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1 Introduction (Some Definitions and 

Notations)  
The central limit theorem establishes that a sum of 

numbers of the independent and identically 

distributed random variables, which variances are 

finite, will approach a normal distribution as the 

number of variables will grow. This statement has 

many different variations with slightly different 

conditions on random variables, colloquially 

speaking, the central limit theorem maintains that 

the properties of the normalized sums have a 

tendency to normalize [1, 3, 25, 26]. From a 

mathematical perspective, this theorem highlights 

the impotence of Gaussian (or normal) distributions, 

from a physical viewpoint, the gaussian states play a 

central role in the theory of Bose gases and the 

formalism of the theory of optical coherency. The 

central limit theorem warrants the Gaussian theory a 

prominent place in the quantum information theory 

of continuous variables [29-35].         

The general form of the Gaussian 

probability density function is 

 
1 1

exp
22

2
x m

u x
 

  
      

, where m  is 

its mean, mode, and median,   is a standard 

deviation. Thus, the Gaussian states are completely 

defined by their mean-field and covariance matrix. 

Let 
a  be a vector in the phase space with the 

symmetric bilinear form abg , the Wigner function 

for the bosonic Gaussian states is   

 
1

det exp
2
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W g  



 
  
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Now, to clarify our considerations, let us 

introduce some notations and definitions. We will 

assume that a set of  n  identical particles is 

described by a quantum state vector   in a 

reflexive Banach space B . The joint state of  n  

particles can be determined by the classical tensor 

product ,..., n 1
, where i  is a state vector 

for the i -th particle.    

Definition 1. A linear operator 

:A  B B  on a reflexive Banach space is said 

to be adjoint to the linear operator :A B B   if  

, ,y Ax A y x    holds for all xB  and all 

y B . 

Definition 2. A linear operator :A B B  

on a reflexive Banach space is said to be strictly 

Hermitian if the following equality 

, ,A y Ax y x     holds for all xB  and all 

y B . 

The permutation 
nS   is defined by 

strictly Hermitian operator P  according to the 

following formula  

   
... ... .n n

P P   
       

1 1
 (1) 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.15 Mykola Yaremenko

E-ISSN: 2224-2678 160 Volume 22, 2023



This permutation guarantees the invariance of the 

observable physics of the identical particle with the 

same internal attributes.      

The span  ,..., nspan u u1
 of a set of 

vectors ,..., nu u1
  is the set of all linear 

combinations of these vectors  

 

 

,...,

... : ,...,

n

n n n

span u u

u u K   



   

1

1 1 1

,         (2) 

where K  is a field over which the vector space is 

considered.  

Assuming that the particles are identical, 

postulating the invariance under the permutation 

gives us that the state vector is either fully 

symmetric (Bosons) or fully antisymmetric 

(Fermions) relative to these permutations, and a 

single particle is symmetric. So, the natural 

condition to demand is   
   n n

P                                          

(3) 

for Bosons or 
   n n

P                                       (4) 

for Fermions.  
The first quantization is a description of a n -

particles system. We consider the Boson case. The 

Banach space 
 n

sB  that describes n -Bosons system 

is a subspace of the Banach space n
B , which 

consists of all linear combinations of vectors such 

that 
   n n

P    , and can be written as  

   
... ...

n

n n
S

 


   


    1 1
,     (5) 

so  
 

 ... :

n

s

n iclos span   



     1

B

B
, (6) 

where closure is understood in the topology 

generated by the norm of the Banach space. 

Let us denote n -particles Boson Banach 

system by 
 n

sB , the direct sum of such systems is  

       
....s s s    

0 1 2
B B B B .                          

(7) 

The component 
 
s

0
B  describes the vacuum state 

with the single state 0 . 

Pure separable states of Bosons (Fermions) 

can be described by the following formula  
     

...    
0 1 2

,                           (8) 

where  
   i i

s B  are vectors from i -th Banach 

space. Now, to define the state   , the formula 

(8) must be completed by the normalization 

requirement     

1  .                                (9) 

Creation and annihilation operators will be 

denoted as 
†â  and â , the operator 

†â  creates and  

â  deletes particles. The creation operator 
†â  can be 

defined by  

    
     

†ˆ 0

...

a  

 

    

    

0

1 2

,             (10) 

correctly defined all B . The annihilation 

operator â  can be defined as the conjugation of the 

operator 
†â  with the condition  ˆ 0 0a   . 

Creation and annihilation operators are the 

generators of the algebra of observables, which 

provides a unique representation of the algebra. The 

canonical commutation relation on the Fock space is 

given by    †ˆ ˆ, |a a       , which holds 

all vectors B  and  B  in the single-particle 

Banach space B .     

A basis in the Fock space can be constructed 

as follows. Let set V  be a basis in single-particle 

Banach space B  then the basis in the Fock space 

consist of all possible Fock states, which can be 

formed by generating particles in vectors of V . 

Particles in the vacuum can be created by the 

creation operator 
†â  as       

     † † †ˆ ˆ ˆ... ... 0n na a a      1 1 2
, 

which generates a certain Fock space, the whole 

Fock space can be obtained as a direct sum of all 

such Fock spaces by definition  

    
     

ˆ 0

...

a  

 

    

    

0

1 2

,                    

(10) 

correctly defined all B . 

 

 

2 The Classical Model of Multimode 

Light and Its Generalization  
The light propagates as a wave, which is regulated 

by Maxwell equations. A vector field  ,u r t1
 is 

called a mode of the electromagnetic field. The 

Maxwell equations yield the following equations      
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 
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2

12 2
,        (11) 

 , 0u r t 1
,                                       (12) 

 
1

, 1
V

d r u r t
V


23

1
,                              (13) 

where V  is a volume containing whole considering 

physical system. 

Taking   ,u r t1
 as a first element, we can 

construct an orthogonal mode basis    ,mu r t  

with orthogonality condition 

    
1

, ,m n mn

V

d r u r t u r t
V





3 .                 (14) 

The modes   ,mu r t  fashion a basis for 

the representation of any solution to the Maxwell 

equations in the form of a series  
     , ,m m

m

E r t u r t


 ,                   (15) 

m  are the complex amplitudes, which is 

convenient to present in the form of the sum of the 

real (amplitude quadrature) and imaginary (phase 

quadrature) components    
   x p

m m mE iE   .                                (16) 

The space of all solutions to the Maxwell equations 

constitutes a mode space with the basis   ,mu r t .   

The series   ,m m

m

u r t  has finite numbers of 

summands since a vector 
mu  (we will omit 

arguments, where it is possible, notation 

independent of any representation) consists of zeros 

except for one at the m-th position.   

In Hilbert spaces, there is a unitary operator 

U , which defines the unitary transformation from 

one basis to another basis such that      

   , ,m km k

k

u r t U v r t ,                                    

(17) 

   †, ,m km k

k

v r t U u r t ,                         (18) 

the first formula can be rewritten in the form  
k

m m k

k

u U v . 

The infinite-dimensional matrix 

   , ,m km k

k

u r t U v r t  is such that 

     
1

, ,km k k

V

U d r v r t u r t
V



 
3 .        (19) 

The expansion of the electric field of the new basis 

can be written as  
     , ,k k

k

E r t v r t


 ,               (20) 

where  k km m

m

U  . Since the unitary 

transformation U  is arbitrary, the mode basis can 

be chosen in accordance with the optical process, 

for instance, spatial or frequency Hermite-Gauss 

modes.     

 

 

3 Quantum Representation of 

Multimode Light 
Let  †ˆma  be a set of creation operators and U be a 

unitary operator with matrix 
k

mU   so a new set of 

operators  †ˆmb  can be written as   

† †ˆ ˆk

m m k

k

b U a                       (21) 

or in the form 

ˆˆ k

k m k

k

a U b .                          (22) 

Since U is a unitary operator, we have  

†ˆ ˆ,m k mkb b   
 

,                                (23) 

and a positive electric field has the following 

representation  
       ˆˆ , ,k m k

k

E r t f b u r t



1

,                   (24) 

where ˆmb  is the one-photon annihilation operator in 

the mode  ,ku r t , such that  

      k

m k m

k

f U
2 2 21 1

.                    (25) 

Since mode 
ku  associated with a creation 

operator 
†ˆ
ka , the new set of modes relative to the 

plane wave basis is  

 

 1 k

m k m k

km

u U u
f

 
1

1
.                       (26) 

Let us assume that a mode basis is established 

then the general quantum light state    can be 

written as  

... ...... ... : ... : ...
n

n

k k n n

k k

C k u k u

 

     1

1

1 1

, 

(27) 
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where 

†ˆ 0

:
!

nk

k

n k

k

n n

n

U a

k u
k

 
 
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
. 

Intrinsic properties of the state of the 

multimode light are those properties that are 

invariant relatively to the choice of the mode basis. 

The intrinsic properties are:  

1. Structural properties, which are solely 

determined by the class of the quantum 

system such as composition, set of the 

observable, the action (Hamiltonian) of 

the system.      

2. Conditional properties are solely 

determined by the preparation of the 

system. For instance, let the particle 

  possess a spin 
1

2
, then, we can 

prepare the state with spin projection to 

z  - axis equal to 
2

, from these 

assumptions arises no contradictions 

since there is the value of 
z .     

3. Classical properties.  

  Let   be a mixed state and 
n  a minimal 

span on n  modes ,...,1 nu u .  The coherency matrix 

  1

mk
  is  

   †ˆ ˆ,
1

m k
mk

a a  ,            (28) 

and elements of  
  1

mk
  for m n  and k n  

equal to zero, so that matrix 
  1

mk
  composed of a 

square n n  non-zero diagonal matrix. The number 

n  of modes relates to the intrinsic properties of the 

quantum system and coincides with the rank of the 

matrix of coherency. The given state coincides with 

a vacuum for all k n  and 
†ˆ ˆ, 0k ka a   for k n . 

Let 
  

mk


1
 be a coherency matrix 

corresponding to the annihilation operators ˆ
kb  of 

the arbitrary mode basis  kv , so that 

   †ˆ ˆ,m k
mk

b b 
1

. Since the matrix 
  

mk


1
 is 

Hermitian there is a unitary operator U  that 

transforms 
  

mk


1
 into diagonal form 

    † ,..., ,0,0,....nU U Diag k k 
1

1         (29) 

and the transformation of the creation operators in 

the vector form 
† †ˆĉ Ub . The matrix 

   †U U
1

 

can be presented as 
    †

† T T † T

,..., ,0,0,....

ˆ ˆ ˆ ˆ, , .

nU U Diag k k

Ub b U c c

  

 

1

1

     (30) 

So, from the well-known result of linear 

algebra that a Hermitian matrix can be transformed 

by a unitary operator to the diagonal form, we have 

obtained that by the diagonalization of the 

coherency matrix one can obtain the simplest 

representation of the given quantum state.  The 

principal eigenvalues correspond with the 

magnitude of energy of the modes.  

 

 

4 Exemplar, Gaussian States 
The electric field of light is a quantum observable 

   ˆ ,E r t


 that can be presented as   

       
ˆ ˆˆ , ,

2

1 m m
m m

m

x ip
E r t u r t

 
 ,    (31) 

where 
 1

m  are electric fields of single-photon; ˆ
mx  

and ˆ
mp  are quadrature operators, which must 

satisfy the Heisenberg inequality ˆ ˆ 1x p     and 

canonical commutation condition  ˆ ˆ, 2m k mkx p  . 

An observable  q̂ u  can be defined according to 

the formula  

 
,...,

ˆ ˆ ˆ
2 1 2

1

k k k k

k n

q u u x u p



            (32) 

for any 2nu R .  
The characteristic function   for 

quadrature  q̂ u  is defined as  

    

 
  

,....

ˆ ˆexp

ˆ ˆ
!

k
k

k

tr i q u

i
tr q u

k

   






   

 
 

0

       (33) 

for any R . The distribution of the probability 

can be defined as  

     
1

exp
2

R

p z d i z   


  .         (34) 

Let set  ,...,1 nu u  is such that  

   ˆ ˆ, 0m kq u q u     holds for all m  and ,k  the 

characteristic function   defines as  

    ˆ ˆexptr i q u     
 

       (35) 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.15 Mykola Yaremenko

E-ISSN: 2224-2678 163 Volume 22, 2023



where       ˆ ˆ ˆ,...,1 nq u q u q u  and the vector 

...
1 1 n nu u      . 

The inverse Fourier transformation  

 
 

   T1
exp

2 2

2
n

n

R

W z d i z   


      (36) 

is called the Wigner function.  

The Gaussian quantum state is the state, in 

which the Wigner function has a Gaussian form 

 

 
   

T1 1
exp

22
n

W z

z z
Det

 






 
    
 

1
,          

(37) 

where   is the covariance matrix and   is the 

displacement vector with the property     

 T ˆ ˆu tr q u      .               (38) 

The Gaussian state is invariant relative to the 

symplectic transformation  SL , which means that 

the Gaussian state remains Gaussian under 

symplectic transformation. 

The value 
1

Det 
 is called the purity P  of 

a Gaussian state. The covariance matrix transforms 

as  
TS S                              (39) 

where S SL . For a gaussian state to be pure, it is 

necessary and sufficient that its covariance matrix 

was a positive symplectic matrix so that  
TS S  , 

the symplectency of the covariance matrix 

guarantees the purity of the state. 

We assume that symplectic space is 
2nR

 equipped with the symplectic form determined by 

a nonsingular, skew-symmetric matrix in the form  

,...,

0 -1
,

1 01i n
  



 
    

 
                        (40) 

so that   is immune to the orthogonal 

transformations.  

Definition 3. The set of all completely 

positive maps from one Gaussian state to another 

Gaussian state, which preserves trace, is called a 

Gaussian channel G .        

The Gaussian channel G  maps the 

displacement vector   and covariance matrix   as 

follows  
T: NG Z Z                       (41) 

: PG Z    ,                         (42) 

where the matrix Z  is a transform and reshaping of 

the covariance matrix, the matrix 
N  is Gaussian 

noise and vector  P  is additional displacement in 

phase space. The Gaussian channel G  transforms 

as  

  

 T T

ˆ: exp

1
ˆexp

2
P N

G iq

iq Z i



    



 
    

 

               

(43) 

and the mapping of the Wigner function  

 

 
   

 

T

:

1
exp

2
.

2k

P N P

k

R N

G W z

x x

d x W Z z x
Det

 









 
    
 



2

1

1

       (44) 

The matrices Z  and 
N  must satisfy the 

following condition  
T 0N i iZ Z     ,                     (45) 

which guarantees  
T

NZ Z   will be the well-

defined covariance matrix.  

Next, tet us consider a mixed state as a 

statistical ensemble of pure states with a density 

matrix as follows   

ˆ
k k k

k

p    ,                     (46) 

where k  is a pure state and kp  is a fraction of 

the ensemble for each k . Let the variance of the 

pure state k  be  ˆ2

kq u  and  ˆ2q u  be the 

variance of the mixed state.  

The Heisenberg inequality yields the 

following estimation 

   

   

   

ˆ ˆ

ˆ ˆ

ˆ ˆ 1.

k k k

k

k i k i

k i

q u q u

p q u q u

p p q u q u


   

    

    





2 2

2 2 2

2 2

              (47) 

However, Jensen's inequality renders the estimation 

   ˆ ˆ .2 2

k k

k i

q u p q u


                            (48) 

The terms    ˆ ˆ2 2

k i k ip p q u q u    in (47) 

show that the mixed state can only saturate 

Heisenberg’s inequality when the state is pure so 

only pure Gaussian states saturate Heisenberg’s 

inequality.  Thus, the Heisenberg inequality can be 

WSEAS TRANSACTIONS on SYSTEMS 
DOI: 10.37394/23202.2023.22.15 Mykola Yaremenko

E-ISSN: 2224-2678 164 Volume 22, 2023



saturated if and only if the covariance matrix is 

symplectic. The covariance matrix is symplectic. 

 

  

5 Kahler Space 
Now, let us add in our consideration the metric 

structure of the physical space-time continuum. A 

Kahler manifold is a Riemannian manifold equipped 

with a symplectic structure and with a complex 

structure. The Kahler structure provides the 

mathematical framework for the unification of the 

description of bosonic and fermionic states with the 

Wigner function in the Gaussian form.  

Bosons and fermions can be described by a 

vector  ,x p   of 2n -dimensional phase space 

and an adjoint vector of observables v . The 

Riemannian structure is presented by the symmetric 

covariant metric tensor 
abg , its contravariant form 

abG  such that 
cb b

ac ag G  . The symplectic 

structure is given by a symplectic form 
ab  and its 

adjoint 
ab . The complex structure is presented by 

linear form on the phase space as follows 
cb b

ac ag J  . 

The essential difference between the description 

of bosonic and fermionic states is hidden in the 

geometric structure of the space of the observables. 

To describe the bosonic state, the adjoint to phase 

space is equipped with the symplectic structure 
ab  

and the phase space with its dual form ab  under 

the condition 
ac a

cb b   . In order to describe the 

fermions state, the phase space is metricized by 

positive form 
abG  and on adjoint space metric 

abg .         

For arbitrary Gaussian state  , we can 

write 

ˆ ˆ ˆ ˆ

1
.

2 2

a b a b

ab abi
G

          

  

 

The bosonic system is commutative and the 

symplectic form is defined independently from a 

specific state, the canonic commutation relations are  

ˆ ˆ,a b abi    
 

. 

The fermionic system is anti-commutative and 

the metric does not depend on the state, and the 

canonic anticommutation relations are  

 ˆ ˆ,a b abG   . 

Let us consider the classical bosonic state with 

one degree of freedom, so  ,x p  .  The creation 

and annihilation operators are  † 1

2
a x ip   

and  
1

2
a x ip  . The Gaussian state is 

defined as such that satisfies the equation  

0a   . The Bogolubov transformation is giving  

†

† † .

a a a

a a a

 

  

 

 
 

The communication relations are 
† †, , 1a a a a        , where   and   such that 

1
2 2

   . Thus, the Bogolubov transformation 

can be presented in the form  

   

   

cosh

sinh .

exp i r

exp i r

 

 




 

Assume an initial state is   and state after the 

Bogolubov transformation is denoted by  , so 

the Bogolubov transformation from  †,a a  to 

 †,a a   induce linear mapping b

aX   on the vector 

space spanned by a , such that 
b a b

aX   . From 

the invariancy of the commutation relations, for a 

symplectic   , we deduce the following condition 

 T
ab

abX X  . 

Let us denote an operator of correlation as 

 ,ab a bG       then we have 

   
b ab

ab a cd

c d
G X G X X GX T T

, which gives 

the value of the expectation of the operator 
a  in 

the state   after transformation.     

The lineal Bogolubov transformation can be 

represented by a symplectic matrix  

         

         

         

         

cos cosh cos sinh

sin sinh sin cosh

sin cosh sin sinh

cos cosh cos sinh ,

X r r

X r r

X r r

X r r

 

 

 

 

 

 

 

 

1

1

2

1

1

2

2

2

 

assuming that the initial state corresponds with 

1G  , we obtain  
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     

   

   

     

cosh 2 cos sinh 2

sin sinh

sin sinh

cosh 2 cos sinh 2 .

G r r

G r

G r

G r r

 

 

 

 

     

    

    

     

11

12

21

22

 

Next, we are going to consider the Gaussian 

state in the case of two fermions. Similar to the 

bosons, let the creation operator †

ia  creates a 

fermion in a quantum state ,i  which is described by 

i , and the annihilation operator creates the 

corresponding antiparticle. The fermionic operators 

are defined as  

 †1

2
i i ix a a   

and 

 †

2
i i i

i
p a a  . 

The anti-communication relations are 

   , ,i k ik i kx x p p   and  , 0i kx p  . The 

matrix G  in the basis  ,x p   is an identity 

matrix 1G  .  The Gaussian state   is given by 

the anti-symmetric correlation operator as  

 ,ab a bi       , 

if the state   is annihilated by 
ia ,  

ab  is 

symplectic and we have 

0

0

ab
I

I

 
   

 
. 

The pair of different Gaussian states can be 

defined as 0i ia    and 0i ia   . The 

Bogolubov transformation is a linear mapping 

 †,i ia a  into  †,i ia a  (here the parentheses 

 ,  denotes a set). The requirement for the 

preservation of the anti-commutation relation, we 

have  

   T T
b ab

ab a cd

c d
G X G X X GX  , 

where 
a a c

cX  . Then the transformation of the 

anti-symmetric correlator is  

 
ab

ab X X   T
. 

In the case of single pair, let us define the linear 

Bogolubov mapping as  

†

† † .

a a a

a a a

 

  

 

 
 

From the preserving anti-communication 

relation  †,i ia a , we obtain the following 

conditions 1
2 2

   and    †0 ia a 
2

. 

These conditions lead to the conclusion that the 

creation and annihilation operators interchange 

under Bogolubov transformation in the sense 
†a a . 

For two pairs of creation and annihilation 

operators  †,
1 1

a a  and  †,
2 2

a a  of fermions, we 

have    
†

† † ,

a a a

a a a

 

  

 

 

1 1 2

2 1 2

 

which corresponds to the Gaussian states 

0i ia    and 0i ia   . The linear Bogolubov 

transformation can be represented in the 

parametrized form as  

 

   

cos

sin .exp i

 

  




 

The mapping 
c  into 

c  can be represented by 

the symplectic matrix  

   

     

 

     

     

   

     

 

cos

sin cos

0

sin sin

sin cos

cos

sin sin

0

X

X

X

X

X

X

X

X



 

 

 



 









 



 



1

1

2

1

3

1

4

1

1

2

2

2

3

2

4

2
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 

     

   

     

     

 

     

   

0

sin sin

cos

sin cos

sin sin

0

sin cos

cos .

X

X

X

X

X

X

X

X

 



 

 

 









 

 







1

3

2

3

3

3

4

3

1

4

2

4

3

4

4

4

 

 

The anticommutation relation for the fermionic 

quantum systems is given by the formula 

 ˆ ˆ,ab a bG   , form 
abG  is the symmetric metric 

on the adjoint to phase space. This transformation 

satisfies the condition  T
ab

abG X GX   since this 

transformation continuously reaches identity 

transformation. The creation operator changes on 

annihilation operator at 
2


   and annihilation on 

creation operators so that    † †, ,a a a a 1 2 2 1
, 

when 
2


   and 0   from one Gaussian state 

  to the different Gaussian state  . 

The pure Gaussian state   (bosonic and 

fermionic) can be described by the linear complex 

structure    as  
1 ˆ
2

a a c

c ci     under the 

condition of homogeneity of the Gaussian state for 

fermions. 

Thus, the structure of the Kahler space is 

completely defined by the linear complex structure 

synchronically with the symplectic correlator  
ab  

in the case of bosonic state or by the metric 
abG  for 

the fermions, for the bosons, the metric is defined as 
ab a cb

cG    , or for fermions, the correlator is 

given by  
ab a cb

cG   . Then, we can calculate 

the covariance matrix  

   
1ˆ ˆ,
2

a b ab abG i      . 

The Fock space vacuum corresponds to the 

homogeneous Gaussian state. Assume   and  % 

are pair of Gaussian states, there is the corresponded 

Fock space vacuum representation, if and only if the 

Hilbert-Schmidt norm 
HS

    is bounded.    
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