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Abstract: - Heat exchange belongs to the class of basic thermal processes which occur in a range of industrial 
technologies, particularly in the energetic, chemical, polymer and rubber industry. The process of heat 
exchange is often implemented by through-flow heat exchangers. It is apparent that for an exact theoretical 
description of dynamics of heat exchange processes it is necessary to use partial differential equations. Heat 
exchange is namely a process with distributed parameters. It is also necessary to take into account its nonlinear 
and stochastic character. In spite of these facts, most of thermal equipment is controlled by digital 
modifications of PID controllers at present. This paper deals with identification of a dynamic behaviour of a 
through-flow heat exchanger and a design of a self-tuning predictive controller for its control. The designed 
controller was verified by a real-time control of an experimental laboratory heat exchanger. 

  
Key-Words: - Model predictive control; Adaptive control; CARIMA model; ARX model; Least squares 
method; Process identification; Time-delay system; Heat exchanger 
  
1  Introduction 
A heat exchanger is a specialized device that 
exchanges heat between two streams, heating one 
and cooling the other. Heat exchangers are divided 
into three basic groups: direct contact exchangers, 
recuperators and regenerators. Recuperating 
(through-flow) heater exchangers are surely used in 
industrial practice. Their principle consists in 
following: the hot and cold fluids are separated by a 
wall and heat is transferred by conduction through 
the wall. This class includes double pipe (hairpin), 
shell and tube, and compact (plate and frame, etc.) 
exchangers. Heat exchangers are typical systems 
with time-delay (dead-time) and therefore their good 
function is dependent on the design and 
implementation of the optimal control system.  
 The problem of control time-delay processes 
can be solved by several control methods (e.g. using 
PID controllers, time-delay compensators, model 
predictive control techniques). In practice the 
implementation of the time-delay controllers on 
analog equipment was difficult. In spite of the fact 
that all these algorithms are implemented in digital 
platforms, most of the works analyze only the 
continuous case (see e.g. [1 - 6]).           
When a high performance of the control process 
is desired or the relative time-delay is very 
large, a usage of the predictive control strategy 
is one of possible approaches to control 

processes with reaching of the good control 
quality. The predictive control strategy includes 
a model of the process in the structure of the 
controller. The first time-delay compensation 
algorithm was proposed by Smith in 1957 [7]. 
This control algorithm known as the Smith 
Predictor (SP) contained a dynamic model of 
the time-delay process and it can be considered 
as the first model predictive algorithm. First 
versions of Smith Predictors were designed in 
the continuous-time modifications. Because 
most of modern controllers are implemented on 
digital platforms, the discrete versions of the 
time-delay controllers are more suitable for 
time-delay compensation in industrial practice. 
Most authors designed the digital time-delay 
compensators with fixed parameters [8-10]. 
However, the time-delay compensators are 
more sensitive to process parameter variations 
and therefore require an auto-tuning or adaptive 
(self-tuning) approach in many practical 
applications. Two adaptive modifications of the 
digital Smith Predictors are designed in [11, 12] and 
implemented into MATLAB/SIMULINK Toolbox 
[13, 15, 16].  

One of the possible approaches to control 
processes with time-delay is Model Predictive 
Control (MPC) [16-21] method. MPC is becoming 
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increasingly occurring in industrial process control 
where time-delays are component parts of the 
system. However, an accurate appropriate model of 
the process is required to ensure the benefits of 
MPC.  

The aim of the paper is design of an adaptive 
predictive controller for control of a laboratory heat 
exchanger. The second-order model with time-delay 
was used for the recursive identification and it was 
also applied in the control part of the GPC 
(Generalized Predictive Control) algorithm [16, 17].   

The paper is organized in the following way. The 
experimental laboratory heat equipment containing 
the heat exchanger is described in Section 2. The 
basic principle of MPC is presented in Section 3. 
Problems of implementation of GPC method is 
described in Section 4. The computation of the 
predictor for time-delay systems is derived in 
Section 5. The experimental identification of the 
laboratory heat exchanger is introduced in Section 6. 
The implementation of the predictive control 
algorithm for a control of the laboratory heat 
exchanger in real-time conditions is demonstrated in 
Section 7.  Section 8 concludes the paper. 
   
2 Experimental Laboratory Heat           

Equipment 
 

 
Fig. 1.Scheme of laboratory heat equipment 

 
A scheme of the laboratory heat equipment [22] 

is depicted in Fig. 1. The heat transferring fluid (e.g. 
water) is transported using a continuously 
controllable DC pump (6) into a flow heater (1) with 
max. power of 750 W. The temperature of a fluid at 
the heater output T1 is measured by a platinum 
thermometer. Warmed liquid then goes through a 15 
meters long insulated coiled pipeline (2) which 
causes the significant delay (20 – 200 s) in the 
system. The air-water heat exchanger (3) with two 

cooling fans (4, 5) represents a heat-consuming 
appliance. The speed of the first fan can be 
continuously adjusted, whereas the second one is of 
on/off type. Input and output temperatures of the 
cooler are measured again by platinum 
thermometers as T2, respective T3. The platinum 
thermometer T4 is dedicated for measurement of the 
outdoor-air temperature.  The laboratory heat 
equipment is connected to a standard PC via 
technological multifunction I/O card MF 624. This 
card is designed for the need of connecting PC 
compatible computers to real world signals. The 
card is designed for standard data acquisition, 
control applications and optimized for use with Real 
Time Toolbox for SIMULINK. The 
MATLAB/SIMULINK environment was used for 
all monitoring and control functions. 
 
3  Principle of MPC 
Model Predictive Control attracts considerable 
research attention because of its unparalleled 
advantages. These include:  
• Applicability to a broad class of systems and 

industrial applications. 
• Computational feasibility. 
• Systematic approach to obtain a closed-loop 

control and guaranteed stability. 
• Ability to handle hard constraints on the control 

as well as the system states. 
• Good tracking performance.  
• Robustness with respect to system modeling 

uncertainty as well as external disturbances.  
 

 
 

Fig. 2. Difference between the MPC and PID 
control 

 
The MPC strategy performs the optimization of a 

performance index with respect to some future 
control sequence, using predictions of the output 
signal based on a process model, coping with 
amplitude constraints on inputs, outputs and states. 
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 For a quick comparison of MPC and traditional 
control scheme, such as PID control, Fig. 2 shows 
the difference between the MPC and PID control 
schemes in which “anticipating the future” is 
desirable while a PID controller only has capacity of 
reacting to the past behaviours. The MPC algorithm 
is very similar to the control strategy used in driving 
a car [23].  

At current time k, the driver knows the desired 
reference trajectory for a finite control horizon, say 
(k, k + N), and the taking into account the car 
characteristics to decide which control actions 
(accelerator, brakes, and steering) to take in order to 
follow the desired trajectory. Only the first control 
action is adopted as the current control law, and the 
procedure is then repeated over the next time 
horizon, say (k + 1, k + 1+ N). The term “receding 
horizon” is introduced, since the horizon recedes as 
time proceeds.  

  
 

k+1 k-1 k 

y(t) 
ˆ ( )y t  

w  (t) 

past future 

u(t) 

time 

N1 

k+Nu 

Nu 
N2 
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Fig. 3. Principle of MPC 

 
 

 

 

 

 

 

 

 

Fig. 4. Block diagram of  MPC 
 

4 MPC Based on Minimization of 
Quadratic Criterion  

The designed control algorithm is based on the GPC 
method. The standard cost function used in GPC 
contains quadratic terms of control error and control 

increments on a finite horizon into the future [20, 
21] 

( ) ( ) ( ) ( )
2

1

2 2

1

ˆ 1
uNN

i N i
J y k i w k i i u k iλ

= =

= ⎡ + − + ⎤ + ⎡ Δ + − ⎤⎣ ⎦ ⎣ ⎦∑ ∑
  (1)   

where ( )ŷ k i+  is the process output of i steps in the 
future predicted on the base of information available 
upon the time k, ( )w k i+  is the sequence of the 
reference signal and ( )1u k iΔ + −  is the sequence of 
the future increments of the manipulated variable  
that have to be calculated. Parameters N1, N2 and Nu 
are called minimum, maximum and control horizon. 
The parameter ( )iλ  is a sequence which affects 
future behaviour of the controlled process.  The 
output of the model (predictor) is computed as the 
sum of the free response 0y and forced response ny    

 0ˆ n= +y y y  (2)  

The free response is that part of the prediction, 
which is determined by past values of the 
manipulated variable and past values of the systems 
output. The forced response is determined by future 
increments of the manipulated variable and is  
computed as the multiplication of the matrix G 
(Jacobian Matrix of the model) and the vector of 
future control increments Δu , which is generally a 
priori unknown  

 n = Δy G u  (3) 

where  
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⎢ ⎥
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⎢ ⎥
⎣ ⎦

G  (4) 

 
is matrix containing values of the step sequence. 

It follows from (2) and (3) that the predictor in a 
vector form is given by  

 0ˆ = Δ +y G u y  (5) 

The cost function (1) can be modified to the 
form  

 
( ) ( )

( ) ( ) uuwyuGwyuG

uuwywy

ΔΔ+−+Δ−+Δ=

=ΔΔ+−−=
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TTJ

λ

λ

00

ˆˆ
 (6)  
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Minimisation of the cost function (6) now 
becomes a direct problem of linear algebra. The 
solution in an unconstrained case can be found by 
setting partial derivative of J with respect to uΔ  as 
zero and yields  

 ( ) ( )
1

0
T TΔ λ

−
= + −u G G I G w y  (7) 

Equation (7) gives the whole trajectory of the 
future increments of the manipulated variable 
and such is an open-loop strategy. To close the loop, 
only the first element is applied to the system and 
the whole algorithm is recomputed at time k+1. If 
we denote the first row of the matrix 
( ) TT GIGG 1−+ λ  as K then the actual increment of 
the manipulated variable can be calculated as 

 ( ) ( )0u kΔ = −K w y  (8) 

5  Computation of Predictor 
An important task is computation of predictions for 
arbitrary prediction and control horizons. Dynamics 
of most of processes requires horizons of length 
where it is not possible to compute predictions in a 
simple straightforward way. Recursive expressions 
for computation of the free response and the matrix 
G in each sampling period had to be derived. There 
are several different ways of deriving the prediction 
equations for transfer function models. Some papers 
make use of Diophantine equations to form the 
prediction equations [20]. In [19] matrix methods 
are used to compute predictions. We derived a 
method for recursive computation of both the free 
response and the matrix of the dynamics [24]. 

Computation of the predictor for the time-delay 
system can be obtained by modification of the 
predictor for the corresponding system without a 
time-delay. At first we will consider the second 
order system without time-delay and then we will 
modify the computation of predictions for the time-
delay system. 
 
5.1 Second Order System without Time-  

Delay 
The deterministic model is described by the discrete 
transfer function  

 ( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

B z b z b zG z
a z a zA z

− − −
−

− −−

+
= =

+ +
 (9) 

Model (10) can be also written in the form  

 ( ) ( ) ( ) ( )1 1A z y k B z u k− −=  (10) 

A widely used model in GPC is the CARIMA 
model which can be obtained from the nominal 
model (11) by adding a disturbance model 

 ( ) ( ) ( ) ( ) ( ) ( )
1

1 1
c

C z
A z y k B z u k n k

−
− −= +

Δ
 (11) 

where nc(k) is a non-measurable random 
disturbance that is assumed to have zero mean 
value, constant covariance and 11 z−Δ = − . Inverted 
Δ  is then an integrator. The difference equation of 
the second order CARIMA model without the 
unknown term ( )knc  can be expressed as 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
1 1` 2

2 1 2

1 1 2

3 1 2

y k a y k a a y k

a y k b u k b u k

= − − + − −

+ − + Δ − + Δ −
 (12) 

It was necessary to compute three step-ahead 
predictions in straightforward way by establishing 
of lower predictions to higher predictions. The 
model order defines that computation of one step-
ahead prediction is based on three past values of the 
system output. The three step-ahead predictions are 
in detail derived in [25] and their matrix equation is     
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  (13) 

It is possible to divide computation of the 
predictions to recursion of the free response and 
recursion of the matrix of the dynamics. Based on 
the three previous predictions it is repeatedly 
computed the next row of the free response matrix 
in the following way: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

41 1 31 1 2 21 2 11

42 1 32 1 2 22 2 12

43 1 33 1 2 23 2 13

44 1 34 1 2 24 2 14

1

1

1

1

p a p a a p a p

p a p a a p a p

p a p a a p a p

p a p a a p a p

= − + − +

= − + − +

= − + − +

= − + − +

 (14) 
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The first row of the matrix is omitted in the next 
step and further prediction is computed based on the 
three last rows including the one computed in the 
previous step. This procedure is cyclically repeated. 
It is possible to compute an arbitrary number of 
rows of the matrix. 

The recursion of the dynamics matrix is similar. 
The next element of the first column is repeatedly 
computed in the same way as in the previous case 
and the remaining columns are shifted to form a 
lower triangular matrix in the way which is obvious 
from the equation (14). This procedure is performed 
repeatedly until the prediction horizon is achieved. 
If the control horizon is lower than the prediction 
horizon a number of columns in the matrix is 
reduced. Computation of the new element is 
performed as follows: 

 ( ) ( )4 1 3 1 2 2 2 11g a g a a g a g= − + − +  (15) 

5.2 Second Order System with Time- Delay 
The nominal second order model with d steps of 
time-delay is considered as 

 ( ) ( )
( )

1 1 2
1 1 2

1 21
1 21

d d
B z b z b zG z z z

a z a zA z

− − −
− − −

− −−

+
= =

+ +
 (16) 

where d is a number of time-delay steps. 
The CARIMA model for time-delay system 

without the unknown term ( )knc  takes the form 

 ( ) ( ) ( ) ( )1 1dA z y k z B z u k− − −Δ = Δ  (17) 

In order to compute the control action it is necessary 
to determine the predictions from d+1 to d+N2. The 
predictor (13) is then modified for an arbitrary 
number of time delay steps to  

 

( )
( )
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( )
( )

( )
( )

( )

( )

( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1

2 1

3 2

1 1 2 1 1 4

2 1 3 1 2 4

3 1 4 1 3 4

ˆ 3
ˆ 4 1
ˆ 5 2

0

1

d d d

d d d

d d d

d d d

d d d

d d d

p p py k y k
y k p p p y k
y k y kp p p

g
u k

g g
u k

g g

g g p

g g p

g g p

+ + +

+ + +

+ + +

+ − + − +

+ − + − +

+ − + − +

⎡ ⎤⎡ + ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥+ = −⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤

⎡ Δ ⎤⎢ ⎥+ ⎢ ⎥⎢ ⎥ Δ +⎣ ⎦⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢+
⎢
⎢⎣ ⎦

( )
( )
( )

1
2
3

u k
u k
u k

⎡Δ − ⎤
⎢ ⎥⎥ Δ −⎢ ⎥⎥ ⎢ ⎥Δ −⎣ ⎦⎥

 (18) 

Recursive computation of the matrices is 
analogical to the recursive computation described 
for the second order system without time-delay [26].  
 
6  Identification of Heat Exchanger 
The heat exchanger has been identified using off-
line methods (for simulation verification of the GPC 
algorithms and determination of the initial model 
parameter estimates) and recursive (on-line) method 
which was used in the adaptive GPC. Static and 
dynamic models of the laboratory heat exchanger 
were obtained from input (the power of a flow 
heater P [W]) and output (the temperature T2 [oC] of 
the cooler) data of the process (see Fig. 1).      
 
6.1 Off-Line Process Identification  
The number of time delay steps d is either 
approximately known on the basis of a priori 
information or it can be obtained by an off-line 
identification using the least squares method  (LSM)  
[27] 

 ( ) 1ˆ −
= T TΘ F F F y  (19) 

where 

1 2 1 2⎡ ⎤= ⎣ ⎦ΘT
n n

ˆ ˆ ˆˆ ˆ ˆ ˆa a a b b b  (20) 

is the vector of parameter model estimates of 
dimension (2n), 
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u N d u N d u N d n
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⎢− + + − + − +⎢= ⎢
⎢

− − − − − −⎢⎣
− ⎤

⎥+ ⎥
⎥
⎥
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F

(21) 

 is the data matrix of dimension (N-n-d, 2n) and  

 ( ) ( ) ( )1 2= ⎡ + + + + ⎤⎣ ⎦yT y n d y n d y N  (22) 

is the output vector of dimension (N-n-d). ). N is 
the number of samples of measured input and 
output data, n is the model order [12]. 

Consider that model (16) is the deterministic part 
of the stochastic process described by the ARX 
(regression) model 
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( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

1 2

1 2 c

y k a y k a y k

b y k d b y k d n k

= − − − − +

+ − − + − − +
 (23) 

where nc(k) is the random non-measurable 
component. The vector of parameter model 
estimates is computed by solving equation (19)  

 ( ) 1 2 1 2
ˆ ˆˆ ˆ ˆ⎡ ⎤= ⎣ ⎦ΘT k a a b b  (24) 

and is used for computation of the prediction output  

 
( ) ( ) ( )

( ) ( )
1 2

1 2

1 2

1 2

= − − − − +

− − + − −

ˆ ˆ ˆy k a y k a y k
ˆ ˆb u k d b u k d

 (25) 

The quality of identification can be considered 
according to error, i.e. the deviation 

 ( ) ( ) ( )= −ˆ ˆe k y k y k  (26) 

In this paper, the error was used for suitable choice 
of the time-delay 0dT . The LSM algorithm (19) – 
(22) is computed for several time-delays 0dT and the 
suitable time-delay is chosen according to quality 
of identification based on the prediction error (26). 

Except LSM the MATLAB function from the 
Optimization Toolbox   

 0= fminsearch(' ', ) x name _ fce x  (27) 

was also used for the off-line process identification. 
This function find minimum of an unconstrained 
multivariable function using derivative-free 
method. Algorithm “fminsearch” uses the simplex 
search method of [28]. This is a direct search 
method that does not use numerical or analytic 
gradients. 

It is obvious that the quality of time-delay 
systems identification is very dependent on the 
choice of a suitable input exciting signal ( )u k . 
Therefore the MATLAB function from the System 
Identification Toolbox   

  = idinput( , , , ) u N type band levels  (28)  

was used [29]. This MATLAB code generates input 
signals u of different kinds, which are typically 
used for identification purposes. N determines the 
number of generated input data. Type defines the 
type of input signal to be generated. This argument 
takes one of the following values: 

type = 'rgs': Gives a random, Gaussian signal. 
type = 'rbs': Gives a random, binary signal. This is 
the default. 
type = 'prbs': Gives a pseudorandom, binary signal. 

type = 'sine': Gives a signal that is a sum of 
sinusoids. 
 
6.2 Recursive Identification Algorithm 
The regression (ARX) model of the following form 

 ( ) ( ) ( ) ( )T
cy k k k n k= +Θ Φ  (29) 

is used in the identification part of the designed 
controller algorithms, where 

 ( ) [ ]1 2 1 2=ΘT k a a b b  (30) 

is the vector of model parameters and 

( ) ( ) ( ) ( ) ( )1 1 2 1 2− = ⎡− − − − − − − − ⎤⎣ ⎦ΦT k y k y k u k d u k d
  (31) 

is the regression vector. The non-measurable 
random component nc(k) is assumed to have zero 
mean value   E[nc (k)] = 0 and constant covariance 
(dispersion) R = E[nc

 2(k)]. 
     The digital adaptive GPC controller uses the 
algorithm of identification based on the Recursive 
Least Squares Method (RLSM) extended to include 
the technique of directional (adaptive) forgetting. 
Numerical stability is improved by means of the 
LD decomposition [30], [31]. This method is based 
on the idea of changing the influence of input-
output data pairs to the current estimates. The 
weights are assigned according to amount of 
information carried by the data. 

When using the adaptive principle, the model 
parameter estimates must approach the true values 
right from the start of the control. This means that 
as the self-tuning algorithm begins to operate, 
identification must be run from suitable conditions 
– the result of the possible a priori information. 
The role of suitable initial conditions in recursive 
identification is often underestimated. 

 
6.3 Off-Line Identification of Laboratory   
Heat-Exchanger  
The dynamic off-line model of the laboratory heat 
exchanger was obtained from processed input (the 
power of a flow heater P [W]) and output (the 
temperature of a T2 [oC] of the cooler) data (see 
Fig. 1). The input signal u(k) was generated using  
the  MATLAB  function  “idinput”  and  discrete 
parameter estimates of model (25) for  sampling 
period T0 = 100 s and time-delay Td = 200 s were 
computed using off-line LSM and MATLAB 
function “fminsearch”. 

The graphical variable courses of individual 
identification experiments are shown in Figs. 5 – 7. 
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Fig. 5. Identification results: input PRBS 
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Fig. 6. Identification results: input RGS 
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Fig. 7. Identification results: input SINE 

 
Six discrete models which were obtained from 

individual experiments and criterions of 
identification quality are presented in [32]. The real 
output variable T2 and the modelled output 
variables of the individual models were compared 
using criterion of identification quality 

 ( ) ( )
2

1

1 ˆ
N

y
k

S y k y k
N =

= ⎡ − ⎤⎣ ⎦∑  (32)  

where ( )ŷ k is the predicted output and the estimate 
of static gain is 

 1 2

1 2

ˆ ˆ
ˆ

ˆ ˆ1g
b bK

a a
+

=
+ +

 (33) 
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Fig. 8. General SIMULINK control scheme  

 
7 Predictive Control of Heat 

Exchanger 
On the basis of identification experiments, the 
discrete model in the form  

 ( )
1 2

1 2
1 2

0.1088 0.1964
1 0.0855 0.5157

z zG z z
z z

− −
− −

− −

+
=

− −
 (34) 

was used for simulation verification of the 
designed  predictive  algorithm.  A typical 
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Fig. 9. SIMULINK scheme of subsystem Predictive Controller 

 
SIMULINK scheme used for predictive control 
of second order systems with time-delay of two 
sample steps is depicted in Fig. 8. The general 
scheme   consists of   the  constant   block   for  
setting of the Ambient Temperature, the Controller 
and Process Model with the Time-delay block. The 
SIMULINK scheme is completed by the White 
Noise Generator and the Step Disturbance. The 
main block Predictive Controller contains 
generating of the reference signal, the recursive 
identification part and own predictive controller (see 
SIMULINK scheme – Fig. 9). Following individual 
horizons were used:  

 1 2 21 3, 30, 28uN d N N N d= + = = = − = .  

Two real-time control experiments for different 
values of the weighting factor λ were realized:    
 
1) The model parameters of (32)  

 ( ) [ ]ˆ 0 0.0855 0.5157 0.1088 0.1964T = − −Θ  

were used as the initial model parameter estimates 
for the real-time control, it comes to this, that a 
priori information was used. Therefore elements of 
the main diagonal covariance matrix were chosen 
Cii(0) = 10-3 (an assumption, that the dispersions of 
the parameter estimates are in a narrow interval). 
The courses of the control variables are well 
including of the initial control interval – see Fig. 10. 
The evolution of the model parameter estimates in 
the individual sampling steps is shown in Fig. 11.    

2) The model parameter estimates were chosen 
without a priori information   

( ) [ ]ˆ 0 0.0855 0.5157 0.1088 0.1964T = −Θ    
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Fig. 10. Process control with a priori information 
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Fig. 11. Evolution of model parameter estimates,           

Cii(0) = 10-3 
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Fig. 12. Process control without a priori information 
 
(by parameter estimate 2â was changed polarity). 
Therefore elements of the main diagonal covariance 
matrix were chosen Cii(0) = 103 (an assumption, that 
the dispersions of the parameter estimates are in a 

wide interval).  The courses of the control variables 
oscillate in the initial control interval, when the 
model parameter estimates are converged, the 
quality of the control process is very good – see Fig. 
12. The evolution of the model parameter estimates 
in the individual sampling steps is shown in Fig. 13.    
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Fig. 13. Evolution of model parameter estimates,           

Cii(0) = 103 
 

The dependence of the process variables (process 
and controller outputs) on the weighting factor λ is 
obvious from Figs. 10 and 12. The experimental 
control results were influenced by variation of the 
outdoor temperature (see e.g. the courses of the 
control variables for λ = 1 in Fig. 12, where the 
experiment was realized for low outdoor 
temperature). 

Some journal or conference papers deal with 
MPC of heat exchangers. Robust MPC of a heat 
exchanger network is designed and verified by 
simulation in [33]. The subject of paper [34] is a 
design of the MPC for a shell and tube heat 
exchanger. The designed MPC algorithm and its 
comparison with PID cotroller were realized only in 
simulation conditions. A cascade GPC for a heat 
exchanger process is proposed in [35]. The result of 
this paper is the simulation study of the effect of the 
cascaded GPC and basic GPC control algorithms on 
a model of heat exchangers. Adaptive GPC of a heat 
exchanger pilot plant is designed in [36]. The 
performance of the proposed controller is illustrated 
by a simulation example of a heat exchanger pilot 
plant.   

From the above-mentioned citations it is obvious 
that most authors deal only with verification of the 
designed MPC algorithms by simulation and no by 
real-time control of real heat exchangers. It is also 
necessary to consider different structures of the 
individual equipments. Therefore a comparison of 
real-time control-loops is very problematic.                        
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7  Conclusion 
The contribution presents the adaptive predictive 
control applied to the time-delay process – the 
laboratory heat exchanger. The predictive controller 
is based on the recursive computation of predictions 
by direct use of the CARIMA model. The 
computation of predictions was extended for time-
delay systems. A linear model with constant 
coefficients used in pure model predictive control 
can not describe the control system in all its modes. 
Therefore, an adaptive approach was applied. It 
consists of the recursive identification and the 
predictive controller. The model parameter 
estimates obtained from the identification procedure 
are used in the adaptive predictive controller. The 
GPC based on a minimisation of the quadratic 
criterion was derived and tested. For obtaining of a 
suitable model for simulation verification were used 
the experimental data measured on the laboratory 
heat exchanger system.  This laboratory equipment 
was identified by combination of various input 
signals. Two off-line identification methods were 
used.  The parameter estimates of one suitable 
discrete model from the point of view of quality 
identification were used in the initial part of the 
real-time control (the use a priori information). The 
designed adaptive GPC method was verified also in 
the case without a priori information. The real-time 
experiments confirmed that the predictive approach 
is able to cope with the given control problem. The 
real-time experiments demonstrated that the outdoor 
temperature has great influence up to dynamical 
behaviour of the laboratory heat exchanger. The 
following research will be directed to the extension 
of the designed predictive algorithm over the 
measurable disturbance.  
 
Conclusion Remark: 
This paper was included in the Special Issue on 
Multi-Models for Complex Technological Systems 
[37]. The Special Issues of the WSEAS 
Transactions on Systems [37] – [51] are very useful 
means for publication of monotematically focused 
contributions into an above mentioned journal. The 
Special Issues enable faster and easier access of 
interested academics and researches for the 
acquisition of partial necessary information in their 
research area. 
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