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Abstract: - The identification and characterization of noise events is one of the most important task in acoustical 
forensic analysis. In this field it is often fundamental to distinguish, within a complex acoustical framework, the 
different noise events, especially because, in many cases, the operator cannot be present at the measurements. It 
is fundamental to be able to distinguish the atypical or extraneous noise events from the specific ones under 
investigation and know what type of sources make up the noise climate. To this aim is essential to develop a time 
- frequency analysis technique able to overcame the known limitations of the “traditional” 1/3 of octave frequency 
analyses. In this paper a novel technique, based on multiresolution analysis, has been developed and applied to 
some forensic “typical” problems, showing that a suitable choice of the analysis parameters can be able to answer 
to the main questions of this field. 
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1 INTRODUCTION 

The individuation and recognization of noise 
events play a fundamental role in forensic analysis. 
Within this framework is in fact required, in order 
to perform a given investigation, to be able to 
separate specific acoustic signals from atypical or 
sporadic events determining the so – called “noise 
background”. The signals to be recognized can be 
very different in their time – frequency behaviour 
because they can include human voice as well as 
“natural” noise events and, virtually, any kind of 
“man made” noises.   
The progress in computer technology has allow the 
development of digital analysis techniques and 
their implementation, in addition to the common 
personal computers, in commercial analyzers on 
the market.  
In acoustical analysis (as in many other science 
areas), and especially in forensic ones, a 
fundamental goal of these techniques must be the 
“correct” characterization of the time – frequency 
content of a given signal.  
The most part of digital techniques currently used 
in such analyses are based on different versions of 
windowed numeric Fast Fourier Transform (FFT) 
or 1/n of octave analysis. Although useful in the 
most common applications, these methodics show 
very critical limitations when applied to complex 
situations characterized by the presence of many 
noise sources with very different time – frequency 
and high “non – stationary” (both in frequency and 

time) behavior as almost always occurs in forensic 
acoustics.  
Their most important limitation is, in fact,  when 
applied to highly non- stationary signals , they does 
not tell us about the time location of the frequency 
components of the spectra and, consequently that 
they are not be able to give us the “signature” of the 
different noise sources within an acceptable 
precision (referred to the purpose of forensic 
analysis).  
Multiresolution analysis can give us the solution to 
this problem getting the spectra associated to 
samples of signal that can be considered 
sufficiently stationary (both in time and 
frequency); one of the most important 
multiresolution analysis is that obtained by 
Wavelet Transform (WT) that leads to a 
multiresolution time – scale space of 
representation.       
In this paper we’ll discuss an application of a 
multiresolution technique, based on WT, to a 
typical forensic acoustics case showing how a 
suitable choice of analysis parameters can be able 
to properly characterize the noise signals in 
comparison with the failure of the traditional fixed 
resolution analyses.  
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2 FUNDAMENTALS OF 
MULTIRESOLUTION 
ANALYSIS  

2.1 Multiresolution approximation 
A multiresolution analysis gives a “zoomed” vision 
of a signal at different scales in such a way that we 
will dispose of different signal versions each of 
them characterised by a different detail level. If 

 designs the Hilbert space of square 

integrable signals , a multiresolution 
approximation (MRA) for  is a sequence of 

closed sub-spaces  such that 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

There exists furthermore a function such that the 
ensemble is a Riesz basis of  

that’s to say the  are linearly independent and 

there exist such that, for any , one 
uniquely has 

 (6) 

satisfying the property 

 (7) 

According to this approach, the approximation of a 
signal  at scale  can be seen as the orthogonal 
projection of on space , and will be denoted by 

. Therefore if is an orthogonal basis of 

 we have 

 (8) 

where . 
It’s possible to prove [1] that an orthogonal basis 
of  can be constructed by dilating and translating 

a function  called “scaling” function; if  

is an MRA and  is the scaling function whose 
Fourier transform is 
 

 (9) 

then the functions  where 

 (10) 

represent an orthogonal basis of . An MRA is 
then completely defined by means of the scaling 
function that generates an orthogonal basis for 

each space . If we indicate with  the 

orthogonal complement of  in  we can write  

 (11) 

and the approximation of  at scale   is 

given by 
 (12) 

The projection  gives us the informations 

about the “details” of the signal at scale  that 
we cannot “view” at less accurate scale . It has 
been shown [1] that an orthonormal basis of can 
be constructed by means of the so called 
“wavelets” waveforms. The projection of a signal 

in the “detail” space  is given by an expansion 

in terms of wavelet basis  

 (13) 

A signal can be then expressed as composition of 
the “details” at all scales 

 (14) 

if we know an orthogonal wavelet basis. 

2.2 Wavelet basis 
A continuous wavelet is a function  
such that 

 (15) 

 (16) 
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(where  is the Fourier transform of ) usually 
normalised and centred in the 
neighbourhood of  . A wavelet “family”, 
whose elements are called “atoms”, is obtained by 
translating  by  and by “scaling”   by a factor 

: 

 (17) 

with . The continuous wavelet transform 

of a signal is the image  on 

 given by 

 (18) 
(where * indicates the conjugate complex) and 
quantifies the contribution of the signal  in the 
neighbourhood of at a scale . The time 
translation of atoms permits to us to select the 
different portions of signal while by dilating and 
contracting it we are be able to analyse signal 
structures of very different size. When the atoms 
are dilated we analyse the signal components 
oscillating more slowly while when they are 
contracted we can analyse the components 
oscillating more quickly. 
We can construct a wavelet function such that the 
family of translated and scaled functions 
 

 (19) 

is an orthonormal basis of . The basis can 
be obtained from a scaling function  

 (20) 

with 
 (21) 

where represents the conjugate mirror filter1 
corresponding to . 
The multiresolution approach and its realization by 
means of wavelet basis leads, first of all, to a time 
– scale decomposition. Nevertheless, we can 
“convert” it into a time – frequency signal 
decomposition, by properly choosing the wavelet 
basis. We can establish such a relationship between 

                                                        
1 A conjugate mirror filter can be defined as a 

discrete filter whose transfer function satisfies the 

condition . 

scale and frequency by assuming that the base 
function is placed, in the frequency domain, around 
a frequency , corresponding to the maximum 
value of the wavelet frequency spectrum. The 
simultaneous time-frequency resolution of analysis 
is limited by the Heisenberg uncertainty principle: 

 (22) 

where the time resolution  is related to the 
wavelet time spread  (with ) and 
the frequency resolution to the wavelet bandwidth 

 ( ). The product  and so 
the effectiveness of the analysis depends on the 
wavelet waveform shape and parameterization. To 
analyse the signals associated to electric and 
magnetic fields, some classes of wavelet atoms, 
with Fourier transforms obtained from equation 
(20), have been employed.  
They are the Gauss, Morlet, Gabor, Franklin 
wavelets. The Gauss wavelet is the function whose 
Fourier transform is given by 

 (23) 
the Gabor wavelet is a “phase displaced” version 
of a gaussian function 

 (24) 

with . In the same way we can 
define the Morlet and Franklin atoms: 
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3 APPLICATION OF 
MULTIRESOUTION 
ANALYSIS TO A FORENSIC 
CASE  

3.1 “Traditional” analysis 
As an example, we’ll considerer the signal showed 
in Fig. 1 (on the x axis is represented the time, on 
the y axis the wave intensity in arbitrary units 
normalized to 1), representing the acoustical wave, 
measured by a sound pressure level digital 
analyzer, associated with a complex noise scenario 
including typical sources considered in forensic 
acoustics. 
 

 
Figure 1: time history of the wave amplitude of digital 
signal considered. 
 
In particular the noise climate is composed as 
follow: 

a) from  to the end ( ) a male 
voice A superimposed to a music 
background; 

b) from  to the end a very low 
background composed by a stationary – 
continuous (almost monochromatic with 
few harmonics) noise; 

c) from   to the end a female voice 
B characterized by overall pressure levels 
slightly greater than those of the voice A. 

When we listen at the sound associated to the wave 
of fig. 1, we are be able to clearly recognize the 
voice A until the start of voice B when we clearly 
ear only the voice B (and not A) until the end of the 
sample. During the whole time interval, we not ear 
the stationary – continuous source at all. The voice 
B then masks the voice A almost completely and 
both of them mask the continuous source. The 
forensic problem can be here, for example, to show 
that the voice A is always present in the sample, 
together with the continuous source, even when we 
cannot hear them after and that this 

voice in really the same as that heard until 
 (the same person).   

The analysis of the wave amplitude time –history 
gives us no useful information and the waveform 
amplitude doesn’t reveal what is happening.  
The fig. 2 shows the result of an 1/3 of octave not 
windowed frequency numerical analysis 
performed on the signal of fig. 1 (on the x - axis is 
reported the frequency band, on the y – axis the 
sound pressure level amplitude normalized do 0 dB 
for both the right and left recorded channels). 
 

 
Figure 2: 1/3 of octave frequency analysis of the 
considered signal. 
 
As obvious, due to the highly not – stationary time 
– frequency features of signal, from this kind of 
spectrum we cannot extract useful data in order to 
recognize and characterize the sources under 
investigations.  
A better method can be the one based on a 
windowed version of FFT that can give a 
spectrogram like that showed in the Fig. 3 (on the 
x – axis is shown the time in sec, on the y – axis the 
frequency in Hz and the image points intensity is 
proportional to sound pressure level in dB), 
 

 
Figure 3: FFT spectrogram of the considered signal. 

 
obtained considering a moving rectangular time 
window of 1024 points which achieve the best 
compromise between time – frequency resolution 
and image clarity (a different window width would 
not alter the meaning of the treatment). The 

t = 0 t = 6.247 s

t = 0

t = 2.278 s

t = 2.278 s

t = 2.278 s
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windowed FFT analysis is able to give us some 
interesting information about the time – frequency 
structure of sample. In particular it shows the 
presence of a middle – frequency (from about 215 
to about 700 Hz) pattern during the whole sample 
whose time – frequency configuration meanly 
considerably changes after about (the 
beginning of the voice B !). The spectrogram also 
shows, at higher frequencies, a very different 
pattern for associated with the more 
acute female voice, furthermore it is evident around 

 an high frequency event associated to the 
start of female speaking. However, we don’t see 
trace of the background stationary – continuous 
noise at low frequencies while a quasi - continuous 
noise appears at high frequencies (around about 3.4 
kHz).  
In summary the spectrogram shows a remarkable 
difference in the time –frequency (at low and 
middle – high frequencies) between the first and 
the second part of the sample (that we know 
respectively associated to the male and female 
speaking), doesn’t reveal the other noise 
components (as, for example the continuous 
monochromatic and the musical background) and 
doesn’t suggest to us the presence, for , of 
the same male voice dominating the first part of the 
sample. 

3.2 Multiresolution analysis of the sound 
sample 

The fig. 4, 5 and 6 and 7 show the time-scale 
images corresponding to WT  of the studied signal, 
using Morlet, Gabor, Gauss and Franklin wavelet 
base atoms respectively. All the base atoms and are 
characterized by a frequency resolution of 1/12 of 
octave. On the x axis is represented the time 
interval of measurement normalized between 0 and 
1, on the y axis the quantity  related 
to the scale factor a while the image points intensity 
is proportional to WT coefficients. We note that the 
high scale components (low frequencies) are 
always characterized by good frequency resolution 
(and correspondingly poor time resolution) while 
low-scale components (high frequencies) have a 
good time resolution (and correspondingly poor 
frequency resolution). 
 

 
Figure 4: WT multiresolution analysis of signal using 
Morlet base atoms. 
 

 
Figure 5: WT multiresolution analysis of signal using 
Gabor base atoms. 
 

 
Figure 6: WT multiresolution analysis of signal using 
Gauss base atoms. 
 

t = 2 s

t > t* ! 2s

t = 2 s

t > t *

h = log2 1 / a( )
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Figure7: WT multiresolution analysis of signal using 
Franklin base atoms. 
 
All the multiresolution analyses performed clearly 
show the subdivision of the time – scale pattern in 
two well distinct parts: the first one corresponding 
to the supposed activity of sources 1) + 2), the 
second one to the activity of the sources 2)+3). 
However, differently from “traditional” analyses, 
the WT shows the time – scale structure of the two 
part is substantially the same, suggesting an 
unexpected fact that is the noise sources active 
during the first part of the sample also work during 
the second one. Furthermore, a low frequency 
(high scale) and an high frequency (low scale) 
continuous patterns are now well evident in the 
graphics associated with the early monochromatic 
stationary – continuous noise source and to its high 
frequencies harmonics. Then, the multiresolution 
WT analysis has shown the presence, in the second 
part of the studied sample, of “hidden” noise 
sources, not revealed by “traditional” analyses, on 
the contrary simply showing a different time – 
frequency structure between these two parts of 
sample. In the multiresolution analysis the effect of 
the female voice is evidenced by a little increase in 
middle scale values in the second part of the WT 
image (for  ) that, however, doesn’t 
practically alter the overall time – scale structure.  
We can note, in conclusion, that some choices of 
wavelet base atoms are more suitable than others 
with respect the particular signal considered in this 
paper. In particular we note that Gauss and 
Franklin base atoms are less sensitive than the 
Morlet and Gabor ones to the time – scale signal 
variations in the specific case studied.  
This shows, in general, that a suitable selection of 
the multiresolution base atoms is very important in 
order to ensure the representativeness of the 
analysis. 
 

4 CONCLUSION 
 
As we have seen from the above brief discussion a 
suitable choice of the parameters related to a 
multiresolution analysis based on WT allow us to 
properly analyse complex noise signals associated 
to the presence of many sources characterized by 
very different time –frequency (or equivalently 
time – scale) structures, making us able to 
distinguish the different noise events one from 
another, and deduce the relevant features of these 
noise sources. This ability can be very usefully 
exploited in forensic acoustic analysis where is 
often fundamental to identify the presence of 
different noise sources even when they are hidden 
and practically “invisible” to the traditional time – 
frequency and 1/n of octave analysis.   
However more progresses must be still achieved 
about these multiresolution techniques in order to 
make them more specific and above all more 
versatile since they are very hardware consumptive 
and now practically usable only for very short 
signals. 
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