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Abstract—Path planning is one of the central tasks to be 

solved in mobile robotics. Rapidly Exploring Random Tree is 
one of possible alternatives addressing path planning. While it 
does not deliver optimal solution it provides a good 
performance that is crucial for most cases in mobile robotic 
systems. Unfortunately the algorithm may produce 
unnecessary or even dangerous waypoints that might lead to 
collisions with obstacles or other robotic systems. A significant 
part of the possible collisions are caused by uncertainty of 
robot positioning or obstacle sensing. In this paper we propose 
a set of plan post processing steps to estimate and decrease the 
possibility of collisions during plan execution.  

Keywords— RRT planner; RRT post processing; Planning 
under uncertainty; 

I.  INTRODUCTION 
Path planning is one of the central tasks to be solved in 

mobile robotics. Along with methods groups like Potential 
field planning [1] and Combinatorial planning [2], Rapidly 
Exploring Random Tree [3] (RRT) planning has found its 
application in mobile robotics. While it does not ensure 
optimal solutions and does not guarantee solution at all it 
provides sufficient performance [4] for most applications in 
mobile robotics. 

Since its first implementations RRT planning has 
experienced a variety of modifications [4] that differ with 
implementations of particular algorithm steps and provide 
different overall performance under particular constraints 
[5]. However in real applications the robotic systems operate 
with noisy sensor data that leads to uncertainties in 
positioning and obstacle position detection. This causes 
uncertainties in robot’s environment model and may result in 
incorrect assignment of free and occupied space in the map 
of the environment. These uncertainties entail collision risks 
that are highly unwanted for mobile robotic systems. 

Within this paper we propose a set of steps that enables 
to estimate and decrease the collision possibility by 
modifying the initial plan generated by RRT. 

The paper is organized as follows: Section II gives a brief 
overview of the RRT algorithm and related work regarding 

planning under uncertainty, Section III presents steps of the 
proposed method and their descriptions, Section IV provides 
experimental evaluation of the proposed method, Section V 
gives conclusions and insight of future work. 

II. RELATED WORK 

A. The essence of RRT 
The RRT was introduced as planning technique for wide 

range of motion planning problems [3], which can 
accommodate particular kinematic or geometric constraints 
of a given system. The planning goal is to generate a path 
from initial configuration q0 to the goal configuration qg. At 
each iteration i, a random configuration qrnd is selected. Then 
the closest configuration qc from the graph is found and 
algorithm tries to extend the planning graph towards qrnd, by 
adding an arc from qc towards qrnd with length d. Thereby a 
new configuration qi is added to the planning graph. This 
step is depicted in Fig. 1.  

q0

qg

qrndqi

d
qc

 
Fig. 1. RRT extending towards qrnd 

The planning stops when the newly added configuration 
qi is in a predefined proximity from the goal configuration 
qg. A number of variations of the RRT exist [4], which 
provide better performance under particular constraints [5]. 
Unfortunately the considered modifications and extensions 
[4,5] do not provide means to consider uncertainties of the 
planning environment or the robotic systems itself. 

B. Planning under uncertainty 
In mobile robotics one of the fundamental problems is 

robot pose (position and heading) estimation, which due to 
imperfection of the used sensors and physical 
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implementation of the robot is always coupled with random 
noise. In practice it means that during the planning the actual 
pose of the robot is known only with some probability, what 
introduces an uncertainty into planning process. 

Besides robot position estimation error another important 
source of uncertainty is obstacle positioning, which in real 
applications is obtained using noisy on-board or off-board 
sensors. Therefore some existing techniques have to be 
discussed. 

The Particle RRT planner (pRRT) [6] uses particle cloud, 
where each particle represents a possible trajectory of a 
robotic system considering uncertainties of the robot. In 
order to reduce the number of trajectories particles are 
clustered according to their qualitative features thereby each 
configuration in the planning graph is defined by a set of 
possible configurations. This approach enables to reduce 
number of calculated path alternatives significantly but 
requires some distinctive features or parameters of the 
environment like rises or sharp slopes that allows to group 
alternatives into clusters. The pRRT changes some 
parameters like wheel friction of the robot in order to 
generate alternatives causing robot to perform differently. 
Environments like office premises do not provide these 
features limiting applicability of the method. 

Adam Bry and Nicholas Roy in [7] propose to model 
future states of robot sensors according to the prior 
knowledge of the environment. It allows consideration of a 
set of path alternatives and estimate feasibility of the 
alternatives defined in terms of collision free motion. The 
sensor and motion models of the robotic system are 
complemented by uncertainties expressed using normal 
probability distribution. The proposed method enables to 
effectively combine robot motion model with probability 
distribution model, which provide more realistic view on 
path planning for particular system. As indicated in [8] the 
probability distribution of the robot position being an 
uncertain variable over time does not comply with 
restrictions of normal distribution and may produce 
distributions of different shapes that are hard to describe 
analytically.  

An attempt to describe localization error distribution 
analytically is presented in [9], where exponential 
coordinates are applied. The authors show basic distribution 
propagation on differential drive robotic system with noisy 
sensor data in operation scenario, where robot motion is 
limited to straight or circular motion with known rotation 
radius. This method estimates the position distribution 
significantly better in comparison to the existing normal 
distribution based methods. However some effort is still 
required in order to develop a particle filter approach 
applicable for robot position estimation and to use it with all 
kinds of robot motion modes including backward motion and 
rotation around its own mass centre. 

In order to deal with obstacle position uncertainties in 
[10] the Guided Cluster Sampling (GCS) is proposed 
providing a way of sampling based global planning, where 
the belief space is partitioned into subspaces. Thereby the 
search space is reduced significantly allowing application of 

the method for many practical robot motion planning 
problems. The method combines motion and sensing steps 
with different values providing means for guiding the search. 
A set of distinct obstacle and goal features such as obstacle 
corners in 3D or vertices in 2D space are used to partition the 
belief space. 

While the method provides a straight forward approach 
to converge to globally optimal path it requires a set of well-
defined distinctive features that are not always available with 
random shaped objects where some discretization like 
occupancy grid is applied. 

The authors are unaware of published research proposing 
complete analytical methods that might accommodate both 
realistic robot and obstacles position error distribution 
description and its propagation at the same time. Therefore 
we propose an alternative heuristic approach that comprises a 
set of plan post processing steps. These steps are applied 
after RRT algorithm has produced its result – plan consisting 
of set of waypoints in a continuous environment and a set of 
arcs connecting waypoints thus forming a path.  

III. DESCRIPTION OF THE PROPOSED POST PROCESSING 
METHOD 

A. Brief overview of the method 
The proposed RRT plan post processing method comprises 
the following steps: 
1. Removal of unnecessary plan waypoints – as shown 

later this step allows to reduce unnecessary heading 
changes of the robot; 

2. Addition of waypoints around obstacles – within this 
step additional waypoints are added where the path 
leads close enough to obstacles thereby decreasing 
collision risk; 

3. Point realignment – plan waypoints are realigned away 
from obstacles to reduce risk of collisions; 

4. Smoothing of the plan – modified plan is smoothed 
using filtering eliminating sharp turning angles to 
improve motion speed; 

5. Feasibility estimation – the step employs particle cloud 
simulation to estimate the collision possibility. 

Each step is explained in details in the following sub-
sections. 

B. Removal of unnecessary plan waypoints 
RRT is not an optimal planner and therefore the typical 
planning result is a broken line that comprises a set of 
unnecessary manoeuvers like in Fig.2. While the main pose 
error is caused by the heading component, each additional 
change of the heading adds error to the final pose 
estimation.  

q0

qg  
Fig. 2. Typical RRT result q0 – start configuration, qg – goal configuration 
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Therefore it is important to reduce number of unnecessary 
turns especially with narrow angles that might require 
stopping the robot. Due to wheel slipping stopping and 
acceleration actions are additional sources of errors.  

To reduce the number of unnecessary turns slowing the 
robot, a straight forward heuristic is applied to linearize the 
plan as long as it stays within the specified minimal distance 
from the obstacles.  

q0

qg

L1

L2

q1

q2

q3

 
Fig. 3. Elimination of vertices 

For example in Figure 3 distance from line L1 to the obstacle 
(black square) is acceptable while distance from line L2 is 
not. Therefore the line L1 enables to eliminate vertices q1 
and q2. After going through the other vertices the resulting 
example path is depicted in Fig. 4, which has reduced the 
total number of vertices and the related manoeuvers of the 
robot.  

q0

qg  
Fig. 4. The resulting example path 

Assuming that the path is a list of waypoints this step is 
implemented by the following algorithm: 

PROCEDURE waypoint_Elimination (PointList Path) 
SET  newPath = q0 
SET  Current = q0 
SET  Last = q0 
FOR each waypoint p in Path starting from q0+1 
  IF segment_is_safe(Current,p) = true THEN 
   Last = p 
  ELSE 
   newPath = newPath + Last 
   Current = p 
  END IF 
END FOR 
RETURN newPath 

Fig. 5. Unnecessary waypoint removal algorithm 

In the algorithm depicted in Fig. 5 function segment_is_safe 
returns true if the appropriate plan segment is far enough 
from obstacles. 

C. Addition of waypoint around obstacles 
Let us assume that in a particular example case the plan 
after removal of unnecessary waypoints is like the one 
depicted in the Fig. 6, where each square represents an 
occupied cell in occupancy grid.  

 
Fig. 6. Example plan after removal of unnecessary waypoints 

In order to bend the plan around obstacles it is necessary to 
split the plan segments into smaller ones thereby providing a 
discrete representation of the segments that reduces the 
necessary computation. The heuristic behind this step is to 
add more waypoints where the segment closer to the 
obstacles and less where the segment is far enough from the 
obstacles.  

PROCEDURE AddPoints (PointList Path) 
SET  Current = 0 
WHILE Current < Length(Path) – 1 
  IF (Dist_to_Obstacle(Path[Current], Path[Current + 1]) < 
  Safe  
  AND  
  SegmentLength(Path[Current], Path[Current + 1])) >  
  MinLength ) 
  OR 
  SegmentLength(Path[Current], Path[Current + 1])) >  
  MaxLength) 
  THEN 
   Instert_new_point(Current, Current + 1) 
  ELSE 
   Current = Current + 1 
  END IF 
END FOR 
RETURN Path 

Fig. 7. Adding new waypoints around obstacles 

Within the algorithm in figure Fig.7 function 
Distance_to_Obstacle returns distance of a segment with 
ending waypoint from the list Path with indexes Current and 
Current+1 to the closest obstacle. If the distance is less than 
constant threshold Safe then the procedure Insert_new_point 
splits the segment into two equal subsegments by inserting a 
new waypoint in the middle of the segment. This is done 
only if the segment is longer than a set threshold MinLength 
in order to avoid addition of too many waypoints. Constant 
MaxLength determines the maximum length of segment, 
which being exceeded causes collision threats after 
smoothing the plan (See section A). The result of this step is 
depicted in Fig. 8. 
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Fig. 8. Added waypoints around obstacles 

As it is seen in Fig. 8 the closer the segment is to obstacle the 
higher the density of the new waypoints. Thereby the applied 
heuristic allows paying more attention to plan segments with 
higher collision possibility. 

D. Point realignment 
Within this step we exploit idea of elastic strip planning 
framework presented in [11], which proposes to perceive 
plan as an elastic strip in dynamic environment. Obstacles in 
the environment are the source of forces being applied to the 
strip allowing bending it around the obstacles. The main 
advantage of the method is the possibility to respond to 
changing environments. Within the step we use this idea 
with few modifications:  

1) Any changes of the plan may appear only at the plan 
waypoints. By this hard discretization assumption a 
significant amount of calculations is reduced; 

2) The waypoints are treated only relatively to the nearby 
obstacles and previous waypoint. This modification reduces 
smoothness of the result but saves a lot of calculation efforts 
because it requires treating all of the plan waypoints only 
once. 

3) The positive force that pushes a waypoint away from the 
obstacle remains as in the original elastic strip but the 
negative force is produced by the waypoint itself i.e. the 
waypoint tends to preserve its position. This also reduces 
smoothness of the result but requires consideration only of 
the obstacles and the given waypoint without considering 
inter-waypoint relations.  

To simulate positive and negative forces we use abstraction 
of linear springs. 

 

Fig. 9. Force simulation 

One dimension case is depicted in Fig. 9. If the waypoint is 
closer than the maximum distance to obstacle Lmax, where the 
spring force is 0, the spring is being compressed by a 
distance ΔL, producing a positive force that is calculated 
using formula (1).  

 (1) 

Therefore the positive force tends to move the waypoint 
away. At the same time the other spring while being pulled 
by the first one produces negative force that is calculated 
using formula (2). 

 (2),  

where x – displacement of the waypoint is not known. 
However, while both forces act against each other there is a 
waypoint of equilibrium, where sum of forces is 0. That is 
expressed in equation (3).  

 (3) 
 
Thereby calculation of x is straight forward: 
 

 (4) 
 
Equation (4) is applicable for one dimension, while the 
planner operates in 2D environment. Therefore the forces 
and appropriate calculations are decomposed into x and y 
components.  

In case of many obstacles around the waypoint each obstacle 
is treated relatively to the waypoint. In Fig. 10 two obstacles 
produce forces in opposite directions. The resulting force is a 
vector sum of both. The actual number of considered 
obstacles depends on distance threshold providing a way to 
eliminate irrelevant ones. 

Given the resulting F+ for x and y force components it is 
possible to calculate the final displacement of the waypoint 
in both dimensions.  

 

Fig. 10. Multiple obstacles 

The result is depicted in figure Fig. 11, where the blue line is 
the original plan and the black line is the realigned one.  

 

Fig. 11. Result of waypoint relialignment 
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E. Plan smoothing 
As it is seen in Fig.11 those segments that are close to the 
obstacles are bended around them thus making the robot 
motion safer. In order to ensure smooth motion of the robotic 
system the roughness has to be smoothed. As none of the 
dimensions (x or y) has constant discretization step we 
propose to use a Kalman filter that does not require such 
constraints being met [12].  

In order to avoid collisions with obstacles we use a unity 
process model (5) that assumes constant waypoint positions.  

  (5),  

where Xi and Yi – coordinates of i-th waypoint, Xi-1 and Yi-1 
– coordinates of previous waypoints.  

 

Fig. 12. Result of filtering step 

The measurement in this context is the actual i-th waypoint 
coordinates. This assumption with equal weight of modelled 
and actual coordinates of i-th waypoint, in fact, turns the 
filter into an averaging or low-pass filter that is well known 
in signal processing. The result of the filtering step is shown 
in the Fig. 12, where the blue line is the original plan while 
the rose one is smoothed one. 

At this point the bend plan already provides significant 
improvements to reduce collision possibility. The 
experimental results are provided in section IV.  

F. Feasibility estimation 
As mentioned above the main goal of the plan post 
processing is the reduction of collision risk. The previous 
steps provide means to do it, but they do not provide any 
information about the actual collision risk. As demonstrated 
in [8] and [9] the actual robot position estimation 
analytically is possible only under hard assumptions on 
robot motion specifics. Therefore as an alternative we apply 
a set of particles where each particle simulates a robotic 
system with appropriate motion end error models. We use 
two different error models to acquire as adequate feasibility 
estimation as possible. 

1) Signal transfer model 
As the first model we propose to use signal response 
function instead of the one offered by Linear time-invariant 
system theory [13]. The actual mechanism behind that is 
based on Laplace transformation of functions from time 
domain to Laplace domain. By definition Laplace 
transformation F(s) of time function f(t) is given by integral 
(6) [13]:  

, (6) 

where  – indicates Laplace transform of the time 
function f(t), s – complex Laplace variable of the form             
s = σ+jω, F(s) – the transformed function in Laplace 
domain. 

In Laplace domain, signal response is defined by the ratio 
between output Y(s) and input X(s), while in time domain 
the multiplication corresponds to convolution [13]. This 
correspondence is indicated in equation (7): 

 (7) 

The signal transfer function H(s) is acquired by using (6) 
and replacing f(t) by h(t). The convolution itself is defined 
by the equation (8) [13]: 

 (8) 

For modelling the input signal x we use a simple step 
function that fully corresponds to the incoming robot control 
signals. Use of the impulse function in practice is difficult as 
it is infinitely short. Instead, we use a step function, which is 
defined by integral of impulse function. 

 (9) 

As shown in (9), the derivative of the step function is an 
impulse at the time instant t. This allows transformation of 
the equation (8): 

 (10) 

Having expression (10) it is possible to calculate the 
actual value of y over the time.  

The actual signal response function has to be acquired 
experimentally due to technical specification of the robot, its 
imperfection and environmental constraints, such as ground 
cover, traction of the surface, etc. In our case we model an 
indoor differential drive robot  

In reality the input is defined by a vector , 
and the expected output from the model is ], 
where v(t) – linear speed, and  – angular speed of the 
robot, – left and right wheel speeds. Now, 
having in mind the definition of the model (7), it is possible 
to define the model in Laplace domain (11): 

  (11) 

Knowing that Laplace transformation of the matrix (12) is 
matrix (13) with the transformed elements and having the 
transformations of product and convolutions i.e. (7) and (8) 
it is possible to rewrite (11) in time domain as (14): 
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      (12) 

   

 (13) 

  (14) 

In the equation (14) step functions , , 
 and  can be obtained empirically by 

simply switching on each motor at a full speed and 
collecting the actual  and  data until the speed 
difference over a single time step achieves 0 meaning that 
the top speed is reached and transient processes are finished.  
Here we assume that both output functions are normally 
distributed random variables:  and . Now it is possible to 
write the modelled kinematic model of differential drive 
robot: 

 (15) 

In (15) R = v/ω, xt and yt – position of the robot, 
 – x, y coordinates and heading of the 

robot at time instant t, ω – angular and v – linear velocities.  
To estimate the variance and the final values of the model 

it is necessary to use algebra of random variables.  
2) Sensor error model 

Within this model we use the same kinematic model (15) 
but add noise to the velocities thus simulating noisy wheel 
speed readings. 

   (16) 

     (17) 

In (16) and (17) both speed readings are normally 
distributed around their actual values:  and . 
The actual standard deviation values have to be obtained 
experimentally or from the manufacturer of the used 
sensors. 
Both models allow generation of a set of possible positions 
of the robot. The particle motion is simulated using the 
same motion control algorithms as implemented on robotic 
system.  
While particle cloud follows the plan we count the number 
of particles having collisions (see figure Fig. 13). Thereby at 

the end of simulation it is possible to count the percentage 
of failed and successful particles.  
 

Failed particles

Successful 
particles

 

Fig. 13. Result feasibility estimation 

These numbers provide data to estimate the possibility of 
collision if the number of particles is large enough. 

IV. EXPERIMENTAL VERIFICATION OF THE PROPOSED 
METHOD 

A. Experimental setup 
We have conducted two separate experiment sets: planning 
performance, which was focused on steps 1 to 4 of the 
proposed method, and plan feasibility tests, which was 
focusing on the step 5 of the proposed method.  

1) Plan performance experimental setup 
The main goal of this experiment set is to compare the 
proposed method with the RRT-Connect planning technique 
[14] (a slight modification of the original RRT) in terms of 
collision risk.  
The first experiment set was conducted on a real robotic 
system that implements RRT-Connect, whose result is 
processed by the proposed method and then executed by the 
robotic system. 
The robotic system comprises a differential drive chassis 
(iRobot Roomba vacuum cleaner [15]) and a laptop with 
added web camera for localization using artificial 
landmarks. The positioning method using artificial 
landmarks in details is discussed in [16]. 
Two different scenarios were used: the first one with full set 
of obstacles (see Fig. 14) and the second one with reduced 
number of obstacles (see Fig. 15). 
 

 

Fig. 14. The first scenario wih full set of experiments 
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Fig. 15. The second scenario with reduced number of obstacles 

The total area of the experimental setup is 240 x 1000 cm. 
Before each scenario the environment was explored by 
robotic system using all of the available sensors in order to 
decrease uncertainties of obstacles position. However due to 
positioning errors and limitations of the obstacle detection 
sensors of the used chassis the map still accommodates 
uncertainties. Tables I and II list the parameters of the 
planning and plan post-processing methods. The actual 
values were found by trials and errors before the 
experiments because we believe parameter estimation is 
beyond the scope of this paper.  

TABLE I.  RRT-CONNECT PARAMETERS 

Parameter Value 
Direction of planning One-directional,  

Start-to-Goal 
Probability of goal selection for the 
current direction of tree extension 

0.1 

Maximum Length of the current segment 
(mm) – the actual length is selected 
randomly 

500 

Goal met condition – max. distance from 
the goal (mm) 

50 

Safe point condition - min. distance to 
obstacle (mm) from robot center 
considered to be safe / collision free. 

200 

TABLE II.  PROPOSED POST-PROCESSING METHOD’S PARAMETERS 

Parameter Value 
Point addition distance (mm) – if a plan 
segment is closer to obstacle then an 
additional point is put in the middle of the 
segment this forming two new segments 
instead of the current. 

300 

Min. segment length (mm) – if the 
segment is shorter or equal to this 
distance then no additional points are put 
on the segment 

60 

Max distance from obstacles (mm) – the 
distance, at which (or shorter) the 
obstacles are taken into account for 
realignment forces calculations 

400 

Obstacle force constant (N/m) 3 
Point resistance force constant (N/m) 20 

 
Within each scenario we on purpose selected plans 
produced by RRT-Connect that fail to be executed by 
robotic system without collisions with obstacles thereby 
proving the concept of the proposed method. 
With each scenario we calculated success rate of the post-
processed plan, which is the relative number of robot runs 
without collisions using the provided plan. Success rate in 
our case is percentage of the plans accomplished without 
collisions with obstacles. 
Each plan was tested by robot runs with full positioning (see 
[16]) that included use of artificial landmarks keeping 
positioning error variance within an interval of 10 - 15 
centimetres, and with odometric positioning only, where the 
positioning error variance is growing by each manoeuver 
throughout the plan execution.  
Positioning with odometric position estimations is critical 
due to fact that artificial landmarks are not always in the 
sight of robot sensors thereby the position is estimated using 
odometric sensors only.  
We tested three different plans: 1 with full set of obstacles 
and 2 with reduced set of obstacles, where each trial was 
composed of 20 robot runs under the same conditions.  

2) Plan feasibility estimation experimental setup 
Plan feasibility experiment goal is to determine if the 
particle cloud simulation produces the same success rate as 
the actual robot runs thereby providing means to forecast the 
possible collision probability before plan execution by 
robotic system.  
The plan feasibility estimation experiments were conducted 
using software simulator, which implements the kinematic 
and error models discussed above. The planning and post-
processing methods parameters are the same as listed in 
Table I and Table II. Table III lists sensor error variance 
values that were found empirically to match the used robotic 
system.  

TABLE III.  ERROR VARIANCES 

Parameter Value 
Left wheel encoder variance (mm) 5,5 
Right wheel encoder variance (mm) 5,5 
Angular speed variance (degrees/s) 0,35 
Linear speed variance (m/s) 0,08 

 
Plans and maps produced by robotic system in the plan 
performance experiments were loaded into the simulation 
system thus providing consistency with the real situation.  
Each of the produced plans was tested in 20 runs and the 
average percentage of successful particles was counted. 
Afterwards difference between success rates of simulation 
and actual robot runs was calculated.  
During the experiment only odometric positioning was 
simulated because use of landmarks keeps positioning error 
in a certain interval preserving it from growth during the 
pan execution. As it is not possible to determine, when and 
where robot sensors will not be able to detect landmarks due 
to light condition changes or other unpredictable 
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circumstances, the worst scenario has to be considered, 
which in this case is pure odometric positioning.   

B. Plan performance runs 
 
The RRT-Connect and the post-processed with the proposed 
method is depicted in Fig. 16, where white cells represent 
free space, black cells represent obstacles and grey cells 
represent unexplored space. 

TABLE IV.  FIRST RUN RESULTS 

Method Success rate (%) 
Post-processed 100% 
Post-processed only odometry 15% 

 

 

Fig. 16. First run RRT-Connect (on top) and post-processed plan (at the 
bottom) 

The next runs were performed slightly reducing the number 
of obstacles. We removed those obstacles where the robotic 
system experienced the most number of collisions. The next 
scenario is depicted in figure Fig.15.  
With the reduced complexity environment we performed two 
trials using the same approach. The results are depicted in 
figure Fig. 17 and Fig.18. 

 

 

Fig. 17. Second run RRT-Connect (on top) and post-processed plan (at the 
bottom) 

 

 

Fig. 18. Third run RRT-Connect (on top) and post-processed plan (at the 
bottom) 

Again each plan was tested with 20 runs and the post-
processed plan was tested both only with odometry and with 
full positioning. 

TABLE V.  SECOND TRIAL RESULTS  

Method Success rate (%) 
Post-processed 100% 
Post-processed only odometry 55% 

TABLE VI.  THIRD TRIAL RESULTS  

Method Success rate (%) 
Post-processed 100% 
Post-processed only odometry 15% 

 

As shown in Table IV, Table V and Table VI the proposed 
method is capable to deliver a plan that the robotic system 
can accomplish without collisions in situations when RRT-
Connect fails.  

Here it has to be emphasized that RRT-Connect operates 
with a black-box step validation mechanism, which in our 
case is simple distance – to obstacle estimator. If the safe 
distance is increased the RRT would not be able to produce 
plan at all due to several bottle necks in the environment.  

C. Plan feasibility tests 
In order to verify the plan feasibility each of the plans was 
simulated in both scenarios using previously described 
particles cloud with 100 particles. The actual noise variances 
shown in Table III where tailored empirically for the 
particular robotic system and remain constant during the tests 
on all plans. The results are summarized in the table VII. As 
explained above during the tests only pure odometry 
operation was tested because use of artificial landmarks 
keeps position variance in certain interval and does not allow 
considering the worst possible scenario. 

TABLE VII.  PLAN FEASIBILITY TESTS RESULTS 

Method Success rate 
(%) 

Difference to 
robot runs 
results (% 
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points) 
First run   
Post-processed only 
odometry 

31% 16% 

Second run   
Post-processed only 
odometry 

46 4% 

Third run   
Post-processed only 
odometry 

22% 7% 

 

As it is seen in the table VII, the feasibility estimation 
provides reasonable difference from the actual robot runs 
success rate, which is caused by idealized simulation model 
and does not take into account factors like surface roughness 
that might cause the deviation. This enables to forecast 
collision probability before the plan execution and avoid 
unwanted possible damage of the robotic system.   

V. CONCLUSIONS AND FUTURE WORK 
The proposed method provides a set of plan post-processing 
steps that allow reduction of robot collision possibility in 
environments where significant uncertainties of robots 
position estimation and obstacle mapping are present. The 
presented experimental tests show that the proposed plan 
post-processing method delivers plans that can be executed 
by robotic system without collisions in cases when the used 
RRT planning algorithm fails.  

The waypoint removal and addition steps provide means to 
reduce overall amount of necessary calculations with varying 
discretization step depending on the distance from obstacles. 

While the proposed method has been tested on plans 
generated by RRT-Connect, we see that it could be applied 
to other planning methods because it does not depend on 
actual planning methods used to generate the initial plan. 
Therefore we envision future study of the method application 
in conjunction with other planning techniques like 
combinatorial planning and its derivatives that are widely 
uses in mobile robotics. 

The feasibility estimation provides data to make a decision 
of plan execution before the actual execution thus reducing 
possibility of robot damage during potentially dangerous 
plan execution. 

For the future we see potential to apply the proposed method 
for multi-dimensional robots motion planning with 
persistence of high uncertainty. 
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