
Multilevel supporting system for special forms of learning
(in brief “MSFL”) is being developed in the first instance as
solution for teaching music theory in modern way. MSFL has
features such as front-end layout for teaching and backend
system for administration. First part of this article is focused
on detailed description how we use Vexflow API in music
learning management system, how many features are
implemented in core generator and what features are planned
to implement. There will be shown some code examples with
screenshots of working generated staves.

Second part of this article will show how to use MSFL, how
to register and how to study with this portal. There will be
shown some screenshots with short description how it all
works. MSFL portal is not based on any learning management
system such as Moodle, eTutor, Spirit and more. At its first
instance system is designed and optimized especially for
music purposes.

VexFlow is an open-source web-based music notation
rendering JavaScript API that can generate any type of staves.
This is an API that was designed for HTML 5 Canvas.

It is important to note that VexFlow is a low-level
rendering API. Most applications will want to use something
like VexTab which is a higher-level language for rendering
guitar tablature and music notation.

VexFlow is written completely in JavaScript and when
using it with HTML5 Canvas, requires no external libraries or
dependencies. For SVG support, you will need to include the
Raphael JavaScript library into your sources. That said, this
tutorial also makes use of the jQuery library to select and
manipulate DOM elements.

1) The basics for the creation of staves
The absolute basis is tag canvas with specified width and
height.

Fig. 1. Basic canvas tag

In order to create a blank stave, it need the following
JavaScript code:

Fig. 2. Blank stave code

The first line calls the canvas object using jQuery function and
store in a variable of the model canvas. You also need to
generate your own background music using the function
Vex.Flow.Renderer() with the parameters of the object
variable canvas. The third important variable is the variable
ctx which calls the getContext(), which creates environment
for us stave. The fourth variable is the state that using
Vex.Flow.Stave() creates a long staves with the positions of
the first note from the left and top of your specified number of
pixels. The shift is important for the higher notes, which may
appear just behind the key. All are rendered using a
addClef("trouble") will result in an empty stave with treble
clef.

Main functional parts of Multilevel supporting system for special
forms of learning and their usage

1DALIBOR SLOVÁK, 2PETR LÁTAL
1Computers and Communications System Department, Faculty of Applied Informatics Tomas Bata

University, Zlín, CZECH REPUBLIC
2Computers and Communications System Department, Faculty of Applied Informatics Tomas Bata

University, Zlín, CZECH REPUBLIC

Abstract— First part of the article is focused on work with Vexflow AP as a main functional part of Multilevel supporting
system for special forms of learning . There will be described some basics how to create music staves, how the rendering
works, how the modifiers works and many other useless features. Vexflow API is based on java-script web technology
with possibility to render all types of music staves. Second part of the article is focused on “How to work with MSFL
guide”and we described creation of stave and quiz module usage. The main aim of our research approach was to make
simply and easy system for music teaching and learning.

Keywords: Vexflow API, Vexflow rendering, Vexflow modifiers Staves

1. Introduction

2. Vexflow API
2.1 Work With Vexflow API

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2022.9.4 Dalibor Slovák, Petr Látal

P-ISSN: 1109-9577 18 Volume 9, 2022

Fig. 3. Blank stave on front-end

In the above code first create a rendering context from the
canvas element. This rendering context gives VexFlow a
consistent 2D drawing interface, which is modeled on HTML5
Canvas. We then create a new Vex.Flow.Stave positioned at 0,
0 with a width of 500 pixels. We pass the context to the stave
and call draw, which renders the stave on the context. Notice
that the stave is not exactly drawn in position 0, 0. This is
because it reserves some head-room for higher notes.

2) Inserting notes
Adding notes to the stave is a slightly more involved process.
To understand the code, you need to understand the data
model of the renderer. A StaveNote is a set of notes that
belong on a stem. It can be a single note, or a chord. Its stem
can be up, or down. All StaveNote instances have an
associated duration. These StaveNotes are grouped into a
Voice. Voices have a time signature, and the set of notes in the
voice (including the rests) must utilize all beats in the voice.
So, a 4/4 voice with only three quarter-notes is invalid - you'll
need to add another quarter note or rest.
Voices are grouped into VoiceGroups. This is particularly
useful when you have multi-voice music. Upon rendering, the
notes in each voice of the group aligned on the stave. A
VoiceGroup must contain at least one voice.
Finally, you have a Formatter, which takes a voice group and
justifies the voices based on configurable rules, so that all the
voices in the group look pretty on the stave. In the code below,
we create a voice with two notes and a chord, and render it on
the stave.

Fig. 4. Inserting note example

3) Modifiers
Modifiers are essentially decorators that are attached to
notes. They include Accidentals, Vibratos, Dots,
Annotations etc. Modifiers for a single group of notes live
inside a ModifierContext. This allows them to intelligently
juxtapose themselves based on other modifiers in the context.
For example, a chord consisting of two close-by notes, each
having accidentals, needs to position the accidentals such that
they don't clash.
Code below shows what it looks like this situation:

Fig. 5. Example modifier code

Fig. 6. Example modifier stave

In the above example, note that even though we set the note
names and durations correctly, we explicitly request the
rendering of accidentals and dots.
This is by design, and exists for two reasons:
We don't want to couple rendering logic with notational
logic. The API user has the final say for what should and
should not be displayed. This enables higher level tools and
libraries (such as VexTab) to make rendering decisions based
on their own notational semantics. Also notice that is used the
FormatAndDraw helper function to create a 4/4 voice out of
the notes, justify it to the stave, and render all of it. Lets add a
few more modifiers and see how they position themselves.

Fig. 7. Another modifier code

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2022.9.4 Dalibor Slovák, Petr Látal

P-ISSN: 1109-9577 19 Volume 9, 2022

Fig. 8. Another modifier example

Above, the accidentals are positioned such that they don't
overlap but maintain their X-relation to the associated note.

VexFlow can play music, but only provided that the class
reads beam.js. Creation of such a code is shown below.

Fig. 9. Sound example code

In the above example, we created three groups of notes
with beams. The slope of the beams is a function of the
direction of the music, and the number of beams for each
group is dependent on the duration of the notes underneath.

Tieing notes involves a similar set of operations. To render
a tie, you create a StaveTie instance, and pass it the two
StaveNotes to tie together. Since each StaveNote can be a
chord, it is also need to pass in the indices of the specific notes
we want to tie.

VexFlow guitar can also draw an outline. Mechanisms for the
outline view are very similar to classical stave. However, it is
necessary to use other classes to generate curriculum and
notes.

Fig. 10. Guitar outline code

Fig. 11. Guitar outline

Above, we replaced Stave with TabStave and StaveNote with
TabNote. There are also added some bend and vibrato
modifiers.
There are two things we have to manually specify here the
font style, and the background fill color. The former is used to
display fret numbers, annotations, and other text. The latter is
only required for the SVG backend (although using it with
Canvas is harmless), and is used to create an internal
implementation of clearRect. A custom clearRect is required
to clear sections of the canvas. This is not supported by SVG
because it has no "clear" semantics.

Module for generating staves is served as the simplified
interface for creating musical staves for the quiz module and
for the presentation of given expressions on the web. The main
features of the module include the name of the stave,
connection with the test and stave status.
From the database perspective the module contains a data
section, which is generated by module and stored in a database
as a complete code ready for presentation.

1) Creation of musical staves
After click on “Pridej notovou osnovu” (Add sheet of music)
you can see common information about sheet of music. You

2.2 Sounds and Notations

2.3 Guitar Outline

3. Stave Module and Quiz Module
3.1 Sheet of Music Generator

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2022.9.4 Dalibor Slovák, Petr Látal

P-ISSN: 1109-9577 20 Volume 9, 2022

must create unique information about your sheet of music.
This item is required and you must fill it. Now it has created
tag<canvas> with displayed javascript. If you create two note
scores with same identifier. You don’t see anything note score.
Then it is necessary to name your score and set it as a active.
Elementary setting of your score is on the right side of form. It
is useful to edit these parameters. For example width of score
with pixels value determines width of tag <canvas>.

Fig. 12. Sheet of music generator

Other is number of lines. You would be determines the
number of lines. Position of x and y determines only view of
first character against note score. You need not set this
property. Last argument is score longitude in pixel’s value.
This value determines exact place for view of notes.

Fig. 13. Stave generator module preview

This is the module that generates any types of quiz or test. The
basic properties of this module are the name of the quiz
results, categories, and the basic operations such as editing,
adding and deleting quizzes.

1) New quiz creation
Creation of the quiz is divided into two steps. The first step is
the selection of the number of questions and the number of
responses. Here is a good to decide the corresponding number
of questions and answers, because if you change your mind
the number of questions or the number of answers you have to
regenerate the form. In this situation is the best solution to
save the quiz and then edit it because editing will not lost the
actual data.

Fig. 14. Quiz creation – first step

In the second step is "Quiz generation." The module will now
expand to the right side. Here is necessary to fill in the quiz
name, category, set number of attempts and select status of the
quiz. When you generate the quiz, the interface will appear
box for adding questions with answers.

Fig. 15. Quiz creation – second step

You can simply fill in your questions with answers. Because
the questions and answers are over dimensioned, it is
necessary to modify a few items. The first item is the type of
answers. This offers the text type, radio and the checkbox.
Changing any type will display the form of answers. Selecting
musical stave from the select box will display chosen stave.
Please refer to the fact that each question has to have different
stave (or stave with another identifier).

Fig. 16. Quiz creation – questions and answers

MSFL version 1.0 allows storing only a few types of notes in
staves. The main problem is only with various types of
combinations which have to be implemented by the
programmers.
Next problem is connected with communication of basic
hardware piano pads and computers. We have plan to invent
USB interface which will communicate through the java
applet between browser and hardware and serve the maximal
comfort for the MSFL users.

Vexflow API converts user inputs in music learning
management system to the canvas HTML tag which display
output on the page. We made the MSFL version 1.0 which
allows to use only a few user inputs in the form of notes to the
system.

5. Conclusion

3.2 Quiz Module

4. Problems and Solutions

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2022.9.4 Dalibor Slovák, Petr Látal

P-ISSN: 1109-9577 21 Volume 9, 2022

Our plan is to improve the converting core to allow users to
insert all types notes and connect a special convertor between
computer and basic piano pad to increase efficiency of using
MSFL.
The main mission of this project is to spread the music
learning management system to the whole world. We have
some analysis from the conservatory that teacher need some
instrument how to easily teach and share their knowledge with
the students. This article was the last part and now we are
prepared to finish the customizations and release the first
version.

[1] Henk C.A : van TILBORG (2000). Fundamentals of cryptology,
Kluwer Academic, ISBN 0-7923-8675-2, Norwell.

[2] Schlossnagle, Georgie (2004). PHP 5 advanced programming,
Computer Press, ISBN 80-86815-14-5, Brno.

[3] Composite authors (2007), PHP 5 mastery, Computer Press, ISBN 978-
80-251-1519-0, Brno.

[4] Resig, John (2007). Javascript a AJAX : modern programming of web
applications, Computer Press, ISBN 978-80-251-1824-5, Brno.

[5] Zelinka, Ivan. (1999). Applied informatics, Editorial center, UTB, .
ISBN 80-214-1423-5, Zlin

[6] Castro, Elizabeth (2007). HTML : XHTML a CSS: web site creating.
Computer Press, ISBN 978-80-251-1531-2, Brno.

[7] RESIG, John. (2007) Javascript a AJAX : Moderní programování
webových aplikací. Computer Press, ISBN 978-80-251-1824-5. Brno.

[8] Latal, P. Web portal for teaching music theory: Tomas Bata University,
Faculty of Applied Informatics, Department of Computer and
Communication Systems, 2011, 87 p. Thesis supervisor Ing. Dalibor
Slovak.

[9] Ullman, Larry (2004). HTML : PHP a MySQL, Computer Press, ISBN
80-251-0063-4, Brno.

[10] Composite authors (2007), PHP 5, Computer Press, ISBN 978-80-251-
1519-0, Brno.

[11] Wexflow [available online]:
<http://vexflow.com/docs/tutorial.html>

[12] Cufonlibrary[available online]:
<https://github.com/sorccu/cufon/wiki/About>

[13] Raphael library [available online]: Cufon [available online]:
<http://raphaeljs.com/>

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on ACOUSTICS and MUSIC
DOI: 10.37394/232019.2022.9.4 Dalibor Slovák, Petr Látal

P-ISSN: 1109-9577 22 Volume 9, 2022

https://github.com/sorccu/cufon/wiki/About
http://raphaeljs.com/

