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Abstract: Real-world data often violate the conditions assumed by classical estimation methods. One reason for
this failure may be the presence of observations with a low probability of belonging to the same distribution
as the majority of the data, known as outliers. Outliers can appear in different forms, such as casewise and
cellwise outliers. The results of classical estimation methods, particularly those based on least squares, can be
seriously affected by the presence of any type of outlier. Panel data modeling is applied in various fields, including
economics, finance, marketing, biology, environmental studies, healthcare, and more. The estimation of these
models is typically performed using classical methods. In this paper, we consider the random effects panel data
model and propose a robust method to estimate the parameters of this model. To evaluate the performance of the
proposed robust estimation method compared to the classical estimation method, we conducted a Monte Carlo
simulation study. Additionally, we illustrate the proposed methodology by applying it to estimate a model based
on a real panel data set.
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1 Introduction
Statistical models always constitute simplifications
of real-life problems. Consequently, in real data sets,
it is common to encounter elements that deviate
from the pattern followed by the majority of the data.
These elements, known as outliers, can arise for
various reasons and may present challenges for
statistical analysis. In fact, outliers can seriously
distort a statistical analysis, but they can also provide
important information and are therefore warrant
closer examination. It is important to have methods
that allow us to detect outliers that may exist within
data sets and to use robust techniques that minimize
the impact of these outliers on the overall results.

Identifying outliers is crucial in data analysis as
they can significantly affect conclusions and
interpretations. Outliers are data points markedly
different from others in a data set, because they are
highly above (or down bellow) the rest of the data
set. They can arise due to measurement errors,
unique events, or anomalies. In panel data—where
observations are collected over time from multiple
entities such as individuals, firms, or
regions—detecting outliers becomes more complex.
This complexity stems from the need to differentiate
between genuine anomalies and meaningful

variations across entities or time periods. Failure to
properly identify and handle outliers in panel data
can lead to biased estimates, misleading trends, and
inaccurate predictive models. Therefore, robust
methods tailored to panel data, such as robust
statistical measures or techniques accounting for
temporal and cross-sectional dependencies, are
essential to ensure reliable analyses and valid
conclusions.

Several robust estimation methods for Panel Data
Model (PDM) have been proposed. However, these
methods are not robust against all types of outliers.
In the last years, two distinct types of outliers have
gained attention: casewise outliers and cellwise
outliers. While robust methods against cellwise
outliers have been developed and published, they
have not yet been specifically tailored for PDM
estimation. The method proposed in this work
provides a robust approach for estimating PDM,
addressing both casewise and cellwise outliers.

In this paper the authors consider the random
effects estimator as defined in the usual
Econometrics literature [1], [2], [3] and replace the
covariance matrix by a more robust version. At the
same time, they consider a recent scheme for
identifying outliers and to control the effects of those
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outliers in the rest of the data [4]. A Monte Carlo
simulation study is performed to assess the validity
of the implemented procedure. In face of the good
results measured in terms of the Root Mean Squared
Error (RMSE), a set of real data is also used to
compare the results between the classical FGLS
estimator and the new proposal, present in this paper.

This paper is organized as follows: Section 1
provides a brief introduction. Section 2 discusses
some of the robust methods considered. In Section 3,
the focus shifts to panel data, introducing the classic
Feasible Generalized Least Squares (FGLS)
estimator, as well as the Robust Feasible
Generalized Least Squares (RFGLS) estimator
proposed in this work. Section 4 presents a
simulation study showing the strong performance of
the methodologies used. In Section 5, these
procedures are tested on a real data set, specifically
the Grunfeld data [5]. Finally, Section 6 concludes
the paper by summarizing the main findings.

2 Robust Methods
Let us consider a data set in a matrix form, in which
the rows are the cases, and the columns are the
variables. Different types of outliers may occur.
Traditionally, outlier refers to a case or a row of the
data matrix. This is called a casewise outlier. [6]
proposed the identification of a cellwise outlier.
These occur when most of the data cells in a row are
similar, but some of them are atypical.

[4] give an illustration of this phenomena which
we include in Figure 1, and show that a small
percentage of cellwise outliers can lead to many
casewise outliers.

Classical estimation methods, in particular those
based on the least squares method, may be seriously
affected with the presence of outliers. Detecting
outliers in datasets is critical, but visual inspection
becomes challenging in the context of multivariate
data. Robust fitting methods which are less sensitive
to casewise outliers and allow to detect those outliers
can be seen in [7]. Recent work, such as [8], has
focused on identifying cellwise outliers and
addressing them in the estimation and fitting
processes. Among the available proposals, we refer
to the Univariate-and-bivariate filter (UBF) [9], [10].
The univariate filter flags cellwise outliers by
comparing the standardized empirical distribution of
each marginal with a high quantile of the standard
normal distribution. The bivariate filter flags
casewise outliers by comparing the squares of the
pairwise robust Mahalanobis distances with a high
quantile of a chi-square with two d.f. distribution. A
cell is additionally flagged when the number of the
flagged pairs exceeds a large quantile of the
binomial model, considering that the number of the

flagged pairs associated with each cell
approximately follows a binomial model.

We also refer to the the cellMCD method,
proposed by [11]. This method is a cellwise robust
version of the minimum covariance determinant
(MCD) estimator of Rousseeuw [12], which is a
covariance matrix estimator that is robust against
casewise outliers.

This robust method for location and scale
estimation identifies the subset of h sample
observations that minimizes the determinant of the
sample covariance matrix, where h is an integer
greater than or equal to half the sample size n. The
location MCD estimator corresponds to the center
(mean) of that subset, and the scale MCD estimator
corresponds to matrix that defines its shape
(covariance matrix). The MDC estimates are not
much affected when samples contain fewer than n-h
outlying cases, but is not robust against cellwise
outliers. The cellMCD method overcome this flaw,
resulting of the minimization of an objective
function with good breakdown properties and
consistency.

Finally, among the robust regression methods, we
refer to the Least Trimmed Squares (LTS) estimator
[12]. This robust regression method estimates model
parameters by minimizing the sum of the h smallest
squared residuals. By doing so, it excludes the n-h
largest absolute residuals from the estimation
process, effectively tolerating n-h outliers. We
highlight these robust methods as they will be used
later in this work, when formulating the proposed
robust estimation method.

3 Panel Data
A panel data set consists in a number of observations
from a set of variables for different units (e.g.
countries, firms, regions, individuals) which are

Fig. 1: Rousseeuw and Bossche illustration [4]
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collected over several periods of time (e.g. daily,
weekly, monthly). The number of time periods is
usually small in comparison with the number of
units being studied. This type of data can reveal
more information than observing the same variables
across different units at a single point in time
(cross-sectional data) or observing the same
variables in a single unit over multiple time periods
(time series data). The statistical analysis of panel
data allows to identify and to measure effects that
would not be identified in an cross-sectional analysis
nor in a time-series analysis. Let X and y be
observable random variables, and let µ be an
unobservable random variable. The main interest is
to study the partial effects of the observable
explanatory variables xj in the dependent variable y,
which can be represented by the regression equation
(1).

yit = Xitβ + uit, i = 1, ..., N ; t = 1, ..., T, (1)

with uit = (µi + νit); the index i refers to units (like
countries, firms, regions, individuals) and the index t
refers to time periods (like day, week, month, year);
β is a vector of K parameters; yit is the observation
i of the dependent variable y in the period t; Xit is
the observation i of the K explanatory variables in
the period t; µi is the unobservable individual effect
and νit represent the remainder disturbance and are
usually called idiosyncratic errors.

According to the assumptions assumed for the
model defined in (1), we may have a fixed effects
model or a random effects model. To consider the
existence of correlation between errors over time, or
between firms (or individuals), we should consider
the Fixed Effects (FE) or the Random Effects (RE)
model. The difference upon these two models is the
existence (FE) or non existence (RE) of correlations
between the unobservable individual effect µi and
the explanatory variables.

3.1 Random Effects Model
In this work, we study the Random Effects (RE)
model. To obtain unbiased and consistent estimators,
the model requires the following assumptions [1]:

• µi are independent and identically distributed
(IID) random variables with zero mean and
variance σ2

µ;

• νit are IID random variables with zero mean and
variance σ2

ν ;

• µi and νit are independents;

• Xit are independent of the µi and νit, ∀i, t.

For individual i, the panel data model defined in
Equation (1) can be represented by the Equation (2)

yi = Xiβ + ui. (2)

In vector form, with all observations stacked, the
same equation can be rewritten using the expression
(3).

y = Xβ + u, (3)
and

Ω = E(uu′) = IN ⊗ (σ2
µJT +σ2

νIT ) = IN ⊗V, (4)

with JT being a matrix of ones of order T. In this
case, we assume homoscedasticity and serial
correlation over time only between the errors of the
same individual, i.e., the V matrix has a structure
according to (5).

V =


σ2
µ + σ2

ν σ2
µ ... σ2

µ

σ2
µ σ2

µ + σ2
ν ... σ2

µ
... ... ... ...
σ2
µ σ2

µ ... σ2
µ + σ2

ν


(TxT )

(5)

3.2 Feasible Generalized Least Squares
Estimator

For the RE model, the Feasible Generalized Least
Squares (FGLS) obtained estimator may be
expressed by (6).

β̂FGLS =
(
X′Ω̂

−1X
)−1

X′Ω̂
−1y, (6)

where Ω̂ represents an estimate of the covariance
matrix of the errors of the model. Estimating the Ω
matrix is equivalent to estimating the V matrix and
this requires the estimation of the variance
components σ2

µ and σ2
ν .

The best quadratic unbiased estimators of the
variance components in Equation (4) are given by
the following expressions:

σ̂2
ν =

∑N
i=1

∑T
t=1(uit − ūi.)

2

N(T − 1)
; (7)

σ̂2
µ =

(σ̂2
1 − σ̂2

ν)

T
; (8)

σ̂2
1 = T

∑N
i=1 ū

2
i.

N
, (9)

where Ω̂ represents an estimate of the errors of the
model covariance matrix. In this work, we replace
the sample means and variances that appear in these
expressions by robust location and scale estimates,
respectively.
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3.3 Robust FGLS Estimator
The problems mentioned above also commonly
occur in real panel data, namely, the failure to fulfill
the assumed assumptions, or the presence of atypical
observations. Classical estimation methods of PDM,
in particular FGLS, may be seriously affected with
the presence of outliers. It’s important to detect the
existence of outliers in panel data, and the use of
robust estimation methods in that case can make a
difference in terms of the results accuracy, as they
are less affected by the outliers behaviour.

Some robust procedures have been proposed for
PDM, like [13], [14], [15], [16], where the authors
adapted robust regression methods [7] to PDM.

The methods early proposed for PDM are robust
against casewise outliers, but not against cellwise
outliers. The new robust estimation method
proposed is robust against both types of outliers, and
constitutes a good alternative to estimate PDM when
data include casewise or cellwise outliers.

In this paper, the authors propose a RFGLS
(Robust Feasible Generalized Least Squares)
estimator, resulting from the implementation of
robust procedures in the three steps that support the
process of obtaining the FGLS estimator. This
proposal results from a refinement of the method
proposed by [17], and it is a consequence of the
application of more robust methods in the RFGLS
computation process. In this case, the authors have
selected the median per variable when replacing the
identified outliers in the UBF, and have used the
cellMCD method, which is robust to cellwise and
casewise outliers.

The RFGLS algorithm can be summarized in the
following subsection:

3.3.1 Robust Feasible Generalized Least
Squares Algorithm

1. Estimate the Pooled Model parameters using
Least Trimmed Squares (LTS) estimator and
compute the residuals.

2. Estimate the errors covariance matrix using the
robust covariance matrix estimator cellMCD
applied to the residuals obtained in the previous
step.

3. Filter the original data matrix using the
univariate-and-bivariate filter (UBF).

4. Obtain the cleaned data matrix, replacing each
identified outlier by UBF in the former step by
the median of the corresponding variable.

5. Estimate the model parameters by FGLS from
the cleaned data matrix obtained at the fourth
step and using the robust estimated covariances
matrix obtained at the second step.

4 Simulation Study
For the evaluation of the performance of the
proposed robust estimator, RFGLS, the authors run a
simulation study. A data set was randomly
generated, and next suffered a contamination
process; a number of outliers was included in the
simulated samples; this was done in two distinct
ways and considering different percentages of
contamination. In the simulation settings the authors
followed the papers [13], [14] and [18].

All the calculations were carried out with the R
project [19]. The authors used the packages plm,
specific for analysing panel data, and the robustbase,
GSE and cellWise for some of the robust methods
implemented and cellwise outlier detection.

4.1 Settings
The explanatory variables values were generated
from a multivariate (dimension three) standard
normal. For the parameter vector, the values were
generated with β = (−1, 0, 1) and µi, according
with a N(0, 1) distribution. The errors values were
generated according with a N(0, 1) distribution. The
dependent variables values were obtained according
to the RE model, defined e.g. in [1].

The panel data sets were generated with 240
observations, resulting from two scenarios for the
dimensions: (N = 8 and T = 30), and (N = 12 and
T = 20).

4.2 Contamination
In the sample generation process, three different
values of percentages of contamination were
considered to insert into the samples: 0%, 5%, and
10%. The contamination process was completely
random over all observations of the panel data, and it
was introduced including outliers in two different
ways as follows:

1. the contamination is led only on y (to originate
vertical outliers), by adding to some of the y
initially generated, a term generated according
with N(50, 1);

2. the contamination is led on y and x (to originate
bad leverage points), by replacing the
explanatory variables values, corresponding to
the observations already contaminated in y, by
points coming from a k-variate N(10, I)
distribution, with k = 3.

A total ofM = 100 replications for each of the 10
sampling schemes was conducted, resulting in a total
of 20 scenarios and 200 runs.
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Table 1. RMSE for FGLS and RFGLS, T = 30,N =
8 and contamination 0%, 5% and 10%

Contamination FGLS RFGLS
0% 0.15 0.25

5% in y 1.26 0.23
5% in y and x 2.72 0.22

10% in y 1.73 0.26
10% in y and x 2.82 0.21

4.3 Estimation and Performance Assessment
In each run, we estimate the β coefficient of the
model using both methods, i.e., the FGLS and the
RFGLS estimators. The performance of the two
approaches was evaluated based on the Root Mean
Squared Error (RMSE) criteria, which was
computed RMSE according to the expression (10):

RMSE =

√√√√ 1

M

M∑
j=1

∣∣∣∣∣∣β̂j − β
∣∣∣∣∣∣2, (10)

for β referred in the simulation settings (4.1) and the
β estimates were obtained for each of the M = 100
replicates, with each estimator, corresponding to a
different sampling scheme. The estimator with the
best performance corresponds to the estimator that
presents the lowest RMSE value, as this value
provides a measure of the estimation error.

4.4 Results
Table 1 contains the RMSE values of the FGLS and
the RFGLS estimators in case T = 30, N = 8 and
contamination levels 0%, 5% and 10%.

The RMSE values are always smaller for the
RFGLS estimator, except in the case where there is
no data contamination. This means that the robust
estimator generates more accurate estimates in all
the contamination situations considered. We also
notice that in presence of bad leverage points,
corresponding to the case of contamination on y and
x, the results obtained by FGLS are especially
affected in a negative way, while the RFGLS
continues to present particularly good results. The
only scenario for which the RFGLS has not a higher
performance in the case with cleaned samples,
without outliers.

In Table 2, RMSE values of FGLS and RFGLS
estimators are presented for T = 20, N = 12 and
contamination levels 0%, 5% and 10%:

The results given in Table 2 were obtained for
data panels with T = 20 and N = 12, and are very
similar to those in Table 2, for panels with T = 8
and N = 30. It is also possible to observe in this
case, that the produced estimates with RFGLS are

Table 2. RMSE for FGLS and RFGLS, T = 20,N =
12 and contamination 0%, 5% and 10%

Contamination FGLS RFGLS
0% 0.16 0.25

5% in y 1.11 0.23
5% in y and x 2.71 0.21

10% in y 1.67 0.25
10% in y and x 2.81 0.19

more precise, with lower RMSE than those obtained
with FGLS, for all contamination cases considered.

We can summarize and conclude that for all the
considered scenarios of contamination, the RMSE
values for the robust estimator are always lower than
the ones obtained for the classical estimator. So the
robust estimator results improve, as expected, in the
presence of outliers. Without contamination, the
efficiency of the robust estimator is not as good as
the one of the classic estimator.

5 Grunfeld Data
The Grunfeld data is a well known panel data set
among econometrics researchers. It is a panel data
containing annual observations for US companies,
with a total of 220 observations (11 companies ×20
years), and corresponds to the values of the
following variables (in dollars with reference to the
year 1947):

• invest, corresponding to Gross investment;

• value, corresponding to Market value;

• capital, corresponding to Stock of plant and
equipment;

• firm, taking the values General Motors, US
Steel, General Electric, Chrysler, Atlantic
Refining, IBM, Union Oil, Westinghouse,
Goodyear, Diamond Match, American Steel;

• year, taking the values from 1935 to 1954.

To describe the dependence relationship of the
investment in relation to the value and capital,
Grunfeld formulated the model equation (11) [20]:

investit = β0+β1valueit+β2capitalit+uit. (11)

An exploratory graphical analysis shows the
existence of atypical observations of various types.
We can see casewise outliers, corresponding to
companies whose values are very different from
those of the rest of the firms; and also cellwise
outliers, related to years in which the values of some
companies are very different from those of the
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remaining companies. Therefore, it seems that is
more appropriate to estimate the model parameters
using a robust estimator than using the classical
estimators. Figure 2 shows the atypical behaviour of
two of the firms, with values high above the rest of
the companies.

Figure 3 shows how misleading would be a fit for
the Value variable in this case, without accounting for
this differentiation.

To illustrate the application of both considered
estimators, FGLS and RFGLS, the authors estimate
the model parameters using both methods. To
compare the performance between the two methods,
the prediction performance was used, defined by the
root mean squared error of prediction (RMSEP)
calculated over the set of uncontaminated cases,
defined in (12). This evaluation criterion was
proposed in [21] to compare the relative
performance of different approaches.

Since the RMSEP corresponds to a mean
prediction error, the method with the best
performance is the one with the lowest RMSEP
value, since on average, it presents predictions
closest to the observed values. The clean residuals
were also produced, obtained for uncontaminated
cases, and a descriptive analysis of these waste
values was carried out. The lower the residual

Fig. 2:    Grunfeld data: two firms are very different
from the rest

Fig. 3:     Grunfeld data shows the need of fit
readjustments

Table 3. Estimates and RMSEP for FGLS and
RFGLS with Grunfeld data.

FGLS RFGLS
value 0.11 0.07
capital 0.31 0.11
RMSEP 63.01 18.89

Table 4. Descriptive statistics obtained for clean
residuals.

FGLS RFGLS
mean 48.09 13.16
median 34.58 7.73
SD 40.85 14.96

MAD 37.69 7.76

values, the better the method will perform.

RMSEP =

√
1

Nc

∑
i∈I

(ŷi − yi)
2, (12)

where I contains the indices of clean, uncontaminated
cases andNc is the number of uncontaminated cases.

Table 3 contains the parameter estimates obtained
with both methods and the RMSEP values computed
for both methods.

The root mean squared error of prediction
(RMSEP) values in Table 3 shows that the robust
method performs better. The RMSEP value obtained
with the robust method RFGLS is smaller than the
obtained with the classical method FGLS.

Table 4 contains the values of some descriptive
statistics obtained for the set of clean residuals, that
is, calculated from the uncontaminated observations
or cases. To evaluate the residual location, the mean
and the median were computed, and to evaluate the
residual scatter, the standard deviation (SD) and the
median absolute deviation (MAD) were determined.

Table 4 shows that the values of the clean
residuals, obtained for uncontaminated cases, present
lower location (mean and median values) and lower
dispersion (SD and MAD values) for RFGLS
method than for the FGLS method. Therefore, we
may conclude that the robust method leads to more
accurate results than the classical method, as it leads
to smaller residuals, and with less variability.

The illustration with the Grunfeld data, which
contains outliers, shows that the RFGLS robust
method proposed in this paper performs better than
its classical version, FGLS. This conclusion is
supported by the fact that the robust method presents
a lower error value and is associated with smaller
residuals. This indicates that the robust method
allows us to obtain more accurate predictions, taking
into account these performance evaluation criteria.
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6 Final Comments
Panel data is a suitable representation for the most
diverse areas of knowledge. Real panel data often
contain outliers and violate the assumptions usually
assumed in the Subsection (3.1), e.g., non normal
distributed, different variances or means. Robust
methods are therefore recommended for this type of
data analysis. The authors propose a robust estimator
for panel data model in the present paper, which
results from a robustification of the FGLS estimator,
called RFGLS. This process involved the application
of robust methods to cellwise and casewise outliers
at various stages of the FGLS calculation process. In
particular, the LTS robust regression method, the
cellMCD covariance matrix robust estimation
method, and the univariate and bivariate UBV filter
were applied to detect and flag outliers. The RFGLS
estimator performed well with contaminated
simulated data. The authors carried out a simulation
study to compare the performance of the FGLS
estimator with the RFGLS estimator, considering
several simulation scenarios. The proposed robust
estimator RFGLS improve regarding to FGLS as
expected in the presence of several type of outliers.
RFGLS performs better than FGLS because RFGLS
present lower RMSE than FGLS in the presence of
vertical outliers and leverage points, and for all
dimensions and percentages of contamination
considered. RFGLS produces particularly good
estimates for panels of data with bad leverage points.
The RFGLS estimator did not perform as well
without contaminated data, as expected.//

The authors have also illustrated the application
of the RFGLS estimator when estimating parameters
for a model fitted to a real data set, initially proposed
by Grunfeld to model investment. Also for the
Grunfeld data, which is a panel data that contains
outliers, the robust estimator performs better than the
classical estimator. The robust estimated model is
less affected by the identified outliers then the
classical estimated model. The authors plan to
continue the present work performing more
simulations with different scenarios. This will allow
a better evaluation of the robustness properties of the
proposed estimator. Different contamination in order
to generate samples with casewise outliers, cellwise
outliers and outliers concentrated in certain groups
(concentrated contamination) are other cases that
would also be interesting to analyse. Furthermore,
we suspect that including a robust regression method
in the last step of the RFGLS algorithm may further
improve the robustness properties of the robust
estimator.
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