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Abstract: - In this paper, we are presenting a numerical investigation of Duffing’s nonlinear system. TheDuffing’s
system is described by a nonlinear second-order differential equation, which shares he same structure like the
damped and driven oscillator systems. The numerical integration of the system is done using Python scientific
libraries such as NumPy and SciPy. The proposed technique is utilized to construct the bifurcation diagram and
the Poincaré section and to analyze the behavior of the system by changing one parameter. This proposed method
is characterized by versatility and the extrapolation of these numerical techniques and algorithms in the study of
other nonlinear dynamical systems.
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1 Introduction
A wide range of complex phenomena in fields like
physics, engineering, chemistry, and economics have
similar behavior with nonlinear circuits. For this
reason, there is an increased interest in the study
of those systems, [1]. Unlike in linear circuits,
where the principle of linearity and superposition
is omnipresent, nonlinear circuits exhibit a rich
spectrum of behaviors, including periodicity,
quasi-periodicity, and chaotic regimes, [2].

One of the examples of nonlinear circuits is the
Duffing oscillator, invented by the German engineer
Georg Duffing in 1918. This oscillator was one of
the first that brought the nonlinear systems, which
until then were only described by equations, to
the laboratory, making this oscillator to serve as a
fundamental model for exploring nonlinear dynamics,
[3]. The Duffing oscillator is described by a
second-order differential equation with a nonlinear
restoring force.

This force can take various forms, such as cubic
stiffness or a combination of linear and nonlinear
terms. This oscillator is not only theoretically
intriguing but also practically significant, as it models
phenomena ranging from mechanical systems with
nonlinear springs to electronic circuits exhibiting
nonlinear inductance, [4], [5]. In addition, we
have to forget the role of the Duffing oscillator in
advancing our understanding of nonlinear systems, as
their application in cryptography has sparked the keen
interest of the research community, [6].

Chaotic systems have raised the interest of the
research community, as this phenomenon is not only

present in electronic systems but also in optics, with
the main purpose of encoding information, [7].

In this paper, we are presenting the fundamentals
of the Duffing’s oscillator, by outlining the general
characteristics and mathematical foundations,
followed by a detailed examination of its operations.
We simulate its behavior solving numerical the
system trying to elucidate the significance of the
Duffing oscillator in both theoretical research and
practical applications.

In addition we focus on the numerical simulation
of the Duffing system using Python’s NumPy
and SciPy libraries. Python has rapidly become
one of the leading tools for studying dynamical
systems due to its accessibility, flexibility, and
the extensive ecosystem of scientific libraries, [8].
The bifurcation diagram and Poincaré section are
presented to illustrate the system’s dynamics under
varying parameters.

2 Problem Formulation
The presence of chaotic behavior in nonlinear circuits
has been theoretically and experimentally proven, [9],
[10]. Apart from the well known Chua’s circuit
chaos has been appeared and  in simple circuits with a
non-linear element such as a transistor, [11]. At first,
we will formulate theoretically the Duffing’s systems,
giving the circuit and the differential equations
that govern its behavior, [12]. Figure 1 shows
the nonlinear circuit that implements the Duffing
equation. As shown in the figure, the circuit consists
of a linear resistor, a linear capacitor, and a non-linear
coil.
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Fig. 1:     The circuit that implements Duffing’s
equation

The coil has a ferromagnetic core and ignoring
the phenomenon of magnetic hysteresis, the 𝑖 − 𝜙
characteristic is approximated by the relation:

𝑖 = 𝑎1𝜙 + 𝑎3𝜙3 (1)

where 𝜙 denotes the magnetic flux and 𝑎1 and 𝑎3 are
constants. Applying Kirchhoff’s first law to a node of
the circuit we have.

𝑖𝑅 = 𝑖𝐶 + 𝑖𝐿 (2)

where:

𝑖𝑅 = ℰ cos𝜔𝑡 − 𝑣𝐿
𝑅 (3)

𝑖𝐶 = 𝐶 𝑑𝑣𝐶
𝑑𝑡 = 𝐶 𝑑𝑣𝐿

𝑑𝑡 (4)

𝑖𝐿 = 𝑎1𝜙 + 𝑎3𝜙3 and 𝑣𝐿 = 𝑑𝜙
𝑑𝑡 (5)

By substituting the equations (3), (4) and (5) into
the equation (2) we have:

ℰ cos𝜔𝑡 − 𝑣𝐿
𝑅 = 𝐶 𝑑𝑣𝐿

𝑑𝑡 + 𝑎1𝜙 + 𝑎3𝜙3 (6)

Rearranging equation (6) and taking into
consideration the equation (5)

𝑑2𝜙
𝑑𝑡2 + 1

𝑅𝐶
𝑑𝜙
𝑑𝑡 + 𝑎1

𝐶 𝜙 + 𝑎3
𝐶 𝜙3 = ℰ

𝐶𝑅 cos𝜔𝑡 (7)

By substituting, 𝜖 = 1
𝑅𝐶 , 𝑎 = 𝑎1

𝐶 , 𝑏 = 𝑎3
𝐶 and

𝐵 = ℰ
𝐶𝑅 we have the Duffing’s equation in its general

form:

̈𝑥 + 𝜖 ̇𝑥 + 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑥3 = 𝐵 cos(𝜔𝑡) (8)

Duffing’s equation is a second-order differential
equation that includes a nonlinear term and is excited
by a harmonic signal. It describes in general, the

motion of a damped oscillator with a more complex
restoring force than the simple harmonic oscillator.

Depending on parameters 𝑎 and 𝑏, the Duffing’s
oscillator displays diverse dynamical behavior. For
the case where 𝑎 = 0 and 𝑏 = 1, which was
studied by Y.Ueda, the system is governed by a
single-well potential; hence, under the influence of an
external periodic driving force, a complex behavior
could be observed. In his work, Ueda highlighted
the sensitivity of the system to initial conditions,
leading to the discovery of chaotic attractors, [13]. In
contrast, in the case when 𝑎 = 1 and 𝑏 = 1, which
was studied by Parlitz and Lauterborn, the system
appears to have a double-well potential, [14]. In this
case, the system has a more complex dynamic since
the interplay between these parameters influences the
system’s ability to jump between potential wells and
the chaotic transition is more probable.

3 Simulation
We aim to solve Duffing’s equation numerically using
Python, using powerful libraries such as NumPy,
SciPy for the simulation, and Matplotlib for the
visualization of the results. The simulation of the
systemwill be carried out using the constants 𝜖 = 0.3,
𝑎 = −1, 𝑏 = 1, 𝐵 = 0.37, and 𝜔 = 1.2. We
selected initial conditions with 𝑥 = 0 and ̇𝑥 = 0 and
numerically solved the differential equation using the
‘odeint‘ function, which is part of the SciPy library.
The time for the simulation is defined from the value
𝑡𝑖 = 0 to 𝑡𝑓 = 360, choosing 1000 points in
this interval. This was made possible by using the
linspace() function provided in the NumPy library.
The phase diagram of the system, where ̇𝑥 versus 𝑥 is
presented, is constructed from the simulation results
for the compared values and is shown in Figure 2.

Fig. 2:    Phase space for Duffing’s oscilator with
parameters 𝜖 = 0.3, 𝑎 = −1, 𝑏 = 1, 𝐵 = 0.37
and 𝜔 = 1.2
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The system, as illustrated in Figure 2, exhibits
periodic behavior under the given parameters. This
diagram is created once the system has reached a
steady state. In our case, this is judged to have
been achieved after the first 500 samples of the data
obtained from solving the system. Next, wewill focus
on the chaotic transition of the circuit by varying the
amplitude Β of the signal provided by the source.

Fig. 3:     Phase space for Duffing’s oscilator with
parameters 𝜖 = 0.3, 𝑎 = −1, 𝑏 = 1, 𝐵 = 0.4 and
𝜔 = 1.2

By changing the amplitude to 𝐵 = 0.4, the
system’s behavior changes dramatically. The system
transitions from periodic operation to chaos, as shown
in Figure 3. In this operating state we consider the
system to have an infinite period. The plot of 𝑥 versus
time presents a strongly stochastic picture. This
image is not shown here for brevity. A bifurcation
diagram provides a representation of the system’s
behavior for multiple amplitude values. In this
approach, we select a large number of samples -
specifically, 𝑁 = 40.000 -across a range of signal
width values from 𝐵 = 0.25 to 𝐵 = 0.5. For
each amplitude value of 𝐵, starting from the initial
conditions 𝑥 = −1 and ̇𝑥 = 1, we simulate the
system over a time equal to the period of the external
signal. The final state value of the system is retained
and used as the initial value for the next simulation.
For each value of the voltage amplitude, we perform
200 repetitions of the procedure described above.

If the system is periodic, it will return to the
same state after a period has elapsed. This will be
represented on the diagram as a point corresponding
to the specific amplitude value. This can be seen in
Figure 4 for values of 𝐵 < 0.265. As the value of
𝐵 increases, the system exhibits frequency doubling
and transitions to chaotic behavior. This transition is
most clearly illustrated in the Figure 5 for values of
𝐵 > 0.25 and 𝐵 < 0.31.

Fig. 4:     Bifurcation diagram for Duffing’s oscilator
with parameters 𝜖 = 0.3, 𝑎 = −1, 𝑏 = 1, 𝜔 = 1.2
and 0.25 ≤ 𝐵 ≤ 0.5

Fig. 5:       Bifurcation diagram for Duffing’s oscilator
with parameters 𝜖 = 0.3, 𝑎 = −1, 𝑏 = 1, 𝜔 = 1.2
and 0.25 ≤ 𝐵 ≤ 0.31

Figure 4 illustrates the bifurcation diagram when
varying the parameter 𝐵. As 𝐵 increases, the system
transitions from a periodic behaviour to a chaotic
regime.In Figure 3, the transition of the system from
its periodic operation to the chaotic state is clearly
seen through the mechanisms of frequency doubling.
The diagram includes a normal distribution as a
reference, indicating the density of points through
which the oscillator passes. This suggests that the
chaotic behavior observed is not purely random but
is governed by underlying structure.

In Figure 6 a Poincaré section is presented, this
is a powerful tool used in the analysis of dynamical
systems, particularly in studying complex, chaotic
behavior. By taking a cross-section of the phase
space, the Poincaré section captures the intersections
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of a trajectory with a lower-dimensional plane,
allowing for a simplified yet insightful view of the
system’s dynamics.

The construction of the Poincare section is done
using the same technique described for the bifurcation
diagram. The simulation is repeated over a time
interval corresponding to the period of the external
signal from the source, 𝑇 = 2𝜋

𝜔 . This process is
conducted for 𝑁 = 107 iterations. This number
could be big enough, but in our computer (a laptop
with an i7 processor), the simulation time was around
one hour. This can be done with fewer iterations, but
the quality of the image will not be as clear as in our
result. After a period has passed, we keep the ( ̇𝑥 and
𝑥) values, which we use as initial values for the next
simulation. This is repeated as many times as we have
mentioned before. Once the data is collected, Figure
6, is constructed to visualize the results.

Fig. 6:     Poincare section for Duffing’s oscilator
with parameters 𝜖 = 0.3, 𝑎 = −1, 𝑏 = 1, 𝐵 = 0.4
and 𝜔 = 1.2

The detailed structure of a Poincaré section can
be examined by increasing the size of a small part
of the figure. By focusing on a small region of the
strange attractor and further magnifying this area, one
can observe that the intricate features at smaller scales
closely resemble those observed at larger scales,
revealing a fine, self-similar structure within the
attractor. The recurrence of similar features across
different regions of a figure and at varying scales is a
hallmark of fractals. An attractor is considered fractal
if it exhibits self-similarity, meaning that as the scale
decreases, the pattern of points retains its structure.

4 Conclusion
Above, we have presented how we can construct
the bifurcation diagram and the Poincare diagram
for the case of Duffing’s oscilator using Python.

The above diagrams make it possible to present the
complex dynamics that occur in nonlinear dynamic
systems when they exhibit chaotic behavior. The
proposed methodology can be used not only in the
study of other non-dynamical systems but also in the
context of a didactic approach in the framework of
postgraduate studies in nonlinear systems or in the
context of courses such as computational physics.

The transition of the system from periodic to
chaotic mode can be used in the future in secure
communication systems through the technique of
adding the chaotic signal to the information signal at
the receiver and removing it at the transmitter. Doing
so would allow cryptography at the physical level,
thus making such a future system more secure against
attacks based on the use of decryption algorithms.

Declaration of Generative AI and AI-assisted
technologies in the writing process

During the preparation of this work the authors used
Grammarly for language editing. After using this
service, the authors reviewed and edited the content
as needed and take full responsibility for the content
of the publication

References:
[1] M. Belova, V. Denysenko, S. Kartashova,

V. Kotlyar, and S. Mikhailenko, “Analysis of
the structure of chaotic solutions of differential
equations,” WSEAS Transactions on Circuits
and Systems, vol. 22, pp. 75–85, 2023.

[2] S. H. Strogatz, Nonlinear dynamics and chaos:
with applications to physics, biology, chemistry,
and engineering. CRC press, 2018.

[3] I. Kovacic and M. J. Brennan, The Duffing
equation: nonlinear oscillators and their
behaviour. John Wiley & Sons, 2011.

[4] M. Zhang and J. J. Zhang, The Duffing
Oscillator, pp. 157–184. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.

[5] Q.-M. Chen, M. Fischer, Y. Nojiri, M. Renger,
E. Xie, M. Partanen, S. Pogorzalek, K. G.
Fedorov, A. Marx, F. Deppe, et al.,
“Quantum behavior of the duffing oscillator
at the dissipative phase transition,” Nature
Communications, vol. 14, no. 1, p. 2896, 2023.

[6] L. Kocarev, “Chaos-based cryptography: a
brief overview,” IEEE Circuits and Systems
Magazine, vol. 1, no. 3, pp. 6–21, 2001.

[7] H. B. Al Husseini, “Chaos synchronization of
delayed quantum dot light emitting diodes,”

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.33 Joan Jani

E-ISSN: 2224-2678 304 Volume 23, 2024



WSEAS Transactions on Electronics, vol. 11,
pp. 112–119, 2020.

[8] J. Jani, “Simulation of chaotic operation of
a damped driven pendulum using python,”
WSEAS Transactions on Advances in
Engineering Education, vol. 20, pp. 1–6,
2023.

[9] L. O. Chua, The Genesis of Chua’s Circuit,
vol. 39. EECS Department, University of
California, Berkeley, 1992.

[10] I. Stouboulos, I. Kyprianidis, and
M. Papadopoulou, “Chaotic dynamics and
coexisting attractors in a modified chua’s
circuit.,” WSEAS Transactions on Circuits and
Systems, vol. 5, no. 11, pp. 1640–1646, 2006.

[11] M. Hanias, I. Giannis, and G. Tombras,
“Chaotic operation by a single transistor circuit
in the reverse active region,” Chaos: An
Interdisciplinary Journal of Nonlinear Science,
vol. 20, no. 1, 2010.

[12] N. A. Kudryashov, “The generalized duffing
oscillator,” Communications in Nonlinear
Science and Numerical Simulation, vol. 93,
p. 105526, 2021.

[13] Y. Ueda, “Randomly transitional phenomena
in the system governed by duffing’s equation,”

Journal of Statistical Physics, vol. 20,
pp. 181–196, 1979.

[14] U. Parlitz andW. Lauterborn, “Superstructure in
the bifurcation set of the duffing equation ̈𝑥 +
𝑑 ̇𝑥 + 𝑥 + 𝑥3 = 𝑓 cos(𝜔𝑡),” Physics Letters A,
vol. 107, no. 8, pp. 351–355, 1985.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflicts of Interest
The authors have no conflicts of interest to
declare that are relevant to the content of this
article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2024.23.33 Joan Jani

E-ISSN: 2224-2678 305 Volume 23, 2024

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

	Introduction
	Problem Formulation
	Simulation
	Conclusion



