailto:Aleksis.Liekna@rtu.lv

implementation of the robot is always coupled with random
noise. In practice it means that during the planning the actual
pose of the robot is known only with some probability, what
introduces an uncertainty into planning process.

Besides robot position estimation error another important
source of uncertainty is obstacle positioning, which in real
applications is obtained using noisy on-board or off-board
sensors. Therefore some existing techniques have to be
discussed.

The Particle RRT planner (pRRT) [6] uses particle cloud,
where each particle represents a possible trajectory of a
robotic system considering uncertainties of the robot. In
order to reduce the number of trajectories particles are
clustered according to their qualitative features thereby each
configuration in the planning graph is defined by a set of
possible configurations. This approach enables to reduce
number of calculated path alternatives significantly but
requires some distinctive features or parameters of the
environment like rises or sharp slopes that allows to group
alternatives into clusters. The pRRT changes some
parameters like wheel friction of the robot in order to
generate alternatives causing robot to perform differently.
Environments like office premises do not provide these
features limiting applicability of the method.

Adam Bry and Nicholas Roy in [7] propose to model
future states of robot sensors according to the prior
knowledge of the environment. It allows consideration of a
set of path alternatives and estimate feasibility of the
alternatives defined in terms of collision free motion. The
sensor and motion models of the robotic system are
complemented by uncertainties expressed using normal
probability distribution. The proposed method enables to
effectively combine robot motion model with probability
distribution model, which provide more realistic view on
path planning for particular system. As indicated in [8] the
probability distribution of the robot position being an
uncertain variable over time does not comply with
restrictions of normal distribution and may produce
distributions of different shapes that are hard to describe
analytically.

An attempt to describe localization error distribution
analytically is presented in [9], where exponential
coordinates are applied. The authors show basic distribution
propagation on differential drive robotic system with noisy
sensor data in operation scenario, where robot motion is
limited to straight or circular motion with known rotation
radius. This method estimates the position distribution
significantly better in comparison to the existing normal
distribution based methods. However some effort is still
required in order to develop a particle filter approach
applicable for robot position estimation and to use it with all
kinds of robot motion modes including backward motion and
rotation around its own mass centre.

In order to deal with obstacle position uncertainties in
[10] the Guided Cluster Sampling (GCS) is proposed
providing a way of sampling based global planning, where
the belief space is partitioned into subspaces. Thereby the
search space is reduced significantly allowing application of

the method for many practical robot motion planning
problems. The method combines motion and sensing steps
with different values providing means for guiding the search.
A set of distinct obstacle and goal features such as obstacle
corners in 3D or vertices in 2D space are used to partition the
belief space.

While the method provides a straight forward approach
to converge to globally optimal path it requires a set of well-
defined distinctive features that are not always available with
random shaped objects where some discretization like
occupancy grid is applied.

The authors are unaware of published research proposing
complete analytical methods that might accommodate both
realistic robot and obstacles position error distribution
description and its propagation at the same time. Therefore
we propose an alternative heuristic approach that comprises a
set of plan post processing steps. These steps are applied
after RRT algorithm has produced its result – plan consisting
of set of waypoints in a continuous environment and a set of
arcs connecting waypoints thus forming a path.

III. DESCRIPTION OF THE PROPOSED POST PROCESSING
METHOD

A. Brief overview of the method
The proposed RRT plan post processing method comprises
the following steps:
1. Removal of unnecessary plan waypoints – as shown

later this step allows to reduce unnecessary heading
changes of the robot;

2. Addition of waypoints around obstacles – within this
step additional waypoints are added where the path
leads close enough to obstacles thereby decreasing
collision risk;

3. Point realignment – plan waypoints are realigned away
from obstacles to reduce risk of collisions;

4. Smoothing of the plan – modified plan is smoothed
using filtering eliminating sharp turning angles to
improve motion speed;

5. Feasibility estimation – the step employs particle cloud
simulation to estimate the collision possibility.

Each step is explained in details in the following sub-
sections.

B. Removal of unnecessary plan waypoints
RRT is not an optimal planner and therefore the typical
planning result is a broken line that comprises a set of
unnecessary manoeuvers like in Fig.2. While the main pose
error is caused by the heading component, each additional
change of the heading adds error to the final pose
estimation.

q0

qg
Fig. 2. Typical RRT result q0 – start configuration, qg – goal configuration

ISSN: 2766-9823 Volume 1, 2019

19

Therefore it is important to reduce number of unnecessary
turns especially with narrow angles that might require
stopping the robot. Due to wheel slipping stopping and
acceleration actions are additional sources of errors.

To reduce the number of unnecessary turns slowing the
robot, a straight forward heuristic is applied to linearize the
plan as long as it stays within the specified minimal distance
from the obstacles.

q0

qg

L1

L2

q1

q2

q3

Fig. 3. Elimination of vertices

For example in Figure 3 distance from line L1 to the obstacle
(black square) is acceptable while distance from line L2 is
not. Therefore the line L1 enables to eliminate vertices q1
and q2. After going through the other vertices the resulting
example path is depicted in Fig. 4, which has reduced the
total number of vertices and the related manoeuvers of the
robot.

q0

qg
Fig. 4. The resulting example path

Assuming that the path is a list of waypoints this step is
implemented by the following algorithm:

PROCEDURE waypoint_Elimination (PointList Path)
SET newPath = q0
SET Current = q0
SET Last = q0
FOR each waypoint p in Path starting from q0+1
 IF segment_is_safe(Current,p) = true THEN
 Last = p
 ELSE
 newPath = newPath + Last
 Current = p
 END IF
END FOR
RETURN newPath

Fig. 5. Unnecessary waypoint removal algorithm

In the algorithm depicted in Fig. 5 function segment_is_safe
returns true if the appropriate plan segment is far enough
from obstacles.

C. Addition of waypoint around obstacles
Let us assume that in a particular example case the plan
after removal of unnecessary waypoints is like the one
depicted in the Fig. 6, where each square represents an
occupied cell in occupancy grid.

Fig. 6. Example plan after removal of unnecessary waypoints

In order to bend the plan around obstacles it is necessary to
split the plan segments into smaller ones thereby providing a
discrete representation of the segments that reduces the
necessary computation. The heuristic behind this step is to
add more waypoints where the segment closer to the
obstacles and less where the segment is far enough from the
obstacles.

PROCEDURE AddPoints (PointList Path)
SET Current = 0
WHILE Current < Length(Path) – 1
 IF (Dist_to_Obstacle(Path[Current], Path[Current + 1]) <
 Safe
 AND
 SegmentLength(Path[Current], Path[Current + 1])) >
 MinLength)
 OR
 SegmentLength(Path[Current], Path[Current + 1])) >
 MaxLength)
 THEN
 Instert_new_point(Current, Current + 1)
 ELSE
 Current = Current + 1
 END IF
END FOR
RETURN Path

Fig. 7. Adding new waypoints around obstacles

Within the algorithm in figure Fig.7 function
Distance_to_Obstacle returns distance of a segment with
ending waypoint from the list Path with indexes Current and
Current+1 to the closest obstacle. If the distance is less than
constant threshold Safe then the procedure Insert_new_point
splits the segment into two equal subsegments by inserting a
new waypoint in the middle of the segment. This is done
only if the segment is longer than a set threshold MinLength
in order to avoid addition of too many waypoints. Constant
MaxLength determines the maximum length of segment,
which being exceeded causes collision threats after
smoothing the plan (See section A). The result of this step is
depicted in Fig. 8.

ISSN: 2766-9823 Volume 1, 2019

20

Fig. 8. Added waypoints around obstacles

As it is seen in Fig. 8 the closer the segment is to obstacle the
higher the density of the new waypoints. Thereby the applied
heuristic allows paying more attention to plan segments with
higher collision possibility.

D. Point realignment
Within this step we exploit idea of elastic strip planning
framework presented in [11], which proposes to perceive
plan as an elastic strip in dynamic environment. Obstacles in
the environment are the source of forces being applied to the
strip allowing bending it around the obstacles. The main
advantage of the method is the possibility to respond to
changing environments. Within the step we use this idea
with few modifications:

1) Any changes of the plan may appear only at the plan
waypoints. By this hard discretization assumption a
significant amount of calculations is reduced;

2) The waypoints are treated only relatively to the nearby
obstacles and previous waypoint. This modification reduces
smoothness of the result but saves a lot of calculation efforts
because it requires treating all of the plan waypoints only
once.

3) The positive force that pushes a waypoint away from the
obstacle remains as in the original elastic strip but the
negative force is produced by the waypoint itself i.e. the
waypoint tends to preserve its position. This also reduces
smoothness of the result but requires consideration only of
the obstacles and the given waypoint without considering
inter-waypoint relations.

To simulate positive and negative forces we use abstraction
of linear springs.

Fig. 9. Force simulation

One dimension case is depicted in Fig. 9. If the waypoint is
closer than the maximum distance to obstacle Lmax, where the
spring force is 0, the spring is being compressed by a
distance ΔL, producing a positive force that is calculated
using formula (1).

 (1)

Therefore the positive force tends to move the waypoint
away. At the same time the other spring while being pulled
by the first one produces negative force that is calculated
using formula (2).

 (2),

where x – displacement of the waypoint is not known.
However, while both forces act against each other there is a
waypoint of equilibrium, where sum of forces is 0. That is
expressed in equation (3).

 (3)

Thereby calculation of x is straight forward:

 (4)

Equation (4) is applicable for one dimension, while the
planner operates in 2D environment. Therefore the forces
and appropriate calculations are decomposed into x and y
components.

In case of many obstacles around the waypoint each obstacle
is treated relatively to the waypoint. In Fig. 10 two obstacles
produce forces in opposite directions. The resulting force is a
vector sum of both. The actual number of considered
obstacles depends on distance threshold providing a way to
eliminate irrelevant ones.

Given the resulting F+ for x and y force components it is
possible to calculate the final displacement of the waypoint
in both dimensions.

Fig. 10. Multiple obstacles

The result is depicted in figure Fig. 11, where the blue line is
the original plan and the black line is the realigned one.

Fig. 11. Result of waypoint relialignment

ISSN: 2766-9823 Volume 1, 2019

21

E. Plan smoothing
As it is seen in Fig.11 those segments that are close to the
obstacles are bended around them thus making the robot
motion safer. In order to ensure smooth motion of the robotic
system the roughness has to be smoothed. As none of the
dimensions (x or y) has constant discretization step we
propose to use a Kalman filter that does not require such
constraints being met [12].

In order to avoid collisions with obstacles we use a unity
process model (5) that assumes constant waypoint positions.

 (5),

where Xi and Yi – coordinates of i-th waypoint, Xi-1 and Yi-1
– coordinates of previous waypoints.

Fig. 12. Result of filtering step

The measurement in this context is the actual i-th waypoint
coordinates. This assumption with equal weight of modelled
and actual coordinates of i-th waypoint, in fact, turns the
filter into an averaging or low-pass filter that is well known
in signal processing. The result of the filtering step is shown
in the Fig. 12, where the blue line is the original plan while
the rose one is smoothed one.

At this point the bend plan already provides significant
improvements to reduce collision possibility. The
experimental results are provided in section IV.

F. Feasibility estimation
As mentioned above the main goal of the plan post
processing is the reduction of collision risk. The previous
steps provide means to do it, but they do not provide any
information about the actual collision risk. As demonstrated
in [8] and [9] the actual robot position estimation
analytically is possible only under hard assumptions on
robot motion specifics. Therefore as an alternative we apply
a set of particles where each particle simulates a robotic
system with appropriate motion end error models. We use
two different error models to acquire as adequate feasibility
estimation as possible.

1) Signal transfer model
As the first model we propose to use signal response
function instead of the one offered by Linear time-invariant
system theory [13]. The actual mechanism behind that is
based on Laplace transformation of functions from time
domain to Laplace domain. By definition Laplace
transformation F(s) of time function f(t) is given by integral
(6) [13]:

, (6)

where – indicates Laplace transform of the time
function f(t), s – complex Laplace variable of the form
s = σ+jω, F(s) – the transformed function in Laplace
domain.

In Laplace domain, signal response is defined by the ratio
between output Y(s) and input X(s), while in time domain
the multiplication corresponds to convolution [13]. This
correspondence is indicated in equation (7):

 (7)

The signal transfer function H(s) is acquired by using (6)
and replacing f(t) by h(t). The convolution itself is defined
by the equation (8) [13]:

 (8)

For modelling the input signal x we use a simple step
function that fully corresponds to the incoming robot control
signals. Use of the impulse function in practice is difficult as
it is infinitely short. Instead, we use a step function, which is
defined by integral of impulse function.

 (9)

As shown in (9), the derivative of the step function is an
impulse at the time instant t. This allows transformation of
the equation (8):

 (10)

Having expression (10) it is possible to calculate the
actual value of y over the time.

The actual signal response function has to be acquired
experimentally due to technical specification of the robot, its
imperfection and environmental constraints, such as ground
cover, traction of the surface, etc. In our case we model an
indoor differential drive robot

In reality the input is defined by a vector ,
and the expected output from the model is],
where v(t) – linear speed, and – angular speed of the
robot, – left and right wheel speeds. Now,
having in mind the definition of the model (7), it is possible
to define the model in Laplace domain (11):

 (11)

Knowing that Laplace transformation of the matrix (12) is
matrix (13) with the transformed elements and having the
transformations of product and convolutions i.e. (7) and (8)
it is possible to rewrite (11) in time domain as (14):

ISSN: 2766-9823 Volume 1, 2019

22

 (12)

 (13)

 (14)

In the equation (14) step functions , ,
 and can be obtained empirically by

simply switching on each motor at a full speed and
collecting the actual and data until the speed
difference over a single time step achieves 0 meaning that
the top speed is reached and transient processes are finished.
Here we assume that both output functions are normally
distributed random variables: and . Now it is possible to
write the modelled kinematic model of differential drive
robot:

 (15)

In (15) R = v/ω, xt and yt – position of the robot,
 – x, y coordinates and heading of the

robot at time instant t, ω – angular and v – linear velocities.
To estimate the variance and the final values of the model

it is necessary to use algebra of random variables.
2) Sensor error model

Within this model we use the same kinematic model (15)
but add noise to the velocities thus simulating noisy wheel
speed readings.

 (16)

 (17)

In (16) and (17) both speed readings are normally
distributed around their actual values: and .
The actual standard deviation values have to be obtained
experimentally or from the manufacturer of the used
sensors.
Both models allow generation of a set of possible positions
of the robot. The particle motion is simulated using the
same motion control algorithms as implemented on robotic
system.
While particle cloud follows the plan we count the number
of particles having collisions (see figure Fig. 13). Thereby at

the end of simulation it is possible to count the percentage
of failed and successful particles.

Failed particles

Successful
particles

Fig. 13. Result feasibility estimation

These numbers provide data to estimate the possibility of
collision if the number of particles is large enough.

IV. EXPERIMENTAL VERIFICATION OF THE PROPOSED
METHOD

A. Experimental setup
We have conducted two separate experiment sets: planning
performance, which was focused on steps 1 to 4 of the
proposed method, and plan feasibility tests, which was
focusing on the step 5 of the proposed method.

1) Plan performance experimental setup
The main goal of this experiment set is to compare the
proposed method with the RRT-Connect planning technique
[14] (a slight modification of the original RRT) in terms of
collision risk.
The first experiment set was conducted on a real robotic
system that implements RRT-Connect, whose result is
processed by the proposed method and then executed by the
robotic system.
The robotic system comprises a differential drive chassis
(iRobot Roomba vacuum cleaner [15]) and a laptop with
added web camera for localization using artificial
landmarks. The positioning method using artificial
landmarks in details is discussed in [16].
Two different scenarios were used: the first one with full set
of obstacles (see Fig. 14) and the second one with reduced
number of obstacles (see Fig. 15).

Fig. 14. The first scenario wih full set of experiments

ISSN: 2766-9823 Volume 1, 2019

23

Fig. 15. The second scenario with reduced number of obstacles

The total area of the experimental setup is 240 x 1000 cm.
Before each scenario the environment was explored by
robotic system using all of the available sensors in order to
decrease uncertainties of obstacles position. However due to
positioning errors and limitations of the obstacle detection
sensors of the used chassis the map still accommodates
uncertainties. Tables I and II list the parameters of the
planning and plan post-processing methods. The actual
values were found by trials and errors before the
experiments because we believe parameter estimation is
beyond the scope of this paper.

TABLE I. RRT-CONNECT PARAMETERS

Parameter Value
Direction of planning One-directional,

Start-to-Goal
Probability of goal selection for the
current direction of tree extension

0.1

Maximum Length of the current segment
(mm) – the actual length is selected
randomly

500

Goal met condition – max. distance from
the goal (mm)

50

Safe point condition - min. distance to
obstacle (mm) from robot center
considered to be safe / collision free.

200

TABLE II. PROPOSED POST-PROCESSING METHOD’S PARAMETERS

Parameter Value
Point addition distance (mm) – if a plan
segment is closer to obstacle then an
additional point is put in the middle of the
segment this forming two new segments
instead of the current.

300

Min. segment length (mm) – if the
segment is shorter or equal to this
distance then no additional points are put
on the segment

60

Max distance from obstacles (mm) – the
distance, at which (or shorter) the
obstacles are taken into account for
realignment forces calculations

400

Obstacle force constant (N/m) 3
Point resistance force constant (N/m) 20

Within each scenario we on purpose selected plans
produced by RRT-Connect that fail to be executed by
robotic system without collisions with obstacles thereby
proving the concept of the proposed method.
With each scenario we calculated success rate of the post-
processed plan, which is the relative number of robot runs
without collisions using the provided plan. Success rate in
our case is percentage of the plans accomplished without
collisions with obstacles.
Each plan was tested by robot runs with full positioning (see
[16]) that included use of artificial landmarks keeping
positioning error variance within an interval of 10 - 15
centimetres, and with odometric positioning only, where the
positioning error variance is growing by each manoeuver
throughout the plan execution.
Positioning with odometric position estimations is critical
due to fact that artificial landmarks are not always in the
sight of robot sensors thereby the position is estimated using
odometric sensors only.
We tested three different plans: 1 with full set of obstacles
and 2 with reduced set of obstacles, where each trial was
composed of 20 robot runs under the same conditions.

2) Plan feasibility estimation experimental setup
Plan feasibility experiment goal is to determine if the
particle cloud simulation produces the same success rate as
the actual robot runs thereby providing means to forecast the
possible collision probability before plan execution by
robotic system.
The plan feasibility estimation experiments were conducted
using software simulator, which implements the kinematic
and error models discussed above. The planning and post-
processing methods parameters are the same as listed in
Table I and Table II. Table III lists sensor error variance
values that were found empirically to match the used robotic
system.

TABLE III. ERROR VARIANCES

Parameter Value
Left wheel encoder variance (mm) 5,5
Right wheel encoder variance (mm) 5,5
Angular speed variance (degrees/s) 0,35
Linear speed variance (m/s) 0,08

Plans and maps produced by robotic system in the plan
performance experiments were loaded into the simulation
system thus providing consistency with the real situation.
Each of the produced plans was tested in 20 runs and the
average percentage of successful particles was counted.
Afterwards difference between success rates of simulation
and actual robot runs was calculated.
During the experiment only odometric positioning was
simulated because use of landmarks keeps positioning error
in a certain interval preserving it from growth during the
pan execution. As it is not possible to determine, when and
where robot sensors will not be able to detect landmarks due
to light condition changes or other unpredictable

ISSN: 2766-9823 Volume 1, 2019

24

circumstances, the worst scenario has to be considered,
which in this case is pure odometric positioning.

B. Plan performance runs

The RRT-Connect and the post-processed with the proposed
method is depicted in Fig. 16, where white cells represent
free space, black cells represent obstacles and grey cells
represent unexplored space.

TABLE IV. FIRST RUN RESULTS

Method Success rate (%)
Post-processed 100%
Post-processed only odometry 15%

Fig. 16. First run RRT-Connect (on top) and post-processed plan (at the
bottom)

The next runs were performed slightly reducing the number
of obstacles. We removed those obstacles where the robotic
system experienced the most number of collisions. The next
scenario is depicted in figure Fig.15.
With the reduced complexity environment we performed two
trials using the same approach. The results are depicted in
figure Fig. 17 and Fig.18.

Fig. 17. Second run RRT-Connect (on top) and post-processed plan (at the
bottom)

Fig. 18. Third run RRT-Connect (on top) and post-processed plan (at the
bottom)

Again each plan was tested with 20 runs and the post-
processed plan was tested both only with odometry and with
full positioning.

TABLE V. SECOND TRIAL RESULTS

Method Success rate (%)
Post-processed 100%
Post-processed only odometry 55%

TABLE VI. THIRD TRIAL RESULTS

Method Success rate (%)
Post-processed 100%
Post-processed only odometry 15%

As shown in Table IV, Table V and Table VI the proposed
method is capable to deliver a plan that the robotic system
can accomplish without collisions in situations when RRT-
Connect fails.

Here it has to be emphasized that RRT-Connect operates
with a black-box step validation mechanism, which in our
case is simple distance – to obstacle estimator. If the safe
distance is increased the RRT would not be able to produce
plan at all due to several bottle necks in the environment.

C. Plan feasibility tests
In order to verify the plan feasibility each of the plans was
simulated in both scenarios using previously described
particles cloud with 100 particles. The actual noise variances
shown in Table III where tailored empirically for the
particular robotic system and remain constant during the tests
on all plans. The results are summarized in the table VII. As
explained above during the tests only pure odometry
operation was tested because use of artificial landmarks
keeps position variance in certain interval and does not allow
considering the worst possible scenario.

TABLE VII. PLAN FEASIBILITY TESTS RESULTS

Method Success rate
(%)

Difference to
robot runs
results (%

ISSN: 2766-9823 Volume 1, 2019

25

points)
First run
Post-processed only
odometry

31% 16%

Second run
Post-processed only
odometry

46 4%

Third run
Post-processed only
odometry

22% 7%

As it is seen in the table VII, the feasibility estimation
provides reasonable difference from the actual robot runs
success rate, which is caused by idealized simulation model
and does not take into account factors like surface roughness
that might cause the deviation. This enables to forecast
collision probability before the plan execution and avoid
unwanted possible damage of the robotic system.

V. CONCLUSIONS AND FUTURE WORK
The proposed method provides a set of plan post-processing
steps that allow reduction of robot collision possibility in
environments where significant uncertainties of robots
position estimation and obstacle mapping are present. The
presented experimental tests show that the proposed plan
post-processing method delivers plans that can be executed
by robotic system without collisions in cases when the used
RRT planning algorithm fails.

The waypoint removal and addition steps provide means to
reduce overall amount of necessary calculations with varying
discretization step depending on the distance from obstacles.

While the proposed method has been tested on plans
generated by RRT-Connect, we see that it could be applied
to other planning methods because it does not depend on
actual planning methods used to generate the initial plan.
Therefore we envision future study of the method application
in conjunction with other planning techniques like
combinatorial planning and its derivatives that are widely
uses in mobile robotics.

The feasibility estimation provides data to make a decision
of plan execution before the actual execution thus reducing
possibility of robot damage during potentially dangerous
plan execution.

For the future we see potential to apply the proposed method
for multi-dimensional robots motion planning with
persistence of high uncertainty.

ACKNOWLEDGMENT
The research described in this paper is supported by

funding of the ERDF Project “Development of technology
for multi-agent robotic intelligent system”, project
implementation contract No. 2010/0258/2DP/ 2.1.1.1.0/10/
APIA/VIAA/005.

REFERENCES
[1] Steven M. LaValle, Planning Algorithms, 2006, Cambridge

University Press, ISBN 0-521-86205-1.

[2] J.C. Latombe, Robot motion planning, 1991, Springer, ISBN
9780792391296,

[3] S. M. LaValle. Rapidly-exploring random trees: A new tool for path
planning. In Technical Report No. 98-11. October 1998.

[4] A. Abbadi, R. Matousek, P. Minar, P. Soustek, RRTs Review and
Options, computational Engineering in Systems Applications,
Volume II, 2011, IAASAT Press, pp. 194-199, Iasi, Romania. ISBN:
978-1-61804-014-5, ISSN: 2223-9812.

[5] A.Abbadi, R.Matousek, RRTs Review and Statistical Analysis.
International Journal of Mathematics and Computers in Simulation, 6,
2012.

[6] N.Melchior, R.Simmons, Particle RRT for Path Planning with
Uncertainty, 2007 IEEE International Conference on Robotics and
Automation, April, 2007, pp. 1617-1624.

[7] Adam Bry, Nicholas Roy. Rapidly-exploring Random Belief Trees
for motion planning under uncertainty. In IEEE International
Conference on Robotics and Automation, ICRA 2011, Shanghai,
China, 9-13 May 2011. pages 723-730, IEEE, 2011.

[8] Ioannis Rekleitis. A Particle Filter Tutorial for Mobile Robot
Localization. Technical Report TR-CIM-04-02, Centre for Intelligent
Machines, McGill University, Montreal, Quebec, Canada, 2004.

[9] A.Long, K.Wolfe, M.Mashner, S.Gregory, The Banana Distribution
is Gaussian: A Localization Study with Exponential Coordinates. In:
Robotics: Science and Systems, 2012.

[10] H. Kurniawati, T. Bandyopadhyay, and N.M. Patrikalakis. Global
motion planning under uncertain motion, sensing, and environment
map. In Proc. Robotics: Science & Systems, 2011.

[11] Oliver Brock and Oussama Khatib Elastic Strips: A Framework for
Motion Generation in Human Environments. International Journal of
Robotics Research 21(12):1031-1052, 2002.

[12] H.B. Mitchell Data Fusion: Concepts and Ideas, Springer – Verlag,
2007, ISBN 9783540714637,281 pages.

[13] C.L.Phillips, J.M.Parr Signals, Systems and Transforms: 4th edition,
Pearson Education, 2008, 795 pages

[14] J.J.Kuffner,S.M.LaValle, RRT-Connect: An Efficient Approach to
Single-Query Path Planning, Robotics and Automation, Proceedings.
ICRA '00. IEEE International Conference on on Robotics and
Automation (Volume:2), pp 995 – 1001, 2000, ISSN 1050-4729

[15] http://www.irobot.com/us/robots/home/roomba.aspx cited:
16.06.2013.

[16] Agris Nikitenko, Aleksis Liekna, Martins Ekmanis, Guntis
Kulikovskis, Ilze Andersone, Single robot localization approach for
indoor robotic systems integrating odometry and artificial landmarks,
Scientific Proceedings of Riga Technical University: 5th series
“Computer science, Applied Computer Systems”, Riga, RTU
Publishing, 2013, ISSN 22558683.

ISSN: 2766-9823 Volume 1, 2019

26

