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Abstract: The solution to the problem of circuit optimization is obtained on the basis of a combination of a genetic 
algorithm (GA) and the idea of generalized optimization, developed earlier for the deterministic case. It is shown that 
such a GA modification allows one to overcome premature convergence to local minima and to increase the 
minimization accuracy by several orders of magnitude. In this case, GA forms a set of populations determined by the 
fitness function, given in different way, depending on the strategy chosen within the framework of the idea of 
generalized optimization. The way of setting fitness functions as well as the length and structure of chromosomes, are 
determined by a control vector artificially introduced within the framework of generalized optimization. This vector 
determines the number of independent variables of the optimization problem and the method for calculating the 
fitness function. It allows you to build compound strategies that significantly increase the accuracy of the resulting 
solution. This, in turn, makes it possible to reduce the number of generations required during the operation of the GA 
and minimize the processor time for solving the problem of circuit optimization. 
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1. Introduction 

One of the major challenges in designing a large system is 
the excessive computing time required to reach the optimum 
point in the design process. This problem is important as it has 
many applications, for example, in the design of VLSI circuits. 
The design process starts with an initial approximation that is 
provided by analysis of circuit for the initial point and then the 
process is continued till adjusting of the system parameters to 
obtain the necessary performance features defined in the 
specification. The process of setting parameters is usually 
based on the optimization procedure. So, the process of design-
by-analysis can be realized instead of the difficult problem of 
synthesis of a complex system. Mathematically, this process is 
defined as the minimization of a special objective function that 
includes necessary properties of the designed circuit. It means 
that any circuit design strategy includes two main blocks: 
analysis of the mathematical model of the circuit and an 
optimization procedure that reaches the minimum point of the 
objective function. The minimum value of this function can 
ensure that the required circuit characteristics are obtained. The 
interaction of the circuit analysis block and the optimization 
procedure block forms the circuit optimization process. 
Optimization methods for systems of various natures can be 
divided into two main groups: deterministic optimization 
algorithms and stochastic search algorithms. Some of the 
weaknesses of classical deterministic optimization algorithms 
are the requirement for a good starting point in the parameter 
space, the difficulty of finding the global minimum, and a long 
execution time. To overcome these problems some special 
methods were developed. For example, a method that 
determines initial point of the optimization process by 
centering [1], geometric programming methods [2] that 

guarantee the convergence to a global minimum, but, on the 
other hand,  this require a special formulation of the design 
equations to which additional difficulties accompany. Other 
approach based on the idea of space mapping technique [3-4], 
which achieves a satisfactory solution. This technology 
successfully used for optimization of microwave systems but 
there are no experience for solution of other problems. 

Some alternative stochastic search algorithms, especially 
evolutionary computation algorithms, can solve the problem of 
finding the global minimum and have been developed in recent 
years. An analysis of various stochastic algorithms for system 
optimization allowed select some groups: simulated annealing 
method [5-7], evolutionary computing techniques that produce 
some different approaches as evolutionary algorithms [8-11] 
particle swarm optimization (PSO) method, GA, differential 
evolution, genetic programming. A PSO technique [12-15] is 
one of the evolutionary algorithms that competes with genetic 
algorithms. This method has been successfully used to solve 
electromagnetic problems and to optimize microwave systems. 

Separately, we highlight GA that is used to solve nonlinear 
programming problems both for optimizing systems of various 
nature [16-22], and, in particular, for optimizing and designing 
electronic systems [23-24]. GA has been used as an 
optimization procedure for analog circuits due to the ability to 
find a satisfactory solution. The disadvantages of these 
methods include a premature convergence to a local minimum 
and an increase in computer operation time when setting a 
sufficiently high accuracy for obtaining the minimum. To 
prevent this, we propose to use the approach underlying the 
generalized optimization method defined for the deterministic 
case of circuit optimization in [25]. In this formulation of the 
problem, an artificially introduced control vector produces 
many different optimization strategies and sets a different type 
of the objective function for each new strategy. 
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This control vector is introduced into the system of 
equations describing the optimization process of a certain 
function, determines the structure of these equations and leads 
to the emergence of many different optimization strategies that 
differ in the number of operations and CPU time. The set of 
different strategies that appear in this case depends on the 
dimension of the control vector, which, in turn, is determined 
by the number of circuit nodes. At the same time, this 
dependence is exponential, i.e. if the number of circuit nodes is 
M, then the number of different optimization strategies is 2M. 
With this approach, each strategy is determined by its objective 
function, which depends on the structure of the control vector. 
In this case, the optimization process is generalized and, in 
fact, is a dynamic controlled system with a control vector. 

A detailed analysis of various optimization strategies in the 
deterministic case showed the prospects and advantages of this 
approach when solving the problem of reducing the time spent 
on the optimization and design of electronic systems. It would 
like to find out the validity of this approach when solving 
optimization problems by stochastic methods. In this paper, the 
approach of generalized optimization is included into the 
implementation of a standard GA. This means that one of the 
most important steps is the setting of the GA fitness function, 
which now includes the control vector. 

2. GA and Generalized Optimization 

Approach 

The process of circuit optimization can be defined as the 
problem of minimization of objective function C(X), NRX   
with additional conditions. It is supposed that the minimum of 
the objective function C(X) corresponds to achievement of all 
the necessary design goals of the circuit, and the system of 
constraints is a mathematical model of the electronic circuit.  

A typical formulation of a circuit optimization problem can 
be defined mathematically as a constrained optimization 
problem for the objective function C(X). The process to 
minimize the objective function C(X) is conventionally defined 
by the following equation:  

 ,...2,1),(1  sXX ss  

where Λ is the operator of transition from iteration s to 
iteration s+1. The constraints are determined by the circuit 
equations and can be described by a system of nonlinear 
equations: 

 MjXg j ,...,2,1,0)(   

We will declare some of the variables as independent, and 
the other part as dependent, the value of which is determined 
from the constraint equations (2): X = (X ', X "), X ' ϵ RK  is a 
vector of independent variables, X " ϵ RM is a vector of 
dependent variables, K is the number of independent variables, 
М is the number of the circuit’s dependent variables, N is the 
total number of variables (N=K+M). Traditionally, resistance 
(conductivity) of resistors are defined as independent variables 
of optimization procedure (vector X  ). Other variables are 

defined as dependent variables (currents or nodal voltages). 
However, this partition is conditional, since any variable may 
be considered independent or dependent.  

To calculate the function C(X), it is required to solve a 
system of nonlinear equations (2) at each step of the 
optimization process. This approach can be named as 
traditional strategy of optimization (TSO). 

Let us accept the following statement that there is no need 
to fulfil condition (2) at each step of the optimization 
procedure, and that it is enough to fulfil it at the final point of 
the optimization process. We use the approach [25] leading to 
a generalization of the optimization process. Let’s define as 
independent all the variables included in the vector X", and 
previously declared dependent. In this case, the constraint 
equations (2) can be removed, but to fulfill all the constraints 
(2), at least at the end point of the optimization process, we 
introduce a new, generalized, objective function F(X), which 
can be defined as follows: 

 )()()( XXCXF   

where φ(X) is an additional penalty function, the equality of 
which to zero, at the end point of the optimization process, 
ensures the fulfilment of conditions (2). This function can be, 
for example, the following form: 

 ).()(
1

2 XgX
M

j

j


  

Generalizing this approach, it is possible to declare 
independent only a part of the previously dependent variables, 
for example, Z variables, where Zϵ[0, M]. In this case, Z 
equations are removed from system (2), and the formula (4) 
contains Z terms. This approach generalizes the optimization 
problem by introducing a special control vector U=(u1, u2,…, 
uM), that changes the structure of all equations and formulas of 
the optimization procedure. In this case, system (2) is 
transformed into the following: 

 MjXgu jj ,...,2,1,0)()1(   

where uj is the jth component of the control vector            
U=(u1, u2,…, uM), uj ϵ Ω, Ω={0;1}. Formulas (3) and (4) are 
transformed into the following: 

 ),()(),( UXXCUXF   

 )(1),(
1

2 XguUX
M

j

jj





  

where σ is a special adjusting parameter. 

Thus, the control vector U allows one to change both the 
structure of the basic equations of the constraints (5) and the 
form of the generalized objective function F(X,U). Zero values 
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of components of the vector U determine the TSO. In this case, 
the system (2) is solved at each step of the optimization 
procedure, and the generalized objective function F(X,U) 
coincides with the function C(X). Further, the penalty function 
φ(X,U) is equal to zero. If some components of the vector U 
are equal to 1, then the corresponding equations disappear from 
system (5), but information about them appears in the penalty 
function and in the function F(X,U). If all components of the 
vector U are equal to 1, then the optimization is determined by 
the modified traditional strategy (MTS). This means that 
system (5) disappears, and the penalty function includes 
complete information about system (5). 

It is also important to note the necessary changes in the 
optimization procedure. When using the deterministic 
approach, the optimization procedure is specified by 
differential (8) or difference (9) equations: 

 ,,...,2,1),,( NiUXf
dt

dx
i

i   

 s

s

ss HtXX 1  

where fi(X,U) or H are determined by a specific optimization 
method. A change in the components of the control vector U 
from 0 to 1 corresponds to a transformation of the 
corresponding dependent component of the vector X into an 
independent one, leading to a change in the number of 
independent variables and the number of equations both in the 
optimization procedure (8) or (9) and in the system of 
constraints (5). The control vector U defines strategies of the 
structural basis of generalized optimization. The number of 
these strategies is 2M.  

Equations (5)-(9) define a set of different strategies, each of 
which is determined by the corresponding value of the control 
vector. In this case, as was shown in [26], there are 
opportunities for a significant (by several orders of magnitude) 
acceleration of the optimization process due to the different 
behavior of the trajectories of different strategies and the 
combination of these strategies in the process of optimization. 

Let us consider the application of the idea of generalized 
optimization in the case of using a GA as the main 
optimization procedure. Instead of using equation (8) or (9), 
the optimization procedure was carried out on the basis of a 
GA. Let us consider the classic version of GA [27], in which 
the selection of chromosomes is carried out by a tournament 
method and two main genetic operators are used: crossover and 
mutation. Variants with one-, two-, and four-point crossover 
operators with a probability of 0.95 and mutation operators 
with a probability of 0.05 to 0.1 were analyzed. Let's define NN 
as the number of chromosomes in a population, and X is a 
special matrix with N rows and NN columns, provided that 
each column corresponds a specific value of the vector X. 

Let's define the fitness function according to the following 
generalized formula: 

    UFUP ,/1, XX   

Taking into account the concepts of generalized 
optimization, the structure of GA can be represented in Fig. 1. 
A new element of this algorithm is the control vector U, which 
provides the implementation of various GA variants with 
different objective functions (fitness functions in GA 
terminology). Thus, the fitness function also depends on the 
vector U. 

 
 

Fig. 1.  Modified GA flowchart. 
 

The presence of the control vector U is reflected in the 
corresponding blocks, since in these blocks either the fitness 
function is calculated or it is used. The presence of the control 
vector U in the blocks of the diagram ensures the 
determination and change of the structure of both the initial 
generation of chromosomes and the current generations during 
the operation of the algorithm. For this stochastic algorithm, 
we can also introduce a vector X consisting of N components, 
where each component is calculated as the arithmetic mean of 
all values of this component in the generation: 

 



NN

j

i
NN

x
1

ijx1  

where xij is the element of matrix X. 

For the analyzed examples, the length of chromosomes (L) 
in GA varied from 20 to 80 for each of the variables, and the 
number of chromosomes (NN) in the population varied from 
40 to 400 depending on the length of the chromosomes. 
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3. Results 

3.1 Example 1 

Minimize C(X) 

   3
1

2
2

2
14 xxxXC   

Subject to:  

     012 2
2

2
1  xx  

In this example, parameter M=1 because there is only one 
constraint equation (13). Define variable 1x  as independent, 

and variable 2x  as dependent, the value of which is 
determined from equation (14). Based on the generalized 
approach, equation (13) is transformed into the following 
equation: 

        0121 2
2

2
1  xxu  

where u is a control vector consisting, in this particular case, of 
one component. Consider two basic strategies: the TSO with 
control vector u = 0 and the MTS with control vector u = 1. 
Here, we analyse the results of optimization by means of a GA 
for these strategies. However, it was shown that in the case of a 
deterministic optimization process, a combination of several 
strategies can reduce both the number of steps in the 
optimization procedure and the computing time of the 
optimization process. 

Table I shows the number of generations required to 
achieve the minimum of the function C(X) with accuracy   
for the strategies TSO (U=(0)), MTS (U=(1)) and for the 
third, combined strategy determined by the control vector 
(1),(0) with one switching point Sp = 2 between strategies (1) 
and (0). That is, the first two iterations correspond to strategy 
(1) and the next ones correspond to strategy (0). 

TABLE I.  NUMBER OF  GENERATIONS G FOR STRATEGIES (0),  (1) AND 
COMBINED STRATEGY (1)(0) WITH SWITCH POINT SP FOR DIFFERENT 

PRECISION δ 

 
Precision 

δ 

Control 
vector 

(0) 

Control 
vector 

(1) 

Control 
vector 
(1)(0) 

   Sp=2 
10-1 15 45 17 

10-2 18 51 18 
10-3 21 61 20 
10-4 29 74 25 
10-5     70 83 40 
10-6   - 87 47 
10-7   - 90 49 
10-8   - 90 68 
10-9   - 102 68 
10-10   - 114 69 

 

It can be seen that when using the TSO, the number of 
generations is less than for MTS up to a certain level of 

accuracy (10-5). If the required error is reduced to 10-6 or less, 
no solution based on the traditional strategy is found. The 
MTS with control vector (1) finds a solution up to an accuracy 
of 10-10. At the same time, a combined strategy consisting of 
two, (1) and (0) with a switching point between them Sp = 2, 
also finds a solution to the problem with no errors up to an 
accuracy of 10-10 and, importantly, for a lower number of 
generations. The final result for a combined strategy clearly 
depends on the switching   point from one strategy to another. 
Table II shows the dependence of the number of generations 
on the switching point for a given error  =10-5. 

TABLE II.  NUMBER OF  GENERATIONS G FOR COMBINED STRATEGY  
(1)(0) FOR DIFFERENT SWITCHING POINT SP. 

Switch 
point Sp 2 3 4 5 6 7 8 9 10 

     G 40 39 42 49 43 53 40 72 74 

 

This shows that the switching point affects the number of 
generations required to achieve the required accuracy. The 
minimum value for this example corresponds to the switching 
point Sp = 3. Fig. 2 shows the dependence of the minimized 
function F on the number of generations G for three strategies 
corresponding to three variants of calculating the fitness 
function. 
 

 
Fig. 2. Minimized function F for strategies (0), (1) and (1)(0) on the number 

of generations G. 
 

It can be seen that the best strategy for calculating the 
fitness function is the composite strategy (1)(0), which after 
the 18th generation solves the problem in the best way 
compared to other strategies. 
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3.2 Example 2 

We need to optimize the nonlinear circuit shown in Fig. 3.  
 

 
Fig. 3.  Two-node nonlinear passive circuit. 

Consider a simple nonlinear voltage divider circuit. A 
nonlinear element has the following dependency: yn=a+b(V1-
V2)2. The admittances y1, y2, y3 are positive and compose a set 
of independent circuit parameters (K=3). The node voltages V1, 
V2 are the dependent parameters (M=2). Vector X consists of 
the following five components: (x1, x2, x3, x4, x5): x1

2 =y1, x2
2 

=y2, x3
2 =y3, x4 =V1, x5 =V2. By defining the components x1, x2, 

x3 using the above formulas, we can automatically obtain 
positive values of the conductance, which eliminates the issue 
of positive definiteness for each conductance and allows us to 
perform optimization in the full space of the values of these 
variables without any restrictions.  

The model of this circuit includes two equations 
corresponding to Kirchhoff’s laws. The objective function 
C(X) is determined by the formula C(X)=(x5-m1)2+((x4-x5)-
m2)2, where m1 and m2 are predetermined values of the divider 
voltages. This circuit is characterised by two (M=2) dependent 
parameters (x4, x5), and three (K=3) independent parameters 
(x1, x2, x3). The control vector has the next structure: 
U=(u1,u2). The structural basis of the various strategies 
includes four strategies with the following control vectors: 
(00), (01), (10), and (11). The mathematical model of the 
circuit is determined by the following equations: 

 
0))()(()1()( 2

24
2

5454
2
141  xxxxbaxxxxXg  

       (15) 
0))()(()( 2

25
2

54542  xxxxbaxxXg   
 

It is from the solution of system (15) that the values of the 
dependent variables x4, x5 can be determined and then the 
value of the objective function C(X) can be calculated. In the 
case of the transformation of the two dependent variables x4, 
x5 (or at least one of them) into independent ones, it is 
necessary to form a generalized objective function F(X,U) 
according to the following formula: 

 /))()(()(),( 2
22

2
11 XguXguXCUXF   

Consider the optimization problem for the circuit shown in 
Fig. 1. Let a = 1, b = 1, m1=0.2, and m2=0.25. For the example 
analyzed, the length L of the chromosomes varied from 20 to 
80 for each of the five variables, and the number NN of 
chromosomes in the population varied from 60 to 320. 

Variable limits are specified in a normalized form; for 
variables x1, x2, x3, they were set from 10-5 to 2.0, and for 
variables x4, x5 from 10-3 to 1.0. Matrix X has five rows (N = 5) 
and NN columns. At the same time, we introduce a vector X 
consisting of five components, each of which is calculated by 
formula (11). This vector is not directly involved in the 
calculations, but serves as an informative object for 
constructing averaged trajectories of the optimization process. 
In this case, we can follow the evolution of the mean values 
and build graphs of the trajectories of the optimization process 
based on the GA in N dimensions or different projections of 
these trajectories. The calculations for each trajectory 
continued until the required accuracy δ for the generalized 
objective function F(X,U) was achieved. For a given accuracy 
δ = 3·10-5, two projections of the four trajectories for strategies 
(00), (01), (10), and (11) are shown in Fig. 4. Strategy (00) 
corresponds to TSO, and strategy (11) corresponds to MTS. 
These dependences are obtained by averaging the stochastic 
results of the GA, in contrast to the trajectories obtained by 
direct integration of differential equations in the analytical 
approach [25]. However, they reflect the behavior of the 
optimization trajectory. All strategies start at one point S and 
end at approximately one point F, but their behavior during 
optimization process are very different. 

It is important to note that the required accuracy of 
minimising the objective function F(X,U) has a significant 
impact on the optimization process and its characteristics. 
Each of the four strategies has its own convergence accuracy. 
Table III shows the results reflecting the potential accuracy ε 
of the optimization process that each strategy can achieve and 
the number of generations required to obtain a solution with 
precision δ = 10-5. 

 

 
Fig. 4.  x2-x5 and x3-x5 projections for four optimization strategies. 

TABLE III.  POTENTIAL ACCURACY ε AND NUMBER OF GENERATIONS 

N Control 
vector 

Potential 
accuracy ε 

Number of 
generations 
for δ =10-5  

1 (00) 1.69·10-5 No solution 

2 (01) 2.04·10-5 No solutiion 

3 (10) 6.05·10-6 77 
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4 (11) 2.87·10-5 No solution 

 
Table III reveals that for an error of 1.6·10-5 or less in 

obtaining the solution, only one of the strategies, namely 
strategy (10), will allow solving the problem. In this case, 77 
generations are required. Other strategies, including the 
traditional strategy (00), cannot find solutions for any number 
of steps in the optimization procedure. The presence of 
various strategies determined by the control vector U allows 
one to formulate the problem of constructing a complex 
optimization strategy consisting of several different strategies. 
It is possible to propose the structure of a composite strategy 
consisting of two, three, or more different strategies, where 
each composite strategy is determined by the control vector U. 
In this case, it is important to obtain the optimal position of 
the switching points from one strategy to another, which 
ensures a decrease in the parameter ε, i.e., an increase in the 
accuracy of solving the optimization problem. Table IV shows 
the results of some composite strategies with optimal 
switching point Sp that can significantly improve the accuracy 
of solving the problem. This table contains data for six 
composite strategies, each of which consists of two strategies 
in Table III. As can be seen, the accuracy of the solution was 
improved by 2 to 3 orders of magnitude. The table shows that 
a decrease in the required error leads at the same time to a 
slight increase in the number of required populations. We have 
seen that only one strategy from Table III can solve the 
problem with an accuracy of 10-5. 

TABLE IV.  POTENTIAL ACCURACY ε AND NUMBER OF GENERATIONS 
FOR COMPLEX SINGLE SWITCHING POINT STRATEGIES 

N Control  
vector 

 

Sp 

 

 

  ε 

 

Number of generations G for 
various precision δ 

    10-5                                  10-6 10-7 4·10-8 

1 (01) (00) 13 3.94·10-8 31 35 44 51 

2 (10) (00) 2 3.94·10-8 32 38 44 49 

3 (11) (00) 8 3.94·10-8 31 38 44 57 

4 (00) (01) 20 10-7 34 46 62  - 

5 (00) (10) 16 6.75·10-7 35 57  -  - 

6 (00) (11) 20 7.22·10-7 44 72  -  - 

 
However, the results presented in Table IV show that 

complex strategies allow solving the problem with much more 
stringent requirements for the accuracy of the solution 
obtained. This table provides data on the potential accuracy 
achievable for various compound strategies at the optimum 
position of switching point. The results of the optimization 

process are also presented in the form of the required number 
of GA populations at which the required accuracy   is 
achieved. The composite strategies allow solving the 
optimization problem with a significantly higher accuracy than 
the original strategies of Table III. Some of these strategies can 
solve the problem up to 4·10-8 accuracy. In this case, as can be 
seen from Table IV, number of generations increases 
insignificantly with an increase in the required accuracy of 
solving the problem. This happens until the potential strategy 
error exceeds the required precision for solving the problem. 

Fig. 5 shows the dependence of the minimized function F 
on the number of generations G for three strategies 
corresponding to three variants of calculating the fitness 
function for precision δ = 10-6.  

These dependences are plotted for two scales - large (Fig. 
5(a)) and small, which corresponds to the inner region of the 
ellipse in the first figure (Fig. 5(b)). The composite strategy 
includes two strategies (01) and (00) with the switching point 
between them Sp=13. Simple strategies (00) and (11) do not 
achieve the required accuracy δ = 10-6, but the composite 
strategy solves the problem in 35 generations. 

 

 
 

(a) Large scale 
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(b) Small scale 

 
Fig. 5.  Minimized function F for strategies (00), (11) and (01)(00) on the 

number of generations G. 
 

The results of the analysis of compound strategies with two 
switching points are presented in Table V. This table shows 
similar results for compound strategies with three parts. Again, 
a significant improvement in the accuracy of the solution by 2 
to 3 orders of magnitude was obtained in comparison with the 
strategies in Table III. In this case, the possible number of 
compound strategies that allow solving the problem with high 
accuracy also increases.  

TABLE V.  POTENTIAL ACCURACY ϵ AND NUMBER OF GENERATIONS 
FOR COMPLEX STRATEGIES WITH TWO SWITCHING POINTS SP1, SP2 

N Control  
vector 

Sp1, 
Sp2 

 
 ε 
 

Number of generations for 
various precision δ 

    10-5                                  10-6 10-7 4· 
10-8 

1 
(00)(01)(00) 2, 4 3.94 

·10-8 30 38 45 57 

2 
(00)(10)(00) 4, 6 7.53 

·10-7 32 42  -  - 

3 
(00)(11)(00) 4, 11 7.53 

·10-7 33 44  -  - 

4 
(00)(11)(10) 15, 

16 
9.03 
·10-8 34 40 51  - 

5 
(01)(11)(00) 3, 6 3.94 

·10-8 30 37 41 48 

6 
(10)(11)(00) 3, 4 3.94 

·10-8 28 36 45 51 

7 
(11)(01)(00) 3, 4 3.94 

·10-8 29 34 40 45 

8 
(11)(10)(00) 4, 9 7.53 

·10-7 29 42  -  - 

9 
(11)(00)(01) 2, 11 6.84 

·10-8 37 49 65  - 

10 
(01)(10)(00) 4, 7 3.94 

·10-8 29 35 42 53 

 
The obtained result shows that the change in the structure 

of the fitness function in the course of the optimization 
algorithm allows us to bypass local minima and overcome 
premature convergence. Such an improvement in the accuracy 
of the solution leads to a significant reduction in the number 
of GA generations needed to obtain the required accuracy of 
the solution to the optimization problem. 

A. Example 3 

 Let's analyze the optimization process of the nonlinear 
circuit shown in Fig. 6. 

 
 

Fig. 6.  Single-stage amplifier. 

The conductivities y1, y2, y3 are positive and compose the 
set of non-dependent parameters of the circuit (K=3). Nodal 
voltages V1, V2, V3 for nodes 1, 2 and 3 are the dependent 
parameters (M=3). Let's define a vector of variables X ϵ R6, 
including six components (x1, x2, x3, x4, x5, x6): x1

2 =y1, x2
2 =y2, 

x3
2 =y3, x4 =V1, x5 =V2, x6 =V3. A static Ebers-Moll model of 

transistor was used [28]. 

The objective function C(X) of the optimization process 
was determined as the sum of the squares of the differences 
between the previously specified and current values of the 
nodal voltages:  

   


 
M

i

iiK VxXC
1

2
0 )(  

where V10,V20,V30 are the before-defined values of nodal 
voltages. 

The circuit model is defined by Kirchhoff's law as: 

     02
1401  xxEIXg B

 

   05
2
22  xxIXg E

 

     02
3613  xxEIXg C

   

where IB, IE, IC – are the base, emitter and collector currents, 
respectively. This system serves as a system of constraints for 
minimizing the objective function C(X). The control vector 
includes three components U=(u1,u2,u3). Using the generalized 
approach, we transform system (18) into system (19). 

     01  Xgu jj
j 

The generalized objective function is defined by the 
following formula: 

   



3

1

2 )(1)(,
j

jj XguXCUXF


 

Table VI shows the number of generations required to 
achieve the minimum of the function F with accuracy δ for 
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three strategies. The first two are TSO with control vector U = 
(0,0,0) and MTS with control vector U = (1,1,1). The third 
strategy is a combined strategy defined by the control vector 
(000)(111) with one switching point Sp = 9. That is, the first 
nine iterations correspond to the traditional strategy (000), and 
the next ones correspond to the strategy (111). 

It can be seen that when using the traditional strategy, the 
required number of generations is much larger than in the case 
of the modified traditional strategy and the combined strategy 
to achieve the same accuracy. In addition, the traditional 
strategy does not provide a good accuracy of achieving the 
minimum of the objective function. When the required error is 
10-4 or less, no solution based on the traditional strategy is 
found. At the same time, the modified strategy (111) and the 
combined strategy, consisting of two strategies (000) and 
(111), find a solution with an accuracy of 5·10-11. Note that the 
combined strategy finds a solution to the problem in a 
significantly fewer generations. 

TABLE VI.  NUMBER OF  GENERATIONS G FOR STRATEGIES (000),  (111) 
AND (000)(111) FOR DIFFERENT PRECISION δ 

 
Precision 

δ 

Control 
vector 
(000) 

Control 
vector 
(111) 

Control 
vector 

(000)(111) 
   Sp=9 

10-1 137 36 27 

10-2 20706 47 32 
10-3 348514 63 38 
10-4   - 77 42 
10-5   - 88 49 
10-6   - 102 59 
10-7   - 109 69 
10-8   - 123 76 
10-9   - 144 89 
10-10   - 172 99 

5·10-11   - 210 108 
10-11   -   -   - 

 

It can be seen that the gain in the number of iterations 
(number of generations) for the combined strategy and MTS is 
three to four orders of magnitude compared to the traditional 
one, if the traditional strategy as a whole is able to find a 
solution. The reduction in CPU time is even greater, since the 
time of one iteration of the modified strategy is much less than 
the traditional one. 

It is clear that the final result of the combined strategy 
depends on the switching point from one strategy to another. 
Table VII shows the dependence of the number of generations 
on the switching point for a given error δ =10-5. It can be seen 
that the switching point significantly affects the number of 
generations required to achieve the necessary accuracy. The 
minimum value for this combined strategy corresponds to the 
switching point Sp = 9. 

TABLE VII.  NUMBER OF  GENERATIONS G FOR COMBINED STRATEGIES 
(000)(111) FOR DIFFERENT SWITCHING POINT SP 

Control 
vector 

(000),(111) 
2 3 4 8 9 10 11 12 13 

     G 67 56 96 53 49 52 99 57 74 

 
Table VIII contains information for the three considered 

strategies, summarizing their comparative characteristics when 
achieving an accuracy of 10-2 and 10-3 for the minimized 
objective function. The numerical values of the number of 
generations, the CPU time of all strategies, as well as the 
comparative gain for the MTS and for the combined strategy, 
both in the number of generations and in the CPU time 
compared to TSO, are given. Note that TSO does not allow 
finding a solution to the problem with the required error less 
than 10-3. It can be seen that both the MTS and the combined 
strategy provide a large gain over TSO. 

With an error of 10-2, the gain in terms of the number of 
generations is more than two orders of magnitude, and in 
terms of CPU time, more than three orders of magnitude. With 
a given error of 10-3, the gain in terms of the number of 
generations is 3-4 orders of magnitude, and in terms of CPU 
time, it is almost five orders of magnitude. 

TABLE VIII.  GENERALIZED COMPARATIVE CHARACTERISTICS FOR THREE 
DIFFERENT STRATEGIES 

Precision 
   δ 

Control 
vector 

(000) (111) (000)(111) 
  Sp=9 

 
 

   10-2 

Number of 
generations 

20706 47 32 

Gain in the 
number of 
generations 

 440 647 

CPU time (s) 1178.15 0.266 0.244 

Time gain  4429 4828 
 
 

   10-3 

Number of  
generations 

348514 63 38 

Gain in the 
number of 
generations 

 5532 9171 

CPU time (s) 20518.2 0.353 0.276 

Time gain   58124 74340 
 

The information presented in this table is the main practical 
result of the work. It can be stated that the use of a generalized 
approach that changes the structure of the vector of basic 
variables X and the shape of the fitness function makes it 
possible to overcome the problem of the GA's premature 
convergence to a local minimum. In this case new strategies 
appear that can substantially increase the accuracy of solving 
the problem and significantly speed up the optimization 
procedure. 

In Fig. 7 shows the dependence of the function F to be 
minimized on the number of generations G for the three 
analyzed strategies at a given accuracy of 10-5.  
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Fig. 7.  Minimized function F for strategies (000), (111) and 
(000)(111) on the number of generations G.  

 
Traditional strategy of optimization cannot find a solution 

to the problem with the required accuracy. On the contrary, it 
is obvious that the modified traditional strategy and the 
combined strategy find a solution to the task rather quickly. 
Thus, we can conclude that new optimization strategies that 
appear within the framework of the presented generalized 
approach have good prospects for improving the optimization 
process of electronic circuits. 

4. Conclusion 

A generalized approach in terms of control theory to 
solving the problem of optimizing electronic circuits using 
deterministic optimization methods was developed earlier. The 
obtained algorithms have shown high efficiency in comparison 
with the traditional approach in terms of both accuracy and 
speed. 

This paper demonstrates the possibility of embedding the 
idea of generalized optimization into the body of stochastic 
optimization methods. It was shown that this approach can be 
built into GA, which leads to the formation of a set of different 
optimization strategies and a significant improvement in the 
main characteristics of GA. 

The studied examples demonstrate the practical 
implementation of a modified GA based on a generalized 
approach for solving the problem of optimizing electronic 
circuits. The emerging new optimization strategies make it 
possible to increase the accuracy of the problem solution by 
several orders of magnitude. It should also be emphasized that 
the real gain of these strategies in CPU time compared to the 
traditional approach is much higher than the gain in the 
number of GA populations. This is due to the fact that the 
processor time for evaluating the fitness function for new 
strategies is much less than in the traditional case. 
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