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Abstract: In this paper, based on the theory of calculus on time scales, by using the exponential dichotomy of
linear dynamic equations and Banach’s fixed point theorem as well as some mathematical methods, some suffi-
cient conditions are obtained for the existence and exponential stability of almost periodic solution of neutral-type
neural networks with time-varying delay in the leakage term on time scales. These results have important leading
significance in designs and applications of such neural networks. Finally, an example is given to illustrate the

feasibility and effectiveness of the results.
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1 Introduction

In the past few years, different types of neural net-
works have been extensively studied since they can be
applied in many different fields such as pattern recog-
nition, image processing, optimization problems and
so on; see, for example, [1-8] and the references there-
in. As we know, in applications, there are many neural
networks whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments. Therefore, there
is a need to establish correspondent dynamic models
on new time scales. Recently, neural networks with
periodic or almost periodic coefficients on time scales
received more researchers’ special attention; see, for
example, [9-13].

Since neurons from attenuation process is not in-
stantaneous, when neurons and neural network and
the external input disconnected, reset to the isolation
static state takes time, so, time-varying delay in the
leakage term need to be considered. In fact, time de-
lays in the leakage terms are difficult to handle, and
the leakage term has great impact on the dynamical
behavior of neural networks [14-17]. Therefore, it is
important and, in effect, necessary to study neural net-
works with time-varying delay in the leakage term,
which plays an important role in designs and applica-
tions of such neural networks.

To the best of our knowledge, there are few pa-
pers published on the existence and stability of almost
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periodic solution of neutral-type neural networks with
time-varying delays in the leakage term on time s-
cales.

Motivated by the above, in the present paper, we
shall study an almost periodic neutral-type neural net-
works with time-varying delay in the leakage term on
time scales as follows:

—5i(t)xi(t — Ti(t))

+ D aig () fi(x;(t = oz (1))
j=1

+ 3 b (g (2 (t — Big () + Li(t),
j=1

1=1,2,...,n,

ey

where ¢ € T, T is an almost periodic time scale,
0 € T; x;(t) denotes the potential (or voltage) of cell ¢
at time ¢; 0;(¢) > O represents the rate with the ith unit
will reset its potential to the resting state in isolation
when disconnected from the network and external in-
puts at time ¢; a;;(¢) and b;;(t) represent the delayed
strengths of connectivity and neutral delayed strengths
of connectivity between cell ¢ and j at time ¢, respec-
tively; f; and g; are the activation functions in system
(1); I;(t) is an external input on the ith unit at time ¢;
7;(t) > 0 denote the leakage time delay, a;;(t) > 0
and (3;;(t) > 0 correspond to the transmission delay
of the 7th unit along the axon of the jth unit at time ¢.

The initial condition associated with system (1) is
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of the form

zi(t) = @i(t), a () = 0 (1),
te|-70|r,i=12,...,n

where ¢;(-) denotes a bounded A-differentiable func-

tion defined on [—7,0], and 7 = max {sup 7 (¢),
1<i,5<n " ¢eT

sup av;(t), sup By;(t)}-
teT teT

The main purpose of this paper is to use the ex-
ponential dichotomy of linear dynamic equations on
time scales and Banach’s fixed point theorem as well
as some mathematical methods to study the existence
and global exponential stability of almost periodic so-
lution of system (1).

In this paper, for each x = (z1,29,--- ,2,)7 €
R™, when it comes to that x is continuous, delta
derivative, delta integrable, and so forth; we mean that
each element z; is continuous, delta derivative, delta
integrable, and so forth.

The organization of this paper is as follows. In
Section 2, we introduce some notations and definition-
s and state some preliminary results needed in later
sections. In Section 3, we establish some existence
and exponential stability results for system (1). In
Section 4, an example is given to illustrate that our
results are feasible and more general.

2  Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators o, p : T —
T and the graininess j : T — R™ are defined, respec-
tively, by o(t) = inf{s € T : s > t}, p(t) = sup{s €
T:s<t},pu(t)=o0(t)—t.

A point t € T is called left-dense if ¢ > inf T
and p(t) = t, left-scattered if p(t) < t, right-dense if
t < sup T and o(t) = t, and right-scattered if o(¢) >
t. If T has a left-scattered maximum 7, then T% =
T\{m}; otherwise T* = T. If T has a right-scattered
minimum m, then Ty, = T\{m}; otherwise Tj = T.

A function f : T — R is called rd-continuous
provided that it is continuous at each right-dense point
and has a left-sided limit at each point. A function p :
T — R is called regressive provided 1+ u(t)p(t) # 0
for all t € T*. The set of all regressive and rd-
continuous functions p : T — R will be denot-
ed by R = R(T,R). Denote R™ = {p € R :
1+ pu(t)p(t) > 0,Vt € T}.

If r is a regressive function, then the generalized
exponential function e, is defined by

ertts) = e { [ €y (r(r)ar )
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for all s,t € T, with the cylinder transformation

Log(1+hz)

_ —, if h # 0,
() { 2, if h = 0.
Let p,q : T — R be two regressive functions,
define
p
pBq = pq+upq, Op = —————, poq = pH(Sq).
I+ pp

Lemma 1. ([17]) Assume that p,q : T — R be two
regressive functions, then

(i) eo(t,s) = 1and e,(t,t) = 1;
(i) ep(a(t), s) = (L+ p()pt))ep(t 5);
(iii) ep(t, s) = = ecp(s, t);

)

IIV

(3
(iv) ep(t,s)ep(s,r) ep(t,r);
(V) ep(t, s)eq(t, 5) = epaq(t, 5);
(vi) (e@p<t7 S)) (9]7)( )eep(tu S)'
The basic theories of almost periodic differential
equation on time scales, see [18,19].

Definition 2. ([18]) Let A(t) be an n x n rd-
continuous matrix on T, the linear system

(1)

A)z(t), teT )

is said to admit an exponential dichotomy on T if there
exist positive constant k, o, projection P and the fun-
damental solution matrix X (t) of (2), satisfying

IX (&) PX ™ (a(s))llo < kesalt,o(s)),
s,t € T,t > o(s),
IX()(I = P)X " (a(s))llo < kecalo(s),1),
s,t € Tt <o(s),
where | - |o is a matrix norm on T.

Consider the following almost periodic system
22 (1) = A(D)z(t) + f(1), teT, 3)

where A(t) is an almost periodic matrix function, f(t)
is an almost periodic vector function.

Let A(t) = (a;(t)), ., A= (sup(ai;(t))), .
1<i,j<n,teT.

Lemma 3. ([19]) If the linear system (2) admits an ex-
ponential dichotomy, — A is an M -matrix, then system
(3) has a unique almost periodic solution x(t), and

/_ X(H)PX (o)) f(5)As

+oo
- X(#)(I — P)X~

Ha(s))f(s)As,

where X (t) is the fundamental solution matrix of (2).
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Lemma 4. Suppose that f(t) is an rd-continuous
function and p(t) is a positive rd-continuous function
satisfying —p € R™. Let

£(t) = / e p(t, () f(5)As,

then
A () = () + / [=p(t)e_p(t, o())f(5)]As.

Proof. By a direct calculation,

20 = [e-sit.0) [ t ep(O,U(S))f(S)ASr

to

= €_p(0(t), 0)€_p(0, U(t))f(t)
—p(t)ey(t,0) / e p(0,0(5)) f(3)As

= 1@+ [ pOet () (s))As.

to

This completes the proof. 0

Let AP(T) be the set of all R”-valued almost pe-
riodic functions on almost time scales T, and ¥ =
{z € CYT,R") : z,2° € AP(T)}. Set X = {p =
(01,02 ..,00)T : p; € Y} with the norm defined
by [lllx = max{[[¢llo, [¥*[lo}, where

lello = g@igm(tﬂ,l!s@ llo lrgia%jgl% )1,

then X is a Banach space.

Definition 5. The almost periodic solution r =
(x1,x2,. .., x,)T of system (1) with initial value ¢ =
(01,02, ..., n)T is said to be globally exponentially
stable, if there exist positive constants A with O\ €
R* and M > 1 such that

e — x < Meax(t 0)l|]x, ¥t € [0, +00)r,

where T = (ZT1,%2,...,%,)" is an arbitrary almost
periodic solution of system (1) with initial value ¢ =
(P1,P2,-..,&n)7, and
_ _ —\A
|z — Zl|x = max{[|x — Zo, [[(x — Z)" |0},

lllx = max{lle — @llo, (e — )*llo}-

3 Existence and exponential stability

In this section, we shall study the existence and
global exponential stability of almost periodic solu-
tion of system (1). For convenience, denote f~ =
i'gjfr f(t), ft = sup f(t), where f(t) be any bounded
i €T

function defined on T.
Firstly, we make the following assumptions:
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(Hl) (5,(75) > O,Ti(t) >0 Otz](t) > O,ﬂij(t) > 0,
a;j(t),bij(t) and I;(t) are almost periodic func-
tions on T, —9; € R, t — 7;(t),t — vi;(t), ¢t —
ﬁij(t) €TforteT,i,7=1,2,...,n

(Hz) There exist positive constants L; > 0, [; > 0
such that for: =1,2,...,n,

|fi(x) = fi(y)| < Lilx -y,

|9i(x) — gi(y)| < Lilw —y|
forall z,y € R, and f;(0) = ¢;(0) = 0.
Theorem 6. Assume that (Hy), (H2) and

n
(H3) r = max {5,1+ }<6jrl*+ > abLi+

1<i<n

Zbﬂ)

J=1
hold, then there exists exactly one almost periodic so-

t)lle —

lution of system (1) in the region Xg = {¢(

dollx < ’"R} where

+ +
R = max {I_,IJ“< —{—(Si_)},
1<i<n | § ¢ 0,

)

b0 = (/_too I (s)e_s,(t,0(s))As, . . .,
/ t In(s)e_(;n(t,o(s))As>T.

—0o0

Proof. System (1) can be written as

t
2A1) = —6;(B)ai(t) + 6:(t) / 22(5)As
t—7;(t)
Zaw () fj(;(t
—&-wa )g;(z

z:1,2,...7

— ai(t)))

(= By(0)) + Li(t),

For any ¢ € X, we consider the following system

(1) = —6(1)(t) + (1) / 62(5)As
t—7;(¢)

Zau (t)£5(¢5(t = cij(1))) )
7j=1

n

Z g] ¢A

= Bij (1)) + Li(t),

z:1,2,...,n.
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Since min {infd;(t)} > 0, it follows from

1<i<n "~ teT
Lemma 3 that system (4) has a unique almost periodic

solution which can be expressed as follows:

XO(t) = (af(8), 25 (2), ..., 25(1) "

Y n
where
t
/ .
—0o0

+Zalj

+me $)95(65(5 — Big())) + <s>]As,

2—1,2,...,

Define a mapping ® : X — X by (®¢)(¢t) =
X?(t),Y¢ € X. By the definition of || - || x, we have

[ oll x
= max{H%Ho, H¢o ”0

= max{

;0(s))As],
max sup ‘I
1<i<n ¢eT

_/_ 5i(t)1i(s)e_5i(t,0(8))A5’}

s ) s, (17

&)

s[5 [ oR

$)f(¢;(s — ij(s)))

max sup |
1<i<n e

+ o0}

1

< max{

= R. ©6)

Hence, for any ¢ € Xo = {¢|6 € X, [[¢ — éol|x <
f—i},one has

rR R
I8llx < lldollx + 16 = dollx < R+ 17— =

r 1—7r

Next, we will show that (X)) C Xj. In fact, for
any ¢ € Xy, we have

[P — dollo
t
= fi%ig%{‘ / N
x[éi(s) / 2 (u)Au
s—Ti(s)

+ZG’U f] ¢J azj( )))
+ Z bij(5)95 (65 (s — 5@‘(3)))] AS‘}
=1

¢
< max sup {/ e_s,(t,0(s)) {5?”¢AHO7}+
1<i<n ¢eT 00
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+Za I H¢”0+Zb 1, H¢A||0}As}

t
< max sup { | e <t,a<s>>(6fn»+
1<7,<n tET 0o

g Z ohLs+ Zbrjzj) follxas}
mén{ (5+T++Za L +Zb )}H(p”X

and
(@6 — ¢0)>lo
t A
=m0 [ Ao
+Zaw () £5(85(t — aij (1))
7j=1
+sz'j )g; (5 (t — Bi; (1))

/ 3it)e-s(t0(6) 65) [ RO

+Zaw fj (bj alj( )))
+ Z bij(s)g;(¢7 (s — ﬁz‘j(s)))] AS‘}
=
max sup{(mwza 1, +Zb ol

1<i<n e
o+ +
5))(‘51‘ T +Z%jLJ
i=1

t
+(5i+/ e_s,(t,o
+Zb$-lj) HmXAs}
j=1
N (544 N~ ot
1%1%}% { (1 + 5_) ((52- T, + ZlaijL]
1 ]:
+Zb;-lj) }wux.
j=1

Thus, we obtain

[®p — ol x
= max {||<I>d> — ¢ollo, || (PP — QSO)AHO}

1 0 +o+
Slrglzgcn{d 1+6}<5 +Za

IA

IN
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+§j@@)wm
j=1

rR
= rll¢llx <

which implies (®¢) € X, so the mapping P is a
self-mapping from Xy to Xj.
Finally, we prove that @ is a contraction mapping.
Taking ¢, € X, we have that

H‘Pcb—@ﬁHo

+§j@h)}¢—wu
j=1

< rllo—vllx

and

(@ — ¥) o

5t "
+ + +
< 121{2}% { <1 + (52) (51. 7"+ E 1 a;;L;
]:

+§j@h)ﬂ¢—wx
j=1
< rllé— vlx.

Noticing that < 1, it means that ® is a contrac-
tion mapping. Therefore, there exists a unique fixed
point ¢ € Xj such that $¢ = ¢. Then system (1)
has a unique almost periodic solution in the region
Xo = {o(t) € X|||¢ — ol < ££}. This completes
the proof. O

Theorem 7. Assume that (Hy) — (H3) hold, then sys-
tem (1) has a unique almost periodic solution which is
globally exponentially stable.

Proof. From Theorem 6, we see that system (1)
has at least one almost periodic solution Z(t) =
(Z1(t), Z2(t),...,Zn(t))’. Suppose that z(t) =
(w1(t), 2(t),. .., 2,(t))7T is an arbitrary solution. Set
yi(t) = z;i(t) — z;(t),i = 1,2,...,n, then it follows
from system (1) that

Y (t)
= 2 (t) — 22 (t)

3 7

= —4; (t)$z( —|— Za” f] .CL‘](t _ Oélj(t)))
7=1
Db (1) @ (¢ = Biy(0)) + L)
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+0; (1)t — 7i(t)) = Y @i (8) f5(%;(t — i (t)))

j=1
= by (g (x5 (t = By (1)) — Li(t)
j=1
= —0i()yi(t — 7i(t)) + Zam fJ zj(t — g (t)))
—fj(l“j( - az‘j(t)))]
+me — Bi;(1)))
—gj(x~ (t = Bi(t)))]
= —6i()yi(t — (1)) + Zaw [fi(y;(t — a5 (1))
+ffj( —aij(t))) — fj(ﬂ?j( — a()))]
+ Z bij (1) [g5 (5 (t — Bi () + T35 (t — Bi; (1))
—93( St = Bi(1))]
= —8i()yilt — a(t) + D> aij (D) Fy(y; (¢ — (1))
j=1
+ by (DG (3 (= Bij(t)), @)
j=1
wheret =1,2,...,nandfori,j =1,2,...,n
F(y;(t — ais(t)))
= (yJ (t— Qi (1) + Zj (t— Qi (t)))
=[5 (@;(t — (1)),
95y (t = By (1))
= 95 (5 (t = Bij (1) + 33 (t = B (1))
—g; (T3 (t — Bi; (1))
It follows from (Hj) that fori,j = 1,2,...,n
| Fy(y; (t — aij(1))] < Ljly;(t — ()],
G5 (t = Bis ()| < Ui|y5(t — Bij (1))
The initial condition of (7) is
1/11(25) = (pi(t) — (ﬁi(t), t e [—7‘, O]T,i = 1,2, Lo, n

Let H; and K; be defined by
H;(w)

=9, —w — exp(wsup pu(s)) ((5?7'1* exp(w;!)
s€T
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+Za+L exp woa” —|—Zb+l exp(wﬁj})),

7=1
1= 1, 2,...,n
and
ki(w)
=6; —w — (6; exp(wsup u(s))
seT

+0; — w) (52*71* exp(w;’)
n n
+ Z a;-;Lj exp(wa;;) + Z b;;lj exp(wﬁ{?)) )
j=1 j=1
1=1,2,...,n

By (Hs3), we can get

H;(0) zai—<5+7++za L +Zb )
>0,i=1,2,...,n

and

Ki0) = 6 — (57 +57) (6?@* > abi,

Zb+l>>0, i=1,2,...,n

Since H;, K; are continuous on [0,+oc0) and
Hi(w),H;(w) — —o0 as w — 400, so there ex-
ist w;,w! > 0 such that H;(w;) = K;(w) = 0
and H;j(w) > 0 for w € (0,w;), K;(w) > 0 for

€ (0,wf),i=1,2,...,n

Let a = min {wl,wg, e Wh, WL W, ,w;fb},
we have H;(a) > 0,K;(a) > 0,7 1,2,....n
Then, there exists a positive constant A € (0, min {a,

h th
1r<nZ1£1n{(5 }}) such that

Hl()\) > 0, Kl(/\) >0,72=1,2,...,n,

which implies that

exp(Asup pu(s))
seT

57— A
+ Z a;;Lj exp()\azg) + Z b;;lj exp()\ﬁ;;))

i=1 i=1
<1

((2Jr mtexp(\r;h)

()
and

5; exp(Asup p(s))
<1+ = seT

- A
E-ISSN: 2224-2678
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+Za+L exp(Aa; ")

+ Z bl exp(w”)) 1, )
7=1
1=1,2,...,n
Let
RN o yermsrery s
A Za L+ Zb

by (Hs) we have M > 1. Thus
exp(Asup u(s))

seT
— <
M 57 — A

+Za L exp( )\a wal exp( )\ﬁ+ )
Jj=

Rewrite (7) in the form
Y (t) + 6i(t)yi(t)
t
=50 [ ur)a0
thi(t)

+ Z%‘(t)F (y;(t
+ Z bij(t)

Multiplying the both sides of (10) by e_s, (¢, 0(s))
and integrating over [0, t|T, we can get

yi(t)
= yi(0)e—s,(t,0)

v " s | ;(S) y2(0)20
+ Zau

+sz]

2—1,2,...,

(5;'7'{" exp()\ﬁ')

— (1)) (10)

y] t_ﬁlj( )))7i:1a2a"'7n

Fj(y;(s — aij(s)))

~ Bi(s >>>}As, (an

It is easy to see that
ly@®)lx = [[¥llx < Meax(t,0)[[¢]x,Vt € [-7,0]r.
Now, we claim that

ly(®)l[x < Meca(t,0)[[¢]x,Vt € (0,+00)r. (12)
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To prove (12), we first show that for any p > 1, the < Hz/JHXe,(gil (t1,0) + cpMegy(t1,0)||v] x
following inequality holds t1
< [T es,enltno)
0

ly(t)||x < pMeaa(t,0)[[¥]|x, Vt € (0,+00)r. (13)
{(HT;{ exp [)\(7';1r + ilelTpu(s))}

If (13) is not true, then there exist a t; € (0, 4o00)T
and i1,i9 € {1,2,...,n} such that n
N +) af Liexp Moy, o sup p(s )]
ly(t)l[x = max{[ly(t)llo, [ly= (£1)llo} 7=

— s (00l [ (61)1}
> pMeor(t, 0)léx Zb* b exp AL, +supn(s)] s

1
and _ cpMe@wl,muwux{e_ail@wl,m

pM
ly@)[x < pMeaa(t,0)[[¥x, t € [-7,t1]r.
+exp (A sug 1(s)) 6;&7'; exp(/\TZT)
Therefore, there must exist a constant ¢ > 1 such that o<

+ Z a;ij exp()\oz;j) + Z szlj exp()\ﬂzj)]
j=1

ly(t1)llx = max{|ly(t)llo, ™ (t2)]lo} =1
= max{|y;, (t1)|, [y, (1) [} t
= cpMepx(tr, 0)[¥] x (14) X/O e—s, oA(t1,0(s))As
and < CpMee)\(tl )Hlﬂ”x{ (5— )\)(tl,O)
ly(D)l[x < epMec(t, 0)[[¢]lx,t € [=7 ta]r. (15) +exp (A Squu(s)) {52—1;7: exp(Ar’)
sE€
By (11), (14), (15) and (H;)-(Hs), we can obtain n n
+ Zaszj exp(/\a;;j) + Z szlj exp()\B:J)]
|yiy (1)) j=1 J=1
< e_s; (t1,0) +cpMegy(t1,0 1
ol (01,0 + M eca(t. 0ol L ot
: G N S O TV
< [ e, (ol o) :
0 ,  eXP (Asup p(s))
seT
{5+ | ()e/\(J(S),Q)AQ - CpMe@’\(tl’O)”w”X{[M_ 5
s—Tiy (s
+. + + + +
+ZamL ex(o O‘m( ) (6“7-11 exp()n'il) + ;ailjl’j exp()\ailj)
+ +
—|—Zb;;jlj6)\(0(s),s—Bilj(s))}As +Zb il exp(AB}] >>]€—(5i1_x>(t170>
j=1
< [l xes,, (t1,0) + cpMeax(tr,0) ]| x exp (AS;;TPM 5))
></ e—5; ox(t1,0(s)) '
0
+ L; A )+ b 1 A3+ )}
{5;7:5 Aa(s), s — 7, (5)) ;am exp(tay) ; ials OPIATL)
< epMeg(t1,0) || x- (16)
—|—ZamL ex(o — a;,5(5))
It follows from Lemma 4 and (11) that for : =
1,2,...,n,
Jer;;jlje)\(a(s),s — Bilj(s))}As A
j=1 yi (1)
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e 60)+ (560) [ 12000
+ Z aij (1) F (5t
+ Z bij (1)

— ij(t)))

Gy~ 35 (0))

f /0 i West s facs | :(S) y2(0)20

+ Z aij(s)Fj(y;(s
+ Z bij(s

— ij(s)))

Gyl (s = By(o)) s

Then, by (14), (15) and (17), we have

<

IA

A
i (1)

< 6Fe_s,, (11, 0)[[¥]lx + epMee(tr,0)[[¢] x

(t1,0)A0

t1
+
X <(512 / €x
t1—Ti, (t1)

n
+ Z a;;ijeA(tb t1 — aiyji(t1))
=

3 b et ﬁm(tl)))

j=1

t1
6t epMean (0[] x / e_s,, (11, 0(5))

xewl,a(s)){ag / ex((5),0)20
5—Tiy (5)
+ Z amL ex(o

F3bE bealo(s)s - ﬂm(S))}AS
j=1
Site s, (t1,0)[[¥]lx + cpMeaa(t1, 0|9l x

<5£T£6A(7§1, t1 — 7, (t1))

— Qiyj(8))

n
+ Z a;-gijeA(tl, t1 — ()41'2j(t1))
j=1

+ ) b lea(ty ty — Bm-(h)))

J=1

t1
6 epMe(ty, O)l[¥]1x /O e_s, on(t1,0(5))
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{5?575 Ma(s),5 = 7ia(5))
+ZamL ex(o O‘m( )
P b er(ols)s — /3i2j<s)>}As
j=1

IN

dhe—s,, (11, 0)[1W]lx + epMecn(t1, 0) ¥l x

n
(5;271'5 exp(/\Tg) + Z a;.;ij exp(/\oz;-gj)
j=1

Zb* esphig) ) (1465 exp(sup )

seT
t1
X / e—s,or(t1, O’(S))AS)
0

+

-
< epMegy(t, 0)”¢”X{A}26—5i2®)\(t17 0)

n
(6;?; exp()\Tg) + Z aj;ij exp()\a;;j)
j=1

Zlﬁ lj exp(\B; )) <1+5+ exp(Asup ju(s))

seT
X /Otl e s, on(t1, 0(8))A5> }

6+
cobteen(tOl]x{ S2e_s, (01,0

IN

(5;&; exp()\T + Z agij exp()\oz;;j)
j=1

+ 2kl em(%%)) <1 + 85 exp(Asup (s))
7j=1

seT
1
o a0 = 1)>}
. exp(A 81611[;#(5))
< cpMe@A(t170)”1/)HX{ {M N 5;:— A

n
(5;271'5 exp(/\Tg) -+ Z a;.;ij exp(/\oz;-gj)
j=1

Zb+ L exp(AB;E. ))]526_(51_—2_)\)(251,0)
& exp(Asup u(s))

1 seT
+(+ — )

((5;7'; exp( )\7' )+ Z mL exp )\am)
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+Zb+ L exp(ABiE, ))}

< CpMeeA(tla 0l x-
Together with (16) and (18), then

ly(t1)llx < epMeca(t1,0)[|¥] x,

which contradicts (14), so (13) holds. Let p — 1, then
(12) holds. Therefore, the almost periodic solution
of system (1) is globally exponentially stable. This
completes the proof. O

(18)

4 An example

Consider the following neutral delay neural network
on time scale T:

77 (1) —5‘() i(t —7(t))
+Zaw ) fi(a;(t

+ Z bij(t)g;(z
=1

where ¢ = 1,2, 3, and

— aij(t))) 19)

(t = Bii(1)) + Li(t),

51(t) = 0.55 + 0.1 sint, 62(t) = 0.6 + 0.2 cos V2|,

1.5 t
5y(t) = 0.7+ 025 sinf], my (£) — L2+ 1SV
250
_ 240.5| cos V2t 34 0.5]sin 2¢|
TQ(t) - 150 5 T3(t) - 250 3
(aij(t))3x3 =
0.10] sin ¢| 0.15|cosﬂt] 0.06] cos t|
0.15|cost| 0.12|cos+/3t| 0.05|sint| |,
0.13|sint| 0.08|sin+/5¢| 0.09|sint|
(bij(t))3x3 =
0.15[sint| 0.06]sin+/2t| 0.05| cost|
0.05|sint| 0.03|cos/3t| 0.07|sint| |,
0.15|cost| 0.05|sin+/5¢| 0.08|cost|
fl('r) = 03’IE‘, f2($):05‘81n$|7 fg(l'):‘l",
gi(x) = 0.6|sinz|, g2(x) = 1.5|z|,
gs(x) = 1.5|cosz|.

Let T = Rand T = Z. Take o; > 0,8;; >
0,1;(i,j = 1,2,3) to be arbitrary almost period-
ic functions. By a direct calculation, we can get
r = 0.7492 < 1 and —¢; € R™". By Theorem 6 and
Theorem 7, system (19) has a unique almost periodic
solution which is globally exponentially stable.
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5 Conclusion

This paper is concerned with a neutral-type neural net-
works with time-varying delay in the leakage term on
time scales (system (1)), based on the theory of calcu-
lus on time scales, by using the exponential dichoto-
my of linear dynamic equations and Banach’s fixed
point theorem as well as some mathematical methods,
some sufficient conditions are obtained for the exis-
tence and exponential stability of almost periodic so-
lution of system (1). From Theorem 6 and Theorem
7, we can see that the existence and exponential sta-
bility of almost periodic solutions for system (1) only
depends on time delays 7; (the delays in the leakage
term) and does not depend on time delays «;; and (3;;.
These results have important leading significance in
designs and applications of such neural networks.

The results obtained in this paper can be applied
to the analysis of the periodic (and almost periodic)
dynamical regimes into the dynamical systems with
strange attractors [20], and to non-autonomous solu-
tions’ analysis of non-autonomous gyrostats’ systems
[21]. Also, one may consider many other systems, see
[22-25].
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