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Abstract: – The paper deals with continous-time adaptive control of nonlinear processes. A nonlinear model of 
the process is approximated by a continuous-time external linear model. The parameters of the CT external 
linear model of the process are estimated in two ways. In the first case, direct estimation of the CT model is 
used. In the second case, the parameters of a corresponding delta model are recursively estimated. The control 
system structure with two feedback controllers is considered. The controller design is based on the polynomial 
approach. The resulting controllers ensure stability of the control system as well as asymptotic tracking of the 
step reference and step load disturbance attenuation. The adaptive control is tested on the nonlinear system 
represented by a model of two spheric liquid tanks in series. 
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1 Introduction 
The most part of technological processes belong to a 
class of nonlinear systems where both steady-state 
and dynamic behaviour are nonlinear, e.g. [1], [2]. 
This fact may cause difficulties when controlling 
such processes using conventional controllers with 
fixed parameters.  
An effective control of nonlinear processes often 
requires application of some advanced methods. 
Here, various  efficient methods may be used as 
various modifications of adaptive control, e.g. [3], 
predictive control, e.g. [4], [5], robust control, e.g. 
[6] or nonlinear control, e.g. [7] and [8].  
One possible method to cope with this problem is 
using adaptive strategies based on an appropriate 
choice of an external linear model (ELM) with 
recursively estimated parameters. These parameters 
are consequently used for parallel updating 
controller‘s parameters.   
The control itself can be either continuous-time or 
discrete. While for design of a continuous-time 
controller, it is necessary to know a continuous-time 
ELM and its parameters, a discrete-time controller 
requires knowledge of a discrete ELM. Experiences 
of authors in the field of control of nonlinear 
technological processes indicate that the continuous-
time   (CT)   approach   gives   better   results   when  
controlling processes with strong nonlinearities. In 
the case of discrete control in order to cope with the 
nonlinearity, it is necessary to sample signals very 

frequently. However, it is well known from the 
properties of transfer functions in the z-domain that 
a sampling period cannot be shortened too much. 
Two basic approaches can be used for identification 
of the continuous-time ELM. The first method is 
based on filtration of input and output signals where 
the filtered variables have the same properties (in 
the s-domain) as their non-filtered counterparts, e.g. 
[9], [10] and [11]. Derivatives of filtered signals that 
are necessary for the parameters estimate of the CT 
ELM are obtained from differential filters. This 
method, presented by authors of this contribution in 
e.g. [12], has, however, some drawbacks – the 
necessity to solve additional differential equations 
representing the filters and to estimate time 
constants of these filters.  
The second strategy uses an external delta model of  
the controlled process with the same structure as a 
CT model. The basics of delta models have been 
described e.g. in [13] and [14]. Although delta 
models belong into discrete models, they do not 
have such disadvantageous properties connected 
with shortening of a sampling period as discrete z-
models. In addition, parameters of delta models can 
directly be estimated from sampled signals without 
the necessity to filter them. Moreover, it can be 
easily proven that these parameters converge to 
parameters of CT models for sufficiently small 
sampling period (compared to the dynamics of the 
controlled process). A complete description and 
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experimental verification can be found in [15].  
This contribution deals with adaptive control of a 
non-linear single input – single output process. The 
parameters of the CT ELM of the process are 
estimated in two ways. In the first case, direct 
estimation in terms of filtered variables is used. In 
the second case, the parameters of a corresponding 
delta model are recursively estimated. 
The control system with two feedback controllers 
(TFC) is used, see e.g. [16]. This set-up can lead to  
better control quality than using only one feedback 
controller. Input signals for the control system are 
the step reference and step disturbance injected into 
the input of the controlled process. The resulting 
controller derived using the polynomial method, e.g. 
[17] and [18], guarantees stability of the control 
system, asymptotic tracking of the reference and 
load disturbance attenuation. The approach is tested 
on a nonlinear model of two spheric liquid tanks in 
series. 
Many other methods related to solution of similar 
problems can be found e.g. in [20] – [34]. 
 
2 CT External Linear Model 
The CT external linear model (ELM) is chosen on 
the basis of some preliminary knowledge of 
dynamic behaviour of the controlled nonlinear 
process. This model is described in the time domain 
by differential equation 

 ( ) ( ) ( ) ( )a y t b u tσ σ=  (1) 

where d dtσ =  is the derivative operator and a, b 
are polynomials in σ. Considering nonzero initial 
conditions, the ELM is represented in the complex 
domain by 

 1( ) ( ) ( ) ( ) ( )a s Y s b s U s o s= +  (2) 

where s is the complex variable and o1 is the 
transform of initial conditions. Both a and b now are 
coprime polynomials in s. The transfer function 

 ( )( )
( )

b sG s
a s

=  (3) 

is considered to be proper (deg b ≤ deg a). 
 
3 Delta Model 
Establish the delta operator defined by 

 
0

1q
T

δ −=  (4) 

where q is the forward shift operator and T0 is the 
sampling period. When the sampling period is 
shortened,  then,  the  delta  operator  approaches  

the derivative operator σ so that 

 
0 0
lim

T
δ σ

→
=  (5) 

and, the δ-model  

 ( ) ( ) ( ) ( )a y t b u tδ δ′ ′ ′ ′=  (6) 

approaches the continuous-time model (see, e.g. 
[15]). Here, t′ is the discrete time, and, ,a b′ ′ are 
polynomials in δ. 
 
4 CT ELM Parameter Estimation 
The method of the CT ELM parameter estimation 
can be briefly carried out as follows. 
Since the derivatives of both input and output 
cannot be directly measured, filtered variables uf and 
yf  are established as the outputs of filters  

 ( ) ( ) ( )fc u t u tσ =  (7) 

 ( ) ( ) ( )fc y t y tσ =  (8) 

where c(σ) is a stable polynomial in σ that fulfills 
the condition deg ( ) deg ( )c aσ σ≥ . It can be easily 
proven that the transfer behavior among filtered and 
among nonfiltered variables are equivalent. Using 
the L-transform of (7) and (8), the expressions  

 2( ) ( ) ( ) ( )fc s U s U s o s= +  (9) 

 3( ) ( ) ( ) ( )fc s Y s Y s o s= +  (10) 

can be obtained where o2 and o3 are polynomials of 
initial conditions. Substituting (9) and (10) into (2), 
and, after some manipulations, the relation between 
transforms of the filtered input and output takes the 
form 

 ( )( ) ( ) ( )
( )f f

b sY s U s s
a s

= + Ψ  (11) 

where Ψ(s) is a rational function as the transform of 
certain function ψ(t) which  expresses a difference 
between initial conditions of filtered and nonfiltered 
variables (in reference to a last steady state).  
Now, the filtered variables including their 
derivatives can be sampled from filters (7) and (8) 
in discrete time intervals tk = k TS , k = 0,1,2, ...   
where TS is the sampling period. Denoting deg a = n 
and deg b = m , the regression vector can be defined 
by 

 
(1) ( 1)

(1) ( )

( ) ( ) ( ) ... ( )

( ) ( ) ... ( )1

nT
k f k k kf f

m
f k k kf f

t y t y t y t

u t u t u t

−⎡= − − −⎣
⎤
⎦

Φ
(12) 
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The vector of parameters  

 [ ]0 1 1 0 1( ) ... ...T
k n mt a a a b b b−=Θ  (13) 

and the values of ψ in discrete times can then be 
estimated from the equation  

 ( ) ( ) ( ) ( ) ( )n T
k k k kfy t t t tψ= +Θ Φ . (14) 

 
5 Delta ELM Parameter Estimation 
Substituting t k n′ = −  where k ≥ n, the equation (6) 
may be rewriten as 

 +−′++−′=− )(...)()( 1 nkubnkubnky m
m

n δδδ  

 1
0 1( ) ( ) ...n

nb u k n a y k nδ −
−′ ′+ − − − −  (15) 

 )()(...)(... 01
1

1 nkyankyankya n
n −′−−′−−−′− −
− δδ  

The terms in (15) can be expressed as 

 
0 0

( 1)( ) ( )
i j

i
i

j

i
y k n y k n i j

jT
δ

=

⎛ ⎞−− = − + −⎜ ⎟
⎝ ⎠

∑  (16) 

for i = 0,1, … , n , and, 

 
0 0

( 1)( ) ( )
l j

l
l

j

l
u k n u k n l j

jT
δ

=

⎛ ⎞−− = − + −⎜ ⎟
⎝ ⎠

∑  (17) 

for l = 0,1, … , m. 
Obviously, an actual value of the controlled output 
y(k) is contained only in the term on the left side of 
(15) (for i = n in (16)). Now, denoting 

 ( ) ( )n
y k y k nϕ δ= − , 1( 1) ( )n

y k y k nϕ δ −− = − , ...  

 … , ( 1) ( )y k n y k nϕ δ− + = − , ( ) ( )y k n y k nϕ − = −  

 ( ) ( )m
u k n m u k nϕ δ− + = − , …  (18) 

 … , ( 1) ( )u k n u k nϕ δ− + = − , ( ) ( )u k n u k nϕ − = −  

and introducing the regression vector 

( 1) ( ) ( 1) ... ( 1)T
y y yk k n k n kδ ϕ ϕ ϕ⎡− = − − − − + −⎣Φ

 ]( ) ( 1) ... ( )u u uk n k n k n mϕ ϕ ϕ− − + − +  (19) 

then, the parameter vector 

 [ ]0 1 1 0 1... ...T
n ma a a b b bδ −′ ′ ′ ′ ′ ′=Θ  (20) 

can be estimated recursively from the regression 
(ARX) model, see, e.g. [19]. 

 ( ) ( ) ( 1) ( )T
y k k k kδ δϕ ε= − +Θ Φ  (21) 

where ε(k) is the non-measurable random 
component. 

For a small sampling interval T0, the estimated 
parameters reach the parameters of the CT model so 
that 

 
,  0,1,...,

, 0,1,..., 1
j j

i i

b b j m

a a i n

′ → =
′ → = −

 (22) 

  
6 Controller Design 
The control system with two feedback controllers is 
depicted in Fig. 1. In the  scheme, w is the reference 
signal, v  denotes the load disturbance, e the 
tracking error, u0 output of controllers,  u   the   
control  input  and  y the  controlled output. The  
transfer  function  G(s) of the CT ELM is given by 
(23). The reference w and the disturbance v are 
considered as  
 

- -

v 

ew u u0 y 
 R CT ELM

Q

F
ig. 1: Control system with two feedback controllers 

 
the step functions with transforms  

 0( ) wW s
s

= ,  0( ) vV s
s

= . (23) 

The transfer functions of both controllers are in 
forms 

 ( ) ( )( ) , ( )
( ) ( )

r s q sR s Q s
p s p s

= =  (24) 

where q , r and p  are coprime polynomials in s 
fulfilling the condition of properness  deg degr p≤   
and  deg degq p≤  .  
The controller design described in this section 
appears from the polynomial approach. The general 
requirements on the control system are formulated 
as its internal properness and stability, asymptotic 
tracking of the reference and load disturbance 
attenuation. The procedure to derive admissible 
controllers can briefly be performed as follows: 
Let the polynomial t has the form 

 ( ) ( ) ( )t s r s q s= + . (25) 

Then, the control system stability is ensured when 
polynomials p  and t are given by a solution of the 
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polynomial equation 

 ( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (26) 

with a stable polynomial d on the right side. 
Evidently, the roots of d determine the closed-loop 
poles. 
Taking into account the transform of the tracking 
error 

 [ ]1( ) ( ) ( ) ( )E s a p bq W s b pV s
d

= + −  (27) 

and both transforms (23), the asymptotic tracking 
and load disturbance attenuation are provided by 
polynomials p and q  having the form 

 ( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (28) 

Subsequently, the transfer functions (24) take forms 

 ( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
s p s

=  (29) 

and, a stable polynomial p(s) in their denominators 
ensures the stability of controllers.  
Now, the polynomial t can be rewritten to the form 

 ( ) ( ) ( )t s r s s q s= + . (30) 

Taking into account the solvability of (26) and the 
condition of internal properness, the degrees of 
polynomials in (26) and (29) can be easily derived 
as 

 
deg deg deg , deg deg 1

deg deg 1, deg 2deg
t r a q a

p a d a
= = = −

≥ − ≥
. (31) 

Denoting deg a = n, polynomials t, r and q have  
forms 

0
( )

n
i

i
i

t s t s
=

=∑ , 
0

( )
n

i
i

i
r s r s

=
=∑ , 1

1
( )

n
i

i
i

q s q s −

=
=∑  (32) 

and, relations among their coefficients are 

 0 0r t= ,  i i ir q t+ =  for 1, ... ,i n= . (33) 

Since by a solution of the polynomial equation (26) 
provides calculation of coefficients ti, unknown 
coefficients ri and qi can be obtained by a choice of 
selectable coefficients 0,1iβ ∈  such that 

 i i ir tβ= ,  (1 )i i iq tβ= −  for 1, ... ,i n= . (34) 

The coefficients iβ  distribute a weight between 
numerators of transfer functions Q and R.  
Remark: If 1iβ = for all i, the control system 
 in Fig. 1 reduces to the 1DOF control configuration 

(Q = 0). If 0iβ = for all i, and, both reference and 
load disturbance are step functions, the control 
system corresponds to the 2DOF control 
configuration. 
 

7 Example 
Two spheric liquid tanks in series are considered 
according to Fig. 2.  
 

d2 d1 

 q2 q1 

q2f q1f 

h2 
h1 

 
Fig. 2: Two spheric liquid tanks in series. 
 
Using  standard  simplifications,  the  model of  the 
plant can be described by two nonlinear differential 
equations 

 1
1 1 1 1 1( ) i

d hh d h q q
dt

π − + =  (35) 

 2
2 2 2 1 2 2( ) i

d hh d h q q q
dt

π − − + =  (36) 

where dj are diameters of tanks, hj are liquid levels 
in tanks, qj are stream flowrates and qjf are their inlet 
values, (for j = 1, 2). The stream volumetric 
flowrates depend upon levels in tanks as 

 1 1 1 2q k h h= −   (37) 

 ( 1 2 1 1if 0 thenh h q q− < = − ) 

 2 2 2q k h=  (38) 

where k1, k2 are constants. 
Initial conditions for (42), (43) are steady state 
liquid levels 1 1(0) sh h= , 2 2(0) sh h= . The model 
parameters and values of variables at the operating 
point used in simulations are in Tab. 1. 
 
Table 1: Parameters and steady-state values. 

2.5 1
1 1.5m mink −=  2.5 1

2 0.8m mink −=  

1 1.631msh =  2 1.381msh =  

1 2d d= = 3m 
3 1

1 0.75m mins
fq −=  3 1

2 0.19m mins
fq −=  
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The task is to control of the liquid levels in the first 
or in the second tank. In both cases, the control 
input is the inlet flow to the first tank. For the 
control purposes, the controlled outputs and control 
input variables are considered to be deviations from 
their values at the operating point as 

 1 1 1

2 2 2

( ) ( )

( ) ( )

s

s

y t h t h

y t h t h

= −

= −
 (39) 

 1 1( ) ( ) s
f fu t q t q= −  (40) 

Steady-state characteristics of liquid levels in both 
tanks are in Figs. 3 and 4. 
 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5
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2.0

2.5
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hs 1 
(m
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qs1f  (m
3/ min)

Operating interval

Operating
    point

 
Fig. 3: Dependence of liquid level in the first  
           tank on the input flow. 
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 Fig. 4: Dependence of liquid level in the 
            second tank on the input flow. 
 
The values of the input and both outputs defining 
the operating interval are in Table 2. 
 
Table 2: Boundary of the operating interval 

min
1 0.1fq =  m3/min max

1 1.05fq = m3/min 
min
1h = 0.136 m max

1h = 2.893 m 
min
2h = 0.131 m max

2h = 2.403 m 
 
The second order CT ELMs have been chosen for 
both tanks on the basis of simulated controlled 

output step responses shown in Figs. 5 and 6.  
The CT ELM for the first tank takes in the time 
domain the form of the differential equation 

 1 1 1 0 1 1 0( ) ( ) ( ) ( ) ( )y t a y t a y t b u t b u t+ + = +  (41) 

and, in the complex domain the form of the transfer 
function 

 1 0
2

1 0
( ) b s bG s

s a s a
+

=
+ +

 (42) 

 

0 20 40 60 80 100
-1.6
-1.2
-0.8
-0.4
0.0
0.4
0.8
1.2

y 1
 (m

)

t (min)

1 - u = - 0.50  2 - u = - 0.25
3 - u =   0.15  4 - u =   0.30

1

2

3

4

 
Fig. 5: The first controlled output step response. 
 

0 20 40 60 80 100
-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

y 2
 (m

)

t (min)

1 - u = - 0.50  2 - u = - 0.25
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Fig. 6: The second controlled output step  
            response. 
 
For the second tank, the corresponding 
descriptions have forms 

 2 1 2 0 2 0( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (43) 

and, 

 0
2

1 0
( ) bG s

s a s a
=

+ +
 (44) 

In next control procedures, the delta ELM 
parameter estimation is used for the first tank, 
and, the direct CT ELM parameter estimation 
for the second tank.  
The delta ELM accordant with (41) has the form 
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2

1 1 1 0 1

1 0

( ) ( ) ( )
( ) ( )

y t a y t a y t
b u t b u t

δ δ′ ′ ′ ′ ′+ + =
′ ′ ′ ′= +

. (45) 

Now, the regression vector (20) takes the form  
 

 
(

)
( 1) ( 1) ( 2)

( 1) ( 2)

T
u u

y y

k k k

k k
δ ϕ ϕ

ϕ ϕ

− = − −

− − − −

Φ
 (46) 

with elements  

 ( 2) ( 2)y k y kϕ − = −  

 
0

( 1) ( 2)( 1)y
y k y kk

T
ϕ − − −− =  (47) 

 ( 2) ( 2)u k u kϕ − = −  

 
0

( 1) ( 2)( 1)u
u k u kk

T
ϕ − − −− =  

and, the vector of the delta model parameters 

 1 0 1 0( )T k b b a aδ ⎡ ⎤′ ′ ′ ′= ⎣ ⎦Θ  (48) 

can be recursively estimated from the ARX model 

 ( ) ( )( ) ( ) 1T
y k k k kδ δϕ ε= − +Θ Φ  (49) 

where 

 2
0

( ) 2 ( 1) ( 2)( )y
y k y k y kk

T
ϕ − − + −= . (50) 

The recursive estimation of delta model parameters 
was performed with the sampling interval T0 = 0.2 
min.  
In the direct CT ELM parameter estimation, the 
filtered variables and their derivatives are obtained 
from filters 

 2 1 2 0 2 2( ) ( ) ( ) ( )f f fy t c y t c y t y t+ + =  (51) 

  1 0( ) ( ) ( ) ( )f f fu t c u t c u t u t+ + =  (52) 

with filter parameters c1 = 1, c0 = 0.25. 
Then, the CT ELM parameters [ ]0 1 0, ,b a a  are 
recursively estimated from the ARX model 

 
2 0 1 2

0 2

( ) ( ) ( )

( ) ( )
f k f k f k

f k k

y t b u t a y t

a y t tψ
= − −

− +
 (53) 

in discrete time intervals tk = k Ts  with the sampling 
period Ts = 1 min. 
In both cases, the recursive identification method 
with exponential and directional forgetting by 
course of [19] was used. 

For the second order model (44) with deg 2a = , the 
controller's transfer functions take specific forms 

 

2 1

0
2

2 1 0

0

( )( )
( )

( )( )
( ) ( )

q s qq sQ s
p s s p

r s r s rr sR s
s p s s s p

+= =
+

+ +
= =

+

. (54) 

where 

 0 0 1 1 1 2 2 2

1 1 1 2 2 2

, ,
(1 ) , (1 )

r t r t r t
q t q t

β β
β β

= = =
= − = −

 (55) 

The controller parameters then result from a 
solution of the polynomial equation (26) and depend 
upon coefficients of the polynomial d. The next 
problem here is to find a stable polynomial d that 
enables to obtain acceptable stabilizing controllers.  
In this paper, the polynomial d with roots 
determining the closed-loop poles is chosen as 

 2( ) ( ) ( )d s n s s α= +  (56) 

where n is a stable polynomial obtained by spectral 
factorization 

 ( ) ( ) ( ) ( )a s a s n s n s∗ ∗=  (57) 

and α is the selectable parameter. 
Note that a choice of d in the form (56) provides the 
control of a good quality for aperiodic controlled 
processes.  
The coefficients n then are expressed as  

 2
0 0n a= ,  2

1 1 0 02 2n a n a= + −  (58) 

and, the controller parameters p0 and t can be 
obtained  from solution of the matrix equation 

 

1

1 0 1

0 0 1

0

1 0 0
0

0
0 0 0

b
a b b
a b b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

×

0

2

1

0

p
t
t
t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

3 1

2 0

1

0

d a
d a

d
d

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (59) 

for the first tank, and 

 1 0

0 0

0

1 0 0 0
0 0

0 0
0 0 0

a b
a b

b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

×

0

2

1

0

p
t
t
t

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 = 

3 1

2 0

1

0

d a
d a

d
d

−⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (60) 

for the second tank, where 

 
2

3 1 2 1 0
2 2

1 0 1 0 0

2 , 2

2 ,

d n d n n

d n n d n

α α α

α α α

= + = + +

= + =
 (61) 
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Now, it follows from the above introduced 
procedure that tuning of controllers can be 
performed by a suitable choice of selectable 
parameters β and α. 
The controller parameters r and q can then be 
obtained from (45). 
Control systems using delta ELM and CT ELM 
parameter estimation are depicted in Figs. 7 and 8. 
 

T0 T0

 - 

e 
 v 

 - 

p, r, q 

a 

b 

 u Controller 
      R 

Controller 
      Q 

Controlled 
   process 

     Delta ELM parameter  
            estimation 

 Controller's parameter  
          computation 

u0  w  y 

 
Fig 7: Adaptive control system with delta ELM  
          parameter estimation. 
 
 

 - 

e 
 v 

 - 

p, r, q 

a 

b 
Ts Ts 

yf uf 

 u Controller 
      R 

Controller 
      Q 

Controlled 
   process 

Filter Filter 

     CT ELM parameter  
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Fig 8: Adaptive control system with CT ELM  
          parameter estimation. 
 
8 Simulations 
For the control of the liquid level in the first tank, 
the delta ELM parameter estimation was used, and, 
in the second tank, the direct CT ELM parameter 
estimation was applied. 
For the start (the adaptanion phase) in all 
simulations, the P controller with a small gain was 
used.  
The controlled output responses in the first tank 
obtained for two values of α are shown in Fig. 9.. 
There is a minimal difference between both 

responses, but both responses exhibit a small 
overshoot. A greater difference is reflected in 
control input responses shown in Fig. 10. There, a 
small change in a selection of α leads to significant 
changes of the control input. 
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Fig. 9: Controlled output responses (delta ELM) 
           (β2 = β1 = 1). 
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Fig. 10: Control iput responses (delta ELM PE)  
           (β2 = β1 = 1). 
 
The controlled output and control input responses in 
the second tank computed for three values of α are 
shown in Figs. 11 and 12.. In this case, the 
responses without overshoots can be obtained by a 
choice of a satisfactory α. 
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Fig. 11: Controlled output responses (CT ELM) 
           (β2 = β1 = 1). 
 
Controlled output responses in the second tank in 
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Fig. 12: Control input responses (CT ELM) 
              (β2 = β1 = 1). 
 
Fig. 13 show the possibility to obtain courses 
without overshoots also by a selection of suitable 
parameters β. An effect of these parameters on the 
control input is evident from Fig. 14. 
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Fig. 13: Controlled output responses (CT ELM) 
              (β2 = 0, α = 0.4). 
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Fig. 14: Control input responses (CT ELM) 
              (β2 = 0, α = 0.4). 
 
The evolution of the delta and CT ELM parameters 
during control can be seen in Figs. 15 and 16. It can 
be seen that in both cases parameters quickly 
stabilize after each change of the reference signal. 
A presence of the integrating part in  controller 
transfer functions enables step disturbance  
attenuation. The controlled output responses to a 

setpoint reference and step disturbances for both 
tanks is shown in Figs. 17 and 18. Here, filtered step 
changes v = 2 fqΔ  were injected into the system. 
The controller parameters were estimated only in 
the first (tracking) interval. Then, the controller with 
fixed parameters was used. 
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Fig. 15: Delta ELM  parameter evolution  
             (β2 = β1 = 1, α = 0.1)  
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Fig. 16:  CT ELM parameter evolution  
           (β2 = β1 = 1, α = 0.2)  
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Fig. 17: The first tank – disturbance attenuation. 
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Fig. 16: The second tank – disturbance attenuation. 
 
9 Conclusions 
In this paper, one possible approach to the 
continuous-time adaptive control of a nonlinear 
process was proposed. The presented strategy 
enables to create an effective control algorithm. This 
algorithm is based on an alternative continuous-time 
external linear model with parameters recursively 
estimated in two ways. In the first case, direct 
estimation of the CT model in terms of filtered 
variables is used. In the second case, the parameters 
of a corresponding delta model are recursively 
estimated. Both parts of the resulting continuous-
time controller are given by a solution of 
polynomial Diophantine  equations. Parameters of 
the controller are periodically readjusted according 
to recursively estimated parameters of the CT or 
delta model. The controller parameters may be 
tuned by a single selectable parameter. The 
presented method has been tested by computer 
simulation on the nonlinear model of two spheric 
tanks in series. The results demonstrate the 
applicability of the presented control strategy. It can 
be deduced that the described adaptive strategy is 
also suitable for other technological processes. 
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