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Abstract: - This article proposes a linear integer optimization model incorporating fuzzy parameters to find the 

optimal solution for a dynamic supplier selection problem with uncertain demand. The uncertain demand value 

is represented using a fuzzy variable. A fuzzy expected value-based linear optimization solver is used to 

address the optimization problem, to minimize the total cost under fuzzy demand values. Several computational 

experiments were conducted to evaluate and analyze the model. The results show that the proposed model 

effectively identifies the optimal suppliers for each product. Additionally, the model determines the optimal 

purchase volumes for each product type from the selected suppliers, leading to the minimal total expected cost. 
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1  Introduction 
A manufacturing company commonly faces supplier 

selection problems that involve determining the 

optimal or best suppliers from several possible 

alternatives. The optimal decision must satisfy the 

demand constraints and provide the best quality of 

purchased products or services to the manufacturer, 

[1]. In large business organizations, the supplier 

selection process often involves multiple products, 

multiple periods, and multiple suppliers, while 

maintaining quality and lead time. This is known as 

a Dynamic Supplier Selection Problem (DSSP) [2], 

[3] whereas a simpler problem is referred to as the 

Traditional Supplier Selection Problem (TSSP). The 

main difference between them is that the DSSP 

approach is more realistic than the TSSP due to its 

consideration of parameter dynamics over time, [4], 

[5]. 

The impact of transportation costs on DSSP is 

very significant, [6]. When a buyer splits orders 

among multiple suppliers, the delivery quantities 

from the suppliers to the buyer result in higher 

transportation costs. However, many researchers 

addressing supplier selection problems do not 

consider transportation costs in their proposed 

models. They usually include transportation costs 

within the product price. Therefore, including 

transportation costs when determining order 

quantities in DSSP is important to improve 

efficiency in the supply chain process, [7]. 

The demand value at the present time in a 

supplier selection problem is commonly known with 

certainty, but future demand is typically uncertain. 

The optimal decision on which supplier to select and 

the quantities to order from each supplier under 

uncertain demand is clearly more challenging. For 

certain demands, most researchers have used 

mathematical models to minimize total cost, [8], [9]. 

There are several other approaches to solving 

supplier selection problems, such as risk-optimizing 

approaches, integrated supplier selection, inventory 

management, and risk management, [10], [11], [12].  

For supplier selection problems considering 

uncertain parameters, several research papers have 

been developed, most of which were solved using 

stochastic programming, [13], [14], [15], [16]. 
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In uncertainty theory, an uncertain value can be 

approached in two ways: through frequency 

generated by samples (historical data or trials) and 

belief degrees evaluated by the .decision-maker, 

[17]. The frequency approach uses probability 

theory and is applicable when samples are available, 

as they can be used to determine the probability 

distribution. Unfortunately, in many cases, no 

samples are available to estimate the probability 

distribution. In such cases, belief degree theory can 

be used to estimate the uncertain value of a variable. 

The simplest form of the belief degree approach is 

by using a fuzzy variable. An uncertain value can be 

represented by a membership function defined by 

the decision maker. If an optimization problem 

contains at least one fuzzy variable (or parameter), 

then fuzzy programming can be used to solve it.  
Fuzzy programming offers a powerful method 

for handling optimization problems with fuzzy 

variables. All forms of optimization, such as linear 

programming, quadratic programming, and general 

nonlinear programming, can be handled when they 

involve fuzzy parameters, [18], [19]. A general 

model of fuzzy linear optimization can be 

interpreted as a linear optimization problem in 

which some or all of the parameters are fuzzy 

variables or fuzzy numbers. There are several 

special cases: (1) the objective is crisp, (2) some or 

all constraints are crisp, (3) some or all constraints 

are soft constraints or a combination of these. In this 

paper, type (3), where the objective function is crisp 

and some constraints are soft constraints, will be 

used to select the optimal supplier when the demand 

value is fuzzy. To solve this, we can use the fuzzy 

expected value-based approach, [17]. 

In this article, we propose a mathematical model 

for dynamic supplier selection with a full truckload 

transport scheme under uncertain demand values in 

a linear fuzzy optimization framework. The fuzzy 

expected value-based approach is used to solve the 

minimization problem. Numerical experiments will 

be presented to demonstrate how the problem is 

solved using the proposed approach. 

 

 

2  Materials and Methods 
The developed model considers the multi-product, 

multi-supplier, and multi-period cases. We 

introduce the notations used in the model below: 

indices: 

P : Set of product sets 

S : Set of suppliers 

T : Set of time periods 

 

Decision variables: 

tspX  : Amount (unit) of product p purchased 

from supplier s in time period t 

tsZ  : The binary number that represents 

whether the supplier s is charged for 

order cost at period t, it will be 1 if yes 

or 0 if not  

sW  : Binary number representing whether 

supplier s is chosen as a new supplier 

(1) or not (0) 

tsS  : The number of truck that delivers 

product from supplier s in period t 

tpi  : Inventory level of product p in time 

period t 

tpi  : Shortage level of product p in time 

period t 

 

Parameters: 

spUP  : Unit price of product p at supplier s in 

each time period 

sTC  : FTL cost  from supplier s to the buyer 

in each time period 

sNC  : Cost occurs when a new supplier is 

selected to be contracted. 

tpSOC

 

: Cost of shortage unit product p in time 

period t 

C  : Full truck load maximum capacity 

tpD  : Demand value (unit) of product p in 

period t 

tspSC

 

: Maximum capacity of supplier s to 

supply  product p in period t 

spl  : Late on delivery rate (in percentage) of 

ordered product from suppliers of 

product p 

spde  : Percentage of rejected product p from 

supplier s  
l
pP  : Penalty cost for late delivery of 

product p in each time period 
d
pP  : Penalty cost for defective product p  

sO  : Cost that occurred while ordering 

products from supplier s  

ph  : Cost for storing a unit product p per 

one time period  

tpMS

 

: Maximum warehouse capacity to store 

product p in time period t  

tp  : Service level value of supplier in time 

period t for product p. The value (1- ) 

means the proportion of unsatisfied 

demand. 

 

Figure 1 shows the solution procedure 

implemented in this study. In the first 3 steps, the 

DM has a significant role especially since he has to 
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define the membership function value for each 

fuzzy parameter. This defining process is using 

intuition from the DM based on his experience.  

Let tpD  be the fuzzy variable of the demand 

value of product p in review period t. The solution 

must satisfy the demand value, meaning the total 

purchased product must be greater than or equal to 

the demand. However, if the demand is uncertain 

and represented by a fuzzy variable, the purchase 

quantity must be greater than the fuzzy variable of 

the demand. This condition can be referred to as a 

not-well-defined problem since the feasible set does 

not produce a crisp value. As a result, the optimal 

strategy cannot be determined as a crisp value. To 

address this, the authors approach the crisp value of 

the fuzzy demand by using the fuzzy expected 

value. In fact, there are several formulas to calculate 

the expected value of a fuzzy number. Our proposed 

approach used the expectation value defined in [20] 

where in any time period t and for each product p, 

the expectation of tpD  is given by: 

    
0

0tp tp tpE D Cr D r dr Cr D r dr



             (1) 

 

provided that at least one result of these two integral 

terms is finite where  Cr   is denoting the 

credibility value. 

 
Fig. 1: The solution procedure  

The formula can be used to calculate the 

expectation of any fuzzy number according to its 

membership function. For a special case where the 

discrete fuzzy number/variable   having the 

membership function given by:  
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with x1, x2, …, xm distinct and 
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for 1,2, , .i m  For a trapezoidal fuzzy number 

 , , ,T a b c d , the expectation value is 

 .
4

a b c d
E T

  
       (5) 

 

In the supplier selection problem with fuzzy 

demand that we are discussing, the objective is to 

minimize the total procurement cost, with 

constraints to satisfy the fuzzy demand and other 

related conditions. The mathematical model is as 

follows: 
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Subject to:  

( 1) ( 1)

1 1

( 1)

1 1

, , ;
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 , , ;
(1 )

tp

tp
tp

i
E D p P t T





      
  (8) 

The Decision Maker (DM) identifies the fuzzy 

parameters appeared in the problem 

Calculating the expected value of each fuzzy 

parameter 

DM selects the membership function form 

(discrete or trapezoidal) for each fuzzy 

parameter 

 

Substituting all parameters to the mathematical 

model 

Solving the optimization and determining the 

optimal strategy 

DM defines the membership function value for 

each fuzzy parameter 
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 , ,  integer;tsp tp tpX i i                (14) 

  , 0,1 .ts sZ W              (15) 

The objective function Z represents the total 

operational cost whereas constraints (7)-(15) can be 

explained respectively as follows. The first 

constraint is used to manage the inventory and for 

demand satisfaction. The second one is the service 

level requirement whereas the third one is the full 

truck load condition. The fourth to the ninth 

constraints respectively represent the supplier 

capacity, ordering cost, storage capacity, new 

supplier indicator, integer constraint, and binary 

constraint for the decision variables. 

 

 

3  Results and Discussion 
 

3.1 Results 
In this section, we evaluate the optimization model 

(6) using data given in Table 1, Table 2, Table 3, 

Table 4, Table 5 and Table 6. We consider three 

products, four suppliers over a planning horizon of 

ten periods. Table 1 provides the unit price (𝑈𝑃𝑡𝑠𝑝) 
that is offered by each supplier. Table 2 shows the 

supplier capacity of each supplier. Table 3 presents 

parameter values related to products i.e. the values 

of storage capacities, defect penalties, late delivery 

penalties, holding costs, and shortage costs. Table 4 

provides parameter values related to suppliers that 

consist of ordering costs, contract costs and 

transportation costs. Defect rates at all supplier are 

shown in Table 5. Table 6 presents late rates at all 

suppliers. 

 

Table 1. Unit price for all time periods 

Supplier 
Products 

P1 P2 P3 

S1 40 82 61 
S2 42 83 62 

S3 41 82 62 
S4 41 81 61 

Table 2. Supplier capacity for all time periods 

Supplier 
Products 

P1 P2 P3 

S1 1200 400 750 

S2 1000 350 650 

S3 950 300 800 

S4 900 450 850 

 

Table 3. Product’s parameter value for all periods 
Parameter P1 P2 P3 

Storage capacity (unit) 1200 1000 1000 

Defect penalty ($) 1 2 1 

Late delivery penalty ($) 0.5 0.01 0.02 

Holding cost ($) 0.2 0.8 0.4 

Shortage cost ($) 1 1 2 

 

Table 4. Suppliers’ parameters in all periods 

Supplier 
Ordering cost 

Contract 

cost 

Transportation 

cost 

S1 12 45 120 

S2 10 50 120 

S3 14 45 120 

S4 12 40 120 

 

Table 5. Defect rates in all time periods 
Supplier P1 P2 P3 

S1 0.04 0.02 0.03 

S2 0.04 0.04 0.00 

S3 0.04 0.00 0.05 

S4 0.03 0.02 0.05 

 

Table 6. Late rates in all periods 
Supplier P1 P2 P3 

S1 0.02 0.01 0.03 

S2 0.00 0.04 0.05 

S3 0.02 0.00 0.00 

S4 0.04 0.03 0.02 

 

Example 1 (Discrete membership function). 
Suppose a manufacturer faces a supplier selection 

problem involving three products: P1, P2, and P3, 

and four suppliers: S1, S2, S3, and S4, where the 

demand value for all products is uncertain. Assume 

that the decision-maker deals with uncertainty in 

demand values, which can be represented by fuzzy 

variables, with the membership functions being 

discrete and defined by: 

 

1,4, 1,2,3

0.25 if 480;0.40 if 490;

0.70 if 510;1.00 if 530;

0.90 if 550;0.88 if 570;

0.75 if 590;0.60 if 610;

0.50 if 630;0.45 if 650;

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 


  


 


 

, 
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2,5, 1,2,3

0.25 if 130;0.40 if 140;

0.70 if 150;1.00 if 160;

0.90 if 170;0.88 if 180;

0.75 if 190;0.60 if 200;

0.50 if 210;0.45 if 220;

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 


  


 


 

, 

3, 1,2,3

0.25 if 370;0.40 if 395;

0.70 if 410;1.00 if 430;

0.90 if 450;0.88 if 460;

0.75 if 465;0.60 if 475;

0.50 if 480;0.45 if 490;

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 


  


 


 

, 

6,9, 1,2,3

0.22 if 430;0.58 if 440;

0.65 if 460;0.75 if 480;

1.00 if 500;0.99 if 520;

0.62 if 540;0.50 if 560;

0.35 if 580;0.25 if 600;

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 


  


 


 

 

7,10, 1,2,3

0.25 if 80;0.54 if 90;

0.60 if 100;0.72 if 110;

0.85 if 120;0.92 if 130;

1.00 if 140;0.85 if 150;

0.75 if 160;0.40 if 170;

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 

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

 


 

,  

8, 1,23

0.10 if 320;0.54 if 345;

0.72 if 370;0.75 if 380;

1.00 if 400;0.90 if 410;

0.80 if 415;0.65 if 425;

0.52 if 430;0.45 if 440.

t p

tp tp

tp tp

tp tpD

tp tp

tp tp

D D

D D

D D

D D

D D


 

  


 


  


 


 

. 

 

We solved (6) for 10 time periods in LINGO® 

17.0 with a daily used personal computer with the 

Operating System Windows 8, RAM 4 GB, and 

Processor AMD A6 2.7 GHz. The solution or the 

optimal decision obtained by the calculation is 

shown in Figure 2 (Appendix). It describes the 

optimal solution, which specifies the amount of each 

product that the manufacturer should purchase from 

each corresponding supplier to achieve the 

minimum expected total cost. For example, in 

period 1, P1 is supplied with 423 units by Supplier 

1, 70 units by Supplier 3, and 71 units by Supplier 4. 

For P2, the orders in period 1 are split as 51 units to 

Supplier 1, 4 units to Supplier 2, and 121 units to 

Supplier 3. Orders for P3 are fulfilled with 126 units 

from Supplier 1, 326 units from Supplier 2, and 8 

units from Supplier 3. The total cost for this solution 

is $ 613,468. 

 

Example 2 (Trapezoidal membership function). 

For this example, let tpD  be the fuzzy demand value 

with a trapezoidal membership function illustrated 

by Figure 3 (Appendix) where the values of 

, , ,tp tp tp tpa b c d  are given in Table 7. By evaluating 

the optimization problem  (6)  over 10 time periods, 

where the demand is represented by a trapezoidal 

membership function shown in Figure 3 

(Appendix), we derive the optimal strategy 

illustrated in Figure 3 (Appendix). The optimal 

strategy consists of the unit volumes of all products 

that the manufacturer should order from each 

supplier in each time period (1, 2, …, 10) to achieve 

the minimum expected total cost. From Figure 4 

(Appendix), we can see that in time period 1, 273 

units of product P1 and 1 unit of product P2 should 

be purchased from Supplier 1, 180 units of P3 must 

be purchased from Supplier 2, and 1 unit of P1 and 

76 units of P2 must be purchased from Supplier 4. 

The optimal strategies for each subsequent time 

period (2, 3, …, 10) can be obtained from Figure 4 

(Appendix). The expected total cost for all time 

periods is 259,288. 

 

3.2  Discussion 
From the two examples, we can draw several 

interpretations. In the first example, the decision 

maker needs to specify certain discrete demand 

values where the membership values are positive, 

while other discrete demand values have 

membership values of zero. In the second example, 

the decision maker must determine the membership 

values of the demand, which are assumed to follow 

a line segment in the corresponding piecewise linear 

trapezoidal function. The first example, which uses 

a discrete membership function, is easier to apply 

since the decision maker only needs to determine 

the demand and its membership values. In contrast, 

the second example requires the decision maker to 

specify the lower bound with a membership value of 

0, the mid-lower bound and mid-upper bound with 

membership values of 1, and the upper bound with a 

membership value of 0 in the trapezoidal function. 

This means that the membership values for demand 

between these points are not decided by the decision 

maker, as they will follow the trapezoidal function 

shown in Figure 3 (Appendix). Consequently, this 

approach may not fully represent the real conditions 

of the problem. 
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Table 7. Trapezoidal membership functions of tpD   

Period Product 

Trapezoidal fuzzy 

membership function for 

tpD  i.e. 

 , , ,
tp

tp tp tp tpD
a b c d   

Expectation 

Value 

tpE D 
   

tpa
 

tpb
 

tpc
 

tpd
 

1 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

2 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

3 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

4 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

5 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

6 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

7 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

8 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

9 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

10 

P1 100 200 250 350 225 

P2 40 60 70 120 72.5 

P3 50 150 200 280 170 

 

 

4 Conclusion 
A dynamic supplier selection problem with a full 

truckload transport scheme and fuzzy demand was 

considered. A fuzzy expected value-based approach 

for fuzzy optimization was formulated and 

successfully used to determine the optimal decisions 

and calculate the optimal product volumes that the 

manufacturer should purchase from the selected 

suppliers for all time periods. The solution 

procedure involves the following steps: first, the 

decision maker (DM) identifies the fuzzy 

parameters; second, the DM defines the membership 

function values for each fuzzy parameter; third, the 

expectation for all fuzzy parameters is calculated; 

fourth, these values are substituted into the 

formulated model; and finally, the corresponding 

linear programming problem is solved using 

LINGO. Two numerical examples were considered. 

For all given problems, the proposed approach 

successfully obtained the optimal decisions, i.e., the 

optimal product volumes for all time periods from 

each supplier were determined with minimal 

expected total cost. The decision maker can then use 

and apply these optimal decisions to the 

manufacturing system. 
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APPENDIX 

 

 
Fig. 2: Optimal product volume for time periods 1 to 10 

 

 

 
Fig. 3: Trapezoidal membership function  , , ,
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Fig. 4: Optimal product volume for Example 2 
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