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Abstract: - The current research designs an original robust recursive least-squares (RLS) finite impulse
response (FIR) filter for linear continuous-time systems with uncertainties in both the system and observation
matrices. These uncertainties in the state-space model generate the degraded signal and observed value. The
robust RLS FIR filter does not account for the norm-bounded uncertainties in the system and observation
matrices. This study uses an observable companion form to represent the degraded signal state-space model.
The system and observation matrices are estimated based on the author's previous computational methods. The
robust RLS FIR filtering problem aims to minimize the mean-square errors in FIR filtering for the system state.
The robust FIR filtering estimate is formulated as an integral transformation of the degraded observations using
an impulse response function. Section 3 obtains the integral equation satisfied by the optimal impulse response
function. Theorem 1 presents the robust RLS FIR filtering algorithms for the signal and the system state. This
integral equation derives the robust RLS-FIR filtering algorithms. Numerical simulation examples show the
validity of the proposed robust RLS FIR filter.
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1 Introduction smoother in linear stochastic systems, [6].
Kalman filter and the finite impulse response (FIR) Robust FIR filter in linear stochastic systems
filter for signal and state estimation are widely used with bounded uncertainties, [7]. FIR filter for
in the application area of navigation, input-delayed ~ stochastic  systems,  [8].
communication systems, and signal processing in Recursive least-squares (RLS) FIR filter using
optimal FIR predictor is designed and applied to the time stochastic systems, [9]. _

robot predictive tracking problem. In [4], an (2) R_ecedlng hor_lzon FIR filter in linear discrete-
unbiased FIR filter estimates the clock state by time stochastic systems, [10]. _
measuring the time interval error based on an (3) Iterative FIR filter in linear discrete-time
interval of finite most recent past points. stochastic systems, e.g. [11], [12], [13], [14],
Researchers have studied finite impulse response [15], [16], [17], [18], [19], [20], [21].
(FIR) estimation techniques in discrete-time and (4) Strictly passive FIR filter in linear discrete-
continuous-time stochastic systems, [1], [2], [3], [4], time stochastic systems, [22]. _
[51, [6], [71, [8], [9], [10], [11], [12], [13], [14], [15], 5) leed-lag FIR smoother in linear discrete-time
[16], [17], [18], [19], [20], [21], [22], [23], [24], stochastic systems, [23].
[25], [26], [27], [28], [29], [30], [31], [32], [33], (6) R.obust RLS Wiener FIR filter in linear
[34]. In the book [35], there is a thorough discussion discrete-time stochastic systems, [24]. _
of FIR estimation techniques. For state-space (7)  FIR filter in nonlinear discrete-time stochastic
models with uncertainties, FIR estimators perform systems, [25]. _ _ _
better than conventional recursive estimators in (8) Confidence set-membership FIR filter in
linear discrete-time stochastic systems, [5]. Below is linear discrete time-variant stochastic systems,
a classification of FIR estimation techniques. [26_]-_ ) o

(1) Some references to continuous-time FIR (9) Unified FIR filter and smoother in linear

estimators are as follows. FIR filter and FIR discrete-time stochastic systems, [27].
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(10) FIR filter for systems with delays and missing
observations in linear discrete-time stochastic
systems, [28], [29], [30], [31].

(11) Systematical analysis of batch FIR filtering
algorithms, [32].

(12) Backward FIR filter in linear discrete-time
variant stochastic systems, [33].

(13) FIR smoother estimating signal at the starting
time of fixed-interval based on algebraic
calculations by the Levinson-Durbin
algorithm, [34].

The RLS Wiener filter is designed for linear
continuous-time stochastic systems with
uncertainties, as described in [36]. This paper
extends the robust RLS Wiener filter to the robust
RLS FIR filter by utilizing covariance information
in linear continuous-time stochastic systems with
uncertainties. The robust RLS FIR filter uses the
cross-covariance function of the system state with
the degraded observed value and the auto-
covariance function of the degraded state.

The organization of this paper is as follows:
Section 2 presents he estimation method for the
system and observation matrices, [36]. As explained
in [36], the observable companion form expresses
the differential equations for uncertain states. For
robust filtering problems in linear continuous-time
stochastic systems with uncertainties, this paper
uses the state-space model of the observable
companion form for the degraded signal. Section 3
introduces the least-squares FIR filtering problem.
In Section 4, Theorem 1 presents robust RLS FIR
filtering algorithms for both the signal and the
system state. Section 5 demonstrates two numerical
simulation examples for the robust RLS FIR filter.
For finite observation intervals, we compare the
estimation accuracy of the robust RLS FIR filter.
We also compare the estimation accuracy of the
robust RLS FIR filter in Theorem 1 with that of the
robust RLS filter in Theorem 1.

2 Nominal and Degraded State-Space
Models and Degraded System

Realization
Let (1) be a nominal state-space model in linear
continuous-time stochastic systems.

y(t) = z(t) + v(t), z(t) = Hx(t),
dx(t)

T Ax(t) + Tw(t), x(0) = c,
E[v(k)v"(s)] = R8(t — s),R > 0 (1)
Elw@®w’(s)] = Q6(t —5),Q >0
Elvi)wT(s)] =0, E[x(0)wT(t)] = 0.
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Here, x(t) € R™ is the state vector, while z(t) €

R™ is the signal vector. Input noise w(t) € R' and
observation noise v(t) are independent, zero mean,
white Gaussian noises. I' is the n X [ input matrix,
and H is the m X n observation matrix. The auto-
covariance functions for the input noise w(t) and
the observation noise v(t) are given by (1),
respectively. Let the state and observation equations
with uncertain parameters be given by (2).

y(©) =2(t) +v(b),

Z(t) = H®)X(), H(t) = H + AH(¢),

dx(t) o

ST A()X(t) + Tw(t),

A(t) = A+ DA(L),X(0) = C,

E[v(iOwT(s)] = 0,E[AA()wT(s)] = 0,

E[AC(t)vT(s)] = 0, E[X(0)wT ()] = 0,

E[X(0)vT(t)] =0

(2)

In (2), A(t) and C(t) denote the degraded
system matrix and the degraded observation matrix,
respectively. In (2), AA(t) and AC(t) are uncertain
matrices. The initial state of the system, X(0), is a
random vector uncorrelated with both the system
input noise w(t) and the measurement noise v(t).

Suppose that the degraded signal is represented
as Z(t) = Hx(t) using the degraded state vector
X(t), where X(t) assumes n components.

2(t) = Hx(0), 2(t) = %, (1),

H= [Imxm 0 0 - O],
X1 (t) }
X, (t) 3
X(t) = : )
lfn—1(t)J
Xn (0)
Let X, (t) satisfies a differential equation
d¥f(t) _ _dxpi(e)  _ d¥TR()
den AT g d_ ?2) den=z @
X, (t
— Gy~ — BT ()
+ &(t).

(4) is transformed into the observable companion
form of the state differential equations:

dx(t) .. _
T = AX(t) + TE(b),
E[E®)ET ()] = Q8(t — 9),
[ 0 Lnsxm 0 0 ]
0 0 Lnxm 0 )
A= ' : )
0 0 0 Lnsm
—dp —Op-1 —dp— —ay
f = [0 0 0 Ilmxm]
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In (4), &(t) denotes the residual in
approximating the degraded signal Z(t) . The
degraded system matrix A is estimated by (6), [36].

A=E[E25 ()| EEeFT ()] 0<
s<t,

xT(t) =

(X (®) X%(t)
X1 (t) = Z(t), %, (t) =

- _d™%E(t)
T (D=220, %, (0) =

Xn-1(1)  En(B)],
dz(t)

dt ) )
d"1z(t)
dtn—l

(6)

Also, H is estimated by
A = E[yOx" ©E[F®)FT ()] (7)

[36].

3 Robust Finite Impulse Response

Filtering Problem
Let the FIR filtering estimate X(t,t+T) of
x(t + T) be given by

t+T
REE+T) = f h(t +T, s)j(s)ds (8)
t

as a linear transformation of the degraded observed
value y(s), t<s<t+T . Here, h(t+T,s)
represents an impulse response function. Let us

consider minimizing the mean-square value:
J=E[(x(t+T) -2t t+T)T(x(t+T)
: 9)

—x(t,t+T))]
of the FIR filtering error x(t +T) — X(t,t +T).
The filtering estimate x(t,t + T) to minimize the
cost function J satisfies the relationship:
x(t+T)—x(t,t+T)Ly(s), (10)
t<s<t+T,

from the orthogonal projection lemma [37], [38],
[39], [40]. Hence, the optimal impulse response

function satisfies the Wiener-Hopf integral
equation:
E[x(t + T)y" (s)]
(11)

t+T
= '[ h(t + T,DE[¥(1)yT (s)]dr.
t

Substituting the degraded observation equation in
(2) into (11), (11) is transformed into:
h(t +T,s)R = Ky5(t,s)

t+T g 5
- _[ h(t + T,0)HK(t,s)H d,
t

K.yt s) = E[x(©)y" (s)],
Ky¢(1,5) = E[¥(0)xT (s)].

(12)

Starting from (12), the robust RLS FIR filtering
algorithms for the signal and the system state are
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derived. Consider the cross-covariance function
K,y (¢, s) of x(t) with y(s), expressed as:

Key(t,s) = {a(t)[”T(s)JO <s<t,

y(®)87(s),0<t<s,
a(t) = e4t, BT(s) = (13)
e—ASny(S' S)-

Let Ki(t,s) be the covariance function of ¥(t),

expressed as:
‘T s
Kj(t, S) = E(t)qT(S)JO sSS=s t’
D(t)C (S)JO S t S S,
C() = et BT (s) = e XK, (s, ).

(14)

The use of covariance information a(t), B(t) ,
C(t), and D(t) characterizes the current robust RLS
FIR filter in Theorem 1.

4 Robust RLS FIR Filtering Algorithms

Theorem 1 presents the robust RLS FIR filtering
algorithms for z(t, t + T) of the signal z(¢ + T) and
x(t,t + T) of the system state x(t + T).

Theorem 1 Let the state-space model for the signal
z(t) be given by (1). Let the state-space model for
the degraded signal z(t) be given by (2). Let the
cross-covariance function K, (¢, s) of the state x(t)
with the degraded observed value y(s) be given by
(13). Let the autocovariance function Kx(t, s) of the
degraded state X(t) be given by (14). Then robust
RLS FIR filtering algorithms for the signal z(t + T)
and the state x(t + T) using the information on the
degraded observations y(s),t <s <t + T, and the
covariances consist of the following equations (15)-
(43).

FIR filtering estimate of the
T):z(t,t +T)

z(t,t +T) = HX(t,t + T)

signal z(t +
(15)

FIR filtering estimate of the state x(t + T): X(¢t, t +
T)

Xt t+T)=alt+Te(t,t+T) (16)
Kt mere Ly @
]—(:(-It_ :'Jf)T?C(Tﬁ(Z)(It?)T)R-l (18)
Jt+T,t+T)=(CT(t+T)HT (19)

7t t +T)CT(t + T)AT)R™!
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Jt+T,t)=(CT@®HAT
—I'(t,t + T)DT(t)AT)R™1

Lt+T,t+T)=DT(t+T)HAT
=S, t+T)CT(t +T)HT)R™?

L(t+T,t) = (DT(¢)AT
—p(t, t + T)DT()HT)R™1
w =J(t+T,t+T)F(t+T)

—HCt+Df(t,t+T)—J(t+T,t)
x (§(t) — HD(t)é(t, t + T))
—dé(t‘dtt+ N _ JE+T,t+T)F({+T)
—HC({t+T)f(t,t+T))

—J(t +T O () — HD(t)é(t, t + T))

w: L(E+ Tt + T)F(E+T)

—HCt+T)f(t,t+T))
—L(t+T (@) —HD(D)é(t, t + T))

W =J(t+T,t +T)(HD(t+T)

—HC(t+T)S(t,t +T))
—J(t +THOHD() — HD(t)¥(t, t + T))

as(t,t+T) e
T =L{t+T,t+ T)(HD(I' +7T)

—HC(t+T)S(t,t+T))
—L(t+TH(HD(t) — HD()7(t,t + T))

—df(t;; n =J(t+T,t+T)HCt+T)

—HC(t+Dpt,t+T))
—J(t +TH)HC®) — HD(OT (¢, t +T))
—d?(t;: D) e+ Tt + TYHD +T)

—HC(t+T)S(t,t+T))
—J(t +TH)(HAD(t) — HD()T(t, t + T))

dp(t,t+T .
%: L(t+T,t + T)(HCE +T)

—HC(t+T)p(t,t+T))
—L(t +T)(HC(@) — HD(OI (t,t +T))

dri(t,t +T)

o =J(t+T,t+T)HCt+T)
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—HC(t+Dpt,t+ 1))
—J(t +TOHC () — HD(®)T(t, t +T))

J(T,T)

= (BT(T) —r(0,T)CT(TY)HT)R™. (32)
J(T,1) = (C"(MHH"
—¥(0,T)CT(T)ATR™1 (33)
L(T,T)

= (OT(MET - s, N AR, GV

Initial condition of e(t,t + T) att = 0: e(0,T)

wOD _ (1, TYF(T) - AETF©,T),

e(0,0) = 0

(35)

Initial condition of &(¢t,t + T) att = 0: €(0,T)

20D — J(1, TYGHT) — HEMF(0,T)),

8(0,0) = 0

(36)

Initial condition of f(t,t + T) att = 0: f(0,T)

YOD _ (1, 1) (T) - AET)FO,T)),

f(0,00=0
Initial condition of r(t,t + T) att = 0: (0, T)
dr(0,T) —
o =J (. T)(HD(T)
— HC(T)S(0,T)),

@37)

(38)
r(0,0) =0
Initial condition of S(t,t + T) att = 0: S(0,T)

dsg; D = L(T,T)(HD(T)
— HC(T)S(0,T)),

(39)
5(0,00=0
Initial condition of #(t,t + T) att = 0: #(0,T)

dr(0,T) .
= J (T, T)(HC(T)
— HC(T)p(0,T)),

(40)
#(0,0) = 0
Initial condition of ¥'(t,t + T) att = 0: ¥(0,T)

ar(o,7) . e
T = J@. D)
— HC(T)S(0,T)),

(41)
7(0,0) = 0

Initial condition of p(t,t + T) att = 0: p(0,T)
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ap(0,T) .
= L(T,T)(HC(T)
dT — (42)
—HC(M)pP(0,T)),
p(0,0) =0
Initial condition of I'(t,¢t + T) att = 0: I'(0, T)
dre,7) . .
=J(T, T)(HC(T)
dr . (43)
B ~HEPO. 1),
rq,0)=0
Initial condition e(0,T) of the differential

equation (23) for e(t,t + T) at t = 0 is calculated
by (35), starting with e(0,0) = 0. Initial condition
¢(0,T) of the differential equation (24) for é(t, t +
T) at t =0 is calculated by (36), starting with
€(0,0) = 0. Initial condition f(0,T7) of the
differential equation (25) for f(t,t +T)att =0is
calculated by (37), starting with £(0,0) = 0. Initial
condition r(0,T) of the differential equation (26)
for r(t,t+T) at t =0 is calculated by (38),
starting with (0,0) = 0. Initial condition S(0,T) of
the differential equation (27) for S(t,t + T) att =0
is calculated by (39), starting with $(0,0) =0.
Initial condition #(0, T) of the differential equation
(28) for #(t,t +T) at t = 0 is calculated by (40),
starting with #(0,0) = 0. Initial condition 7(0,T) of
the differential equation (29) for ¥(¢t,t + T) att = 0
is calculated by (41), starting with 7(0,0) = 0.
Initial condition p (0, T) of the differential equation
(30) for p(t,t +T) att = 0 is calculated by (42),
starting with #(0,0) = 0. Initial condition I°(0,T)
of the differential equation (31) for F(t,t+T) at
t = 0 is calculated by (43), starting with 7'(0,0) = 0.

From (15), the robust RLS filtering estimate
2(0,T) of the signal z(T) is calculated as 2(0,T) =
HX(0,T) . From (16), the robust RLS filtering
estimate x(0,T) of the system state x(T) is
calculated as £(0,T) = a(T)e(0,T). (32), (34), (35),
(37), (38) and (39) compute e(0,T) recursively.
Section 5 provides a numerical comparison of the
estimation accuracy between the robust FIR and
robust RLS filters.

See the Appendix for proving Theorem 1.

5 A Numerical Simulation Example

Example 1

Let (44) give the state-space model for the observed

value y(t) and the nominal system state x(t).
y(t) = z(t) + v(t),z(t) = Hx(¢),

H=[1 o], (44)
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d’;(tt) = Ax(t) + Tw(t),

w0 =[] =0 =53]

A P
1

r= [—2]’

E[v(k)v(s)] = R(t — s),
Elw(®)w(s)] =Q8(t—s),Q =1,
E[v(®)w(s)] =0

Let the state-space model for the degraded
observed value y(t) and the degraded state x(t) be
given by:

¥(t) = Z(t) + v(t), 2(t) = HOF(L),

dx(t) o
T A()X(t) + Tw(t),
A(t) = A+ DA, H() = H+AH(Y), (45
BA@) =] 0 o 1
—0.1*rand —0.1=*rand

AH(t) =[0.1 0],
E[X(0)w(t)] = 0.

Here, the degraded signal Z(t) is observed with
additive white Gaussian noise v(t). AA(t) denotes
an uncertain matrix additional to the system matrix
A. “rand” denotes a scalar random number that
follows a uniform distribution in the interval (0,1).
Along with the state-space model in the observable
companion form of (3) and (5), the observation
equation for the degraded signal Z(t) and the state
differential equations for the degraded state X(t) is
represented by:

y(t) = 2(t) + v(0), 2(t) = HX (),

Z(t) = X, (¢),

0=,

i X, (t)
’;(tt) — Az +TE@),F=[0 1],

E[§(®)¢()] = Q8(t —s).

(46)

The system matrix A for the degraded state-space
model (46) is calculated by:
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[ dz(t) az(t) dz(s)|
[ s )] [ dt  dt
A= dzz(t) 5 d?z(t) dz(s)
[ [ dt? ()] [ dat? dt
| Ez©20)] [Z(t) 4Z(s) 1 @7)
x | | ,
o] oot
= h h = 0.001.

The estimate of 4 by (47) for n = 2 is based on
the relationship aK"—(“) = AKy(t,s) , 0 <s<t,
[36].

To approximate the derivatives in (47) for the
data sampling interval of h = 0.001, a four-point
forward difference formula with a truncation error
of O(h?) is employed in the numerical
differentiation. In the calculation of the expectation

in (47), for example, E [d (t)z(t)] is evaluated by,

;fOTdZ(tt) Z(t)dt,T = 2.0. Simpson's % rule
computes the numerical integration with an
integration step size of h =0.001. For the
degraded state ¥(t) in (46), the estimate of the
system matrix A results in:
—1.636926 x 1017
—3.217657

1.000000

—4.216199/ (48)

Table 1. Estimates of H for the white Gaussian
observation noises N (0, 0.3%), N(0, 0.4%), and
N(0,0.52)

White Gaussian . —

observation noise Estimates of H
N(0,0.3%) [1 —1.725904 x 10~¢]
N(0,0.4%) [1 —3.363866 x 10~%7]
N(0,0.5%) [1 3.693192 x 10716]

Table 1 shows the estimates of H by (7) for the
white Gaussian observation noises
N(0,0.4%), and N(0,0.5%). N(0,0.4%), and
N(0,0.5%). The estimate of H is precisely close to

N(0,0.3%), N(0,0.4%), and N(0, 0.52).

Substituting the covariance information a(t),
L), C(t), and D(t) into the robust RLS FIR
filtering algorithm of Theorem 1, the FIR filtering
estimate X(t,t + T) of the system state x(t + T)is
recursively computed. K,y;(s,s) = E[x(s)¥(s)] is
evaluated by %fOTx(t)y(t)dt, T = 2.0. Table 2
shows the estimates of K,;(s,s) for the white
Gaussian observation noises N(0,0.32), N(0,0.42),
and N (0, 0.52).
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Table 2. Estimates of K5 (s, s) for the white
Gaussian observation noises N (0, 0.32), N(0, 0.42),
and N(0,0.5%)

White

St?sl:asrsil\?arlion Estimates of K,;(s, s)

noise
N(0,0.3%) | [2.404773 x 10" —8.877329 x 10~2]
N(0,0.4%*) | [2.395386 x 10~1 —8.877390 x 10~2]
N(0,0.5%) | [2.383359 x 10~! —8.857582 x 10~2]

Figure 1 illustrates the FIR filtering estimate
X1(t, t+T), T =1, of the state variable x;(t + T)
vs. t, 0 < t < 1, for the white Gaussian observation
noise N(0,0.32). Figure 1 shows that £,(t,t + T)
converges to x,(t+T) as t increases. Figure 2
illustrates the FIR filtering estimate X,(t,t + T),
T = 1, of the state variable x,(t + T) vs. t, 0 < t <
1, for the white Gaussian observation noise
N(0,0.3%) . Figure 2 shows that %,(t,t+T)
gradually converges to x,(t + T) as t increases.

145 ¢

%0

— = Fillering estimate of x4(1)

esimale

§i18em n
litering
/

1 and s

Timo!
Fig. 1: FIR filtering estimate X, (t,t + T), T = 1, of
the state variable x,;(t + T) vs. t, 0 < t < 1, for the
white Gaussian observation noise N (0, 0.3%)

015 ¢ . . . - 3

Flormg ostimmie of xi(t) / J/

ango s
“

4 1 4 )
Iimal

Fig. 2: FIR filtering estimate x,(t,t + T), T = 1, of
the state variable x,(t + T) vs. t, 0 < t < 1, for the
white Gaussian observation noise N (0, 0.32)
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Table 3 shows the mean-square values (MSVs)
of the filtering errors x;(t + T) — %, (t,t + T)and
X,(t +T) —X,(t, t + T) in the case of T = 0.5 for
the white Gaussian observation noises N (0, 0.32),
N(0,0.4%), and N(0,0.5%). Here, the MSVs are

calculated by mz“’oo(xl(z h+T)—
X-hi-h+ T)) and — 1500 1000(x2(l h+T,)—
xy(i-h,i- h+T)) , h =0.001.

Table 3. Mean-square values of the FIR filtering

errors x,(t) — X, (t,t + T) and x,(t) — X, (t,t + T),

T = 0.5, for the white Gaussian observation noises
N(0,0.3%), N(0,0.4?), and N(0,0.5%)

White Gaussian
observation noise

MSV of x, (¢) —
2tt+T)

MSV of x,(t) —
2,0t t+T)

N(0,0.32)

1.17634x 107!

6.33826x 102

N(0,0.42)

1.74127x 107!

7.58909x 10~2

N(0,0.52)

2.39987x 107*

1.05730x 107!

Table 4. Mean-square values of the FIR filtering

errors x, (t) — X, (t,t + T) and x,(t) — X, (t,t + T),

T = 1, for the white Gaussian observation noises
N(0,0.3%), N(0,0.4%), and N(0,0.5%)

White Gaussian | MSV of x,(t) — | MSV of x,(t) —

observation noise Xt t+T) Xt+T)
N(0,0.3%) 1.13525% 1071 6.19606x 1072
N(0,0.42) 1.66809x 10~ | 7.37079x 1072
N(0,0.5%) 2.14188% 1071 8.91796x 1072

Table 4 shows the MSVs of the FIR filtering
errors x;(t+T)—%,(t,t+T) and x,(t+T)—
X,(t, t+T) in the case of T =1 for the white
Gaussian observation noises N(0,0.32), N(0,0.42),
and N(0,0.5%). Here, the MSVs are calculated

by 10100 200 (i-h+T)—%,(i-hi-h+

T))’and ——S10900(x, (i h+T,) = Z,(i- h,i-h +

), h = 0.001.

Table 5 shows the MSVs of the filtering errors
xt+T)—%,00,t+T) and x,(t+T)—
%,(0,t +T) in the case of T=1 for the white
Gaussian observation noises N(0,0.32), N(0,0.42),
and N(O 0.52). Here, the MSVs are calculated

Y Too0 1000(x1(l h+T)—x%,(0,i-h+ T)) and

100021000(962 (i-h+T,)—%,00,i-h+ T))
0.001.

Table 5. Mean-square values of the filtering errors
x1(t+T)—%,0,t+T)and x,(t +T) —
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X%,(0,t + T), T = 1, for the white Gaussian
observation noises N(0,0.32), N(0,0.4?), and

N(0,0.52)
White Gaussian MSV of MSV of
observation noise x,(t+T)— x,(t+T)—
%,(0,t+T) %,(0,t +T)
N(0,0.32) 1.11533x 107! 5.79816x 10?2
N(0,0.4%) 1.60262x 1071 6.46205x 102
N(0,5%) 2.00979x 1071 7.37283x 1072

From Table 3for T = 0.5 and Table 4 forT = 1,
the MSVs of the robust RLS FIR filtering errors
x (t+T)—x,(t,t+T) and X, (t+T)—
X,(t, t+T) for T =1 are smaller than those for
T = 0.5 in each observation noise. This result
indicates that the estimation accuracy of the robust
RLS FIR filter improves as the fixed interval T
increases. The MSVs of the robust RLS FIR filter
for T = 1 in Table 4 are almost identical to those of
the robust RLS filter in Table 5 for each observation
noise. The results show that as the fixed interval T
increases, the robust RLS FIR filter achieves
accuracy similar to that of the robust RLS filter.

Example 2
Consider the second-order mass-spring system
driven by zero-mean white Gaussian noise w(t)
[41].

y(&) = z(t) + v(t),2(t) = Hx(¢),

H=[1 0],

d’;(tt) = Ax(t) + Tw(o),
x,(t) 1.0

0 = [ ol 2@ =[],

A=|_op _ate|ien="3 (49)
(== [z

E[v(®)v(s)] = R6(t — s),

Elw(®)w(s)] =Q5(t—s),Q =1,

E[v(®)w(s)] = 0, E[x(0)w(t)] = 0,
E[x(0)v(t)] = 0.

Let the state-space model for the degraded
observed value ¥(t) and the degraded state X(t) be
given by (45). Figure 3 illustrates the FIR filtering
estimate %,(t,t + T), T = 1, of the state variable
x(t+T)vs. t,0<t<1, for the white Gaussian
observation noise N(0,0.3%). Figure 1 shows that
X1(t, t +T) converges to x;(t+T) as t increases.
Figure 2 illustrates the FIR filtering estimate
X,(t,t+T), T =1, of the state variable x,(t + T)
vs. t, 0 <t < 1, for the white Gaussian observation
noise N(0,0.32). Figure 2 shows that £,(t,t + T)
gradually converges to x,(t + T) as t increases.
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Fig. 3: FIR filtering estimate x,(¢t,t + T), T = 1, of
the state variable x; (t + T) vs. t, 0 < t < 1, for the
white Gaussian observation noise N (0, 0.3%)
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Fig. 4: FIR filtering estimate X,(¢t,t + T), T = 1, of
the state variable x,(t + T) vs. t, 0 < t < 1, for the
white Gaussian observation noise N (0, 0.3%)

Figure 4 illustrates the FIR filtering estimate
X,(t,t +T), T =1, of the state variable x,(t + T)
vs. t, 0 <t < 1, for the white Gaussian observation
noise N (0, 0.32). Figure 4 shows that £,(t,t + T)
gradually  converges to x(t+T) as t
increases.Table 6 shows the MSVs of the filtering
errors x;(t+T)—x,(t,t+T) and x,(t+T)—
X,(t,t +T) inthecaseof T = 0.5 for the white
Gaussian observation noises N (0, 0.32), N(0, 0.42),
and N(0,0.5%). Here, the MSVs are calculated

by L 1°°°(x1(l h+T)—x,(i-hi-h+

1000
T)) and —Zlooo(xz(l h+T,)—%,(i-hi-h+
T)) , h =0.001.

1000
Table 6. Mean-square values of the FIR filtering

errors x,(t) — %, (t,t + T) and x,(t) — X, (¢, t + T),
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T = 0.5, for the white Gaussian observation noises
N(0,0.32), N(0,0.42), and N(0, 0.52)

White Gaussian
observation noise

MSV of x, (t) —
2t t+T)

MSV of x,(t) —
2,(t,t+T)

N(0,0.3%) 1.42786x 10~* | 1.00599x 10~
N (0, 0.42) 2.29930x 10~1 | 9.83384x 102
N(0,0.5%) 3.20115x 10~1 | 1.10423x 10~°

Table 7. Mean-square values of the FIR filtering
errors x, (t) — X, (t,t + T) and x,(t) — X,(t, t + T),
T = 1, for the white Gaussian observation noises
N(0,0.3%), N(0,0.4%), and N(0,0.5%)

White Gaussian
observation noise

MSV of x, (t) —
X (t,t+T)

MSV of x,(t) —
Xt t+T)

N(0,0.32) 1.40065x 10~1 | 9.80377x 1072
N(0,0.4%) 2.23520x 10~* | 9.51019x 1072
N(0,0.52) 3.10346x 101 | 1.07269x 10!

Table 7 shows the MSVs of the FIR filtering
errors x,(t+T)—x,(t,t+T) and x,(t+T) —
X,(t, t+T) in the case of T =1 for the white
Gaussian observation noises N (0, 0.3%), N(0, 0.4?),
and N(0,0.5%). Here, the MSVs are calculated

by 10100 1000(x1 (i-h+T)—x%,(-hi-h+
T)) and 775 1000 Y0%(x,(i-h+T,) = %,(i-hi-h+
T))?, h = 0.001. From Table 6 for T = 0.5 and

Table 7 for T = 1, the MSVs of the robust RLS FIR
filtering errors x;(t+T)—%,(t,t+T) and
X, (t +T)—x,(t,t +T) for T = 1 are smaller than
those for T = 0.5 in each observation noise. This
result indicates that the estimation accuracy of the
robust RLS FIR filter improves as the fixed interval
T increases.

Table 8 shows the MSVs of the filtering errors
x(t+T)—%,00,t+T) and X, (t+T)—
X%,(0,t +T) in the case of T=1 for the white
Gaussian observation noises N (0, 0.32), N(0, 0.42),
and N(O 0.52). Here, the MSVs are calculated

Y 500 1000(x1 (i-h+T)—2%,00,i-h+ T)) and
L 1000(x2(1 h+T,)—x,(0,i- h+T)) h=

1000
0.001.

Table 8. Mean-square values of the filtering errors
x,(t+T)—%,00,t+T)and x,(t + T) —
X,(0,t + T), T = 1, for the white Gaussian

observation noises N (0, 0.3%), N(0, 0.4%), and
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N(0,0.5%)
White Gaussian MSV of MSV of
observation noise xt+T)— Xt +T)—
%00,t+T) %,(0,t+T)
N(0,0.3%) 1.39703x 107! | 9.62447x 1072
N(0,0.4%) 2.21413x 10~ | 8.99001x 102
N(0,5%) 3.04095x 107 | 9.64902x 10~2

The MSVs of the robust RLS FIR filter for T =
1 in Table 7 are almost identical to those of the
robust RLS filter in Table 8 for each observation
noise. The results show that as the fixed interval T
increases, the robust RLS FIR filter achieves
accuracy similar to that of the robust RLS filter.

6 Conclusion

In my previous research, I designed the robust RLS
Wiener filter for linear continuous-time stochastic
systems with uncertainties. This paper presents the
robust RLS FIR filter for linear continuous-time
stochastic systems with uncertain parameters in both
the system and observation matrices. One of the
main features of the robust RLS FIR filter is the use
of cross-covariance information between the system
state and the degraded observed value, as well as the
covariance function of the degraded state. For the
robust filtering problems in linear continuous-time
stochastic systems with uncertainties, this paper
uses the state-space model of the observable
companion form for the degraded signal. (6) and (7)
give the estimates of the system and observation
matrices for the uncertain state, respectively. Usages
of the covariance information a(t), B(t) , C(t), and
D(t) characterize the current robust RLS FIR filter
as described in Theorem 1.

The numerical simulation examples have
demonstrated the effectiveness of the proposed
robust RLS FIR filtering algorithms. As the variance
of the white Gaussian observation noise increases,
the estimation accuracy of the robust RLS FIR filter
decreases. The robust RLS FIR filter estimates the
signal and the system state recursively based on
observations over the finite time interval as time
passes. As the length of the finite observation
interval increases, the estimation accuracy of the
robust RLS FIR filter improves. The MSVs of the
robust RLS FIR filter for T =1 in Table 4 and
Table 7 are almost identical to those of the robust
RLS filter in Table 5 and Table 8, respectively, for
each observation noise. The results show that as the
observation interval increases, the robust RLS FIR
filter achieves accuracy similar to that of the robust
RLS filter.
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The second example is simulated on the second-
order mass-spring system driven by zero-mean
white Gaussian noise. The proposed robust FIR
filter might be applicable to control problems with
control input from the viewpoint of the separation
principle between control and estimation.
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Proof of Theorem 1
Introducing an integral equation
Jt+T,$)R = B7(s)
t+T

—f J(t+ T, 7)HK;(t,s)H dr, (A-1)
t

from (2), we obtain (A-2) for the optimal impulse
response function.

h(t+T,s)=alt+T)J(t+T,s) (A-2)

Differentiating (A-1) with respect to ¢, we have
AJ(t+T,s)
ot .
=—J(t+T,t+T)HC(t+T)L(t +T,s)
+J(t+ T, OAD)J(t + T, s).

(A-3)

Here, L(t + T, s) satisfies
L(t+T,s)R=DT(s)HT

t+T
— _ A-4
—j L(t+ T, t)HK;(z,s)H dr. (A-4)
t

J(t +T,s) satisfies

J(t+T,s)R = CT(s) HT
t+T

_f J(t + T, 1)HK;(t,s)H  dr. (A-5)
t

From (A-1), J(t + T,t + T) satisfies
Jt+T,t+T)R=BT(t+T)

t+T

—f, J+T, T)H K (z,t + T)A  dr. (A-6)

From (14), (A-6) becomes
Jt+T,t+T)R=BT(t+T)
—[F7T @+ T, OAED(DCT(t +
T)H dx.

(A7)

Introducing
t+T

r(t,t+T) =J J(t+T,0)AHD(z)dr, (A-8)
t

(A-7) becomes

Jt+T,t+T)R=BT(t+T)

—r(t,t+T)CT (¢ + THHT. (A-9)

From (A-1), J(t + T, t) satisfies
Jt+T, )R = BT (t)

t+T
- _[ J(t + T, 0)HK:(r,t)H dz. (A-10)
t

From (14), (A-10) becomes

Jt +T, R = p7(t) (A-11)
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t+T
—f J(t + T,©)HC(x)dtDT (t)HT.
t

Introducing

t+T
F(t,t+T) =f J(t+T,0)HC(D)dr, (A-12)
t

(A-11) becomes
JE+T,0)R = BT(¢)
—#(t,t + T)DT (O (A-13)

Differentiating (A-8) with respect to t, we have
dr(t,t+T) o
T = ](t + T,t + T)HD(t

+T)
—J(t+ T, t)HD(t)

HToI(t+T,7)
+ft THD(T)dT

(A-14)

Substituting (A-3) into (A-14) and introducing
functions

S(t,t+T) =f

¢
+T,7)HD(7)dr

t+T

L (A-15)

and
t+T

Yt,t+T) = f J(t +T,0)HD(7)dr, (A-16)
t

we obtain
dr(t,t +T)
dt L
= J({t+T,t+T)HD({t+T)
—HC({t+T)S(t,t+T))
—J(t+T,t)(HD(t)
—AD()7(t,t +T)).

(A-17)

Differentiating (A-12) with respect to t, we have
dr(t,t+T)
dt .
=Jt+T,t+T)HC(t+T)
—J(t+T,0)HC(t)

BTt +T,7) .
+f MHC(T)dT.
¢ at

(A-18)

Substituting (A-3) into (A-18) and introducing

t+T
pt,t+T) = f Lit+T,DHAC()dr (A-19)
t

and
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- t+T
T(t,t+T)= f Jt+T,0)HC()dr, (A-20)
t

we obtain
di(t,t+T)
dt .
=J{t+T,t+T)(HC(t+T)
—HCt+Dpt,t+ 1))
—J(t+ T, t)(HC(t)
— HD(OT(¢t,t + T)).

(A-21)

Differentiating (A-4) with respect to t, we have
AL(t+T,s)
ot _ _
=—L(t+T,t+T)HKs(t +T,s)HT
+L(t + T, t)HK;(t, s)HAT

HToL(t+T,1) - _
—f %HIQ?(T, S)HTdT.
t

(A-22)

From (14) and (A-5), we obtain
OL(t+T,s)
at
=—L(t+T,t+T)HC(t + T)L(t
+T,5s)
+L(t+ T, )HD(O)J(t + T, s).

(A-23)

Differentiating (A-5) with respect to t, we have
aJ(t+T,
J(t+T,s) R
at . .
=—J(t+T,t+T)HK:(t + T,s)HT
+H(t+ T, t)HK:(t,s)HT

HToJ(t+T,7) —
—f %HKE(T, S)HTdT.
t

(A-24)

From (14), (A-4) and (A-5), we obtain
AJ(t+T,s)
gt .
=—Jt+T,t+T)HC(t+T)L(t
+T,s)
+/(t+T,O)AD@)J(t +T,s).

(A-25)

From (A-5), J(t + T, t + T) satisfies

Jt+T,t+T)R=CT(t+T)HT
t+T

—f J(t + T, 1)HK: (1, t
t
+ T)HAT dr.

(A-26)

Substituting (14) into (A-26) and using (A-16), (A-
26) becomes
Jt+T,t+T)R=CT(t+T)AT

S - A-27
—7(t,t+T)CT(t+T)HT. (A-27)
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From (A-5), J(t + T, t) satisfies

Jt+T,0)R=CT(t)HT
t+T

- f J(t + T, 0)HK;(t, ) H  dx. (A-28)
t
Substituting (14) into (A-28) and introducing
t+T
Tt,t+7) = f J(t
. B (A-29)
+ T,7)HA(1)dT,
(A-28) becomes
Jt+T,0)R=CT(t)HT (A-30)

—T(t,t + TH)DT ()H".

Differentiating (A-16) with respect to t, we have
dr(t,t + T)
~ dt e
= Jt+T,t+T)HD(t+T)
—J(t+T,)HD(t)
BTof(t+T,1) .o
N f J( )
t

(A-31)

HD .
r (t)dr

Substituting (A-25) into (A-31) and introducing

t+T
St t+T) = ft L(t (A-32)
+ T,7)HD(7)dr,
we obtain
dr(t,t + T)
- dt ——
= J(t+T,t+T)HD({t+T) (A-33)

—HC({t+T)S(t,t+T))
—J(t+T,t)(HD(t)
— HD()Y(t,t +T)).

Differentiating (A-19) with respect to t, we have

dp(t,t+T)

dt .
= L({t+T,t+T)HC(t+T)
—L(t+T,)HC(D)

HTOL(t+T,7) .
e

t

(A-34)

5% HC (7)dr.

Substituting (A-22) into (A-34) and using (A-20),
we obtain
dp(t,t +T)
dt .
= Lt+T,t+T)HCE+T)
—HC(t+Dpt,t+T1))
—L(t+ T, t)(HC(t)
—HD(OT(¢t, ¢t +T)).

(A-35)
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Differentiating (A-20) with respect to t, we have
dT(t,t +T)

dt
=Jt+T,t+THCE+T)

—J(¢ + T, OHC(®) (A-36)
HToJ(t+T,7) .
+ ft T HC(T)dT
From (A-25), (A-36) becomes
dT(t,t + T)
~ dt —
= Jt+T,t+T)HC(E+T) (A-37)

—HCt+Dpt,t+ 1))
—J(t+T,t)(HC(t)
—-HD(®T(t, t +T)).

Differentiating (A-32) with respect to t, we have
ds(t,t+T)
dt L
= L(t+T,t+T)HD(t+T)
—L(t+T,t)HD(¢t)

HTOLt+T,7)
[T g,
. ot

(A-38)

Substituting (A-23) into (A-38) and using (A-16),
we obtain
ds(t,t+T)
dt L
= L({t+T,t+T)HD(t+T)
—HC(t+T)S(t,t+T))
—L(t+T,t)(HD(t)
—HD()7(t, t + T)).

(A-39)

From (A-4), L(t + T, t + T) satisfies
L(t+T,t+T)R=DT(t+T)H"

t+T
— ~ A-4
—f L(t+ T, 1)HK;(r,t + T)H dT. (A-40)
t

From (14) and (A-32), (A-40) becomes
— pT oT
L(t+T,t+73R—D gT+T)H (A-41)
=S, t+T)C'(t+T)H".
From (A-4), L(t + T, t) satisfies
L(t+T,t)R=DT(t)H"

t+T

- — A-42

—f L(t + T, T)HK;(z,t)H dr. ( )
t

From (14) and (A-19), (A-42) becomes
L(t+T,t)R=DT(t)HT

—p(t,t + T)DT(OH". (A-43)
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The FIR filtering estimate x(t, t + T) of the state
x(t + T) is given by (8). Introducing a function

e(t,t+T) = [T J(t +T,5)5(s)ds,  (A-44)
from (A-2), (8) becomes
X, t+T)=a(t+Te(,t+T). (A-45)

Differentiating (A-44) with respect to t, we have
de(t,t+T)
dt
= Jt+T,t+T)yt+T)
=]t + T, 0)5(0)

BTt +T,s
+f —]( )37(5)615.
, ot

(A-46)

Substituting (A-3) into (A-46) and introducing
functions

t+T
FE+T) = f Lt +T,5)y(s)ds  (A4T)
t
and
t+T
é(t,t+T) = J(t +T,s)y(s)ds, (A-48)
t
we obtain
de(t,t +T)
dt .
= Jt+T,t+T)FE+T) (A49)

—HC(t+Df(t,t+T))

~J(t + T, (1)
—HD(t)e(t,t +T)).

Differentiating (A-47) with respect to t, we have
df(t,t+T)
dt
=L{t+T,t+T)yt+T)
—L(t+T,t)y(t)
HTOL(t+T,
+f My(s)ds.
¢ ot

(A-50)

Substituting (A-23) into (A-50) and using (A-48),
we obtain
df(t,t+T)

d
= L(tt+ T,t+T)F(t+T)
—HC(t+Df(t,t+T))
—L(t + T, t)(y(t) — HD(t)é(t, t + T)).

(A-51)

Differentiating (A-48) with respect to t, we have
dée(t,t+T) (A-52)
dt
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= J{t+T,t+T)y{t+T)
—J(t+ T, )y(t)

HToJ(t +T,s
+ f TEATS) 5.
t 3t

Substituting (A-25) into (A-52) and using (A-47),
we obtain
dé(t,t+T)
_dt
=Jt+T,t+T)H(E+T)
—HC(t+T)f(t,t+T))
—J(t+ T, t)(3(@) — HD(t)é(t, t + T)).

(A-53)

From (A-1), J(T, s) satisfies
J(T,$)R = BT (s)

T
- f J(T,7)HK;(t,s)H  dz. (A-54)
0

Differentiating (A-54) with respect to T, we have
YTs) ,
dT _ _
= —J(T,T)HKy(T,s)HT

ToJ(T,1) - _
—fo 57 HKy(t,s)H dr.

(A-55)

By putting t = 0 in (A-4), we have
L(T,s)R =DT(s) HT
T

- f L(T, ©)HKx(z,s)H dx. (A-56)
0

From (14), (A-55) and (A-56), we obtain

d];;S) = —J(T,T)HC(T)L(T,s).

(A-57)

From (A-8), r(0,T) is given by

T
r(0,T) = f J(T,©)HD (7)dr. (A-58)
0

Differentiating (A-58) with respect to T we have
dr(0,T)
dT L
= J(T,T)HD(T)

ToJ(T,s)
+_[0 T HD(t)dt.

(A-59)

Substituting (A-57) into (A-59), we obtain
dr(0,T)
dT __ .
= J(T,T)(HD(T) — HC(T)S(0,T),
r(0,0) = 0.

(A-60)

Here, from (A-32), S(0,T) is given by
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T

5(0,T) = f L(T,©)AD (t)dx. (A-61)
0

Differentiating (A-56) with respect to 7', we have
L(T,s) _ —
5T R =—L(T,T)HKg(z,s)AT

TOL(T,t) - o
—fo a7 HKy(t,s)H" dt.

(A-62)

From (A-56) and (A-62), we obtain

LT,s) _ L(T, T)HC(T)L(T, 5).

gt (A-63)

Differentiating (A-61) with respect to T, we have
dS(0,T)
ar __
= L(T,T)AD(T)

TOL(T,7)
+f0 o7 HD(1)dr.

(A-64)

Substituting (A-63) into (A-64) and using (A-61),

we obtain
ds(o,T o
EZT ) _ L(T, T)(HD(T)

—HC(T)S(0,T)), S(0,0) = 0

(A-65)

By putting s = T in (A-54), we have
J(T,T)R = B7(T)

T
- f J(T,7)HK (7, T)H  dz. (A-66)
0

From (14) and (A-58), we obtain
J(T, TR = BT(T) —r(0,T)CT(T)H".  (A-67)
By putting s = T in (A-56), we have
L(T,T)R=DT(T) AT
T

- f L(T, ©)HKy(x, T)H  dx. (A-68)
0

From (14) and (A-61), we obtain
L(T,T)R =DT(T)HT ]

—5(0,T)CT(T)HT. (A-69)

By putting t = 0 in (A-5), we have
J(T,s)R=CT(s) HT

T
- f J(T K ()BT dr. (A-70)
0

Differentiating (A-70) with respect to T, we have
dj(T,s) (A-71)
dT
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= —j(T THK;(T,s)AT
J‘ aJ(T, 1) i
0

oT
From (A-56) and (A-71), we obtain
dj(T,s)
dT . .
= —J(T,T)HC(T)L(T,s).

HK;(z,s)HT dr.

(A-72)

By putting t =0 in (A-16), (0, T) is given by
T

r(0,T) = fo J(T,©)HD (7)dr. (A-73)

Differentiating (A-73) with respect to 7', we have
dr(0,T)
ar
= J(T,T)HD(T)

+fTa](TT)HD( Yde.

(A-74)

Substituting (A-72) into (A-74) and using (A-61),
we obtain

O _ yer, myaner
=/ DUHDT)

—HC(T)S(0,T)), ¥(0,0) = 0.

(A-75)

By putting t =0 in (A-19), (0, T) is given by
T

5(0,T) = f L(T, DHC (). (A-76)
0

Differentiating (A-76) with respect to T, we have
dp(0,T)

ar
= L(T,T)HC(T)

T AL(T,T) = x
+f0 ;TT)HC(T)dT.

(A-77)

Substituting (A-63) into (A-77) and using (A-76),
we obtain

dp(0,T) e
T = L(T,T)(HC(T) (A-78)
—HC(T)p(0,T)), p(0,0) = 0.
By putting t =0 in (A-12), #(0, T) is given by
T
#(0,T) = f J(T,0)HC(t)dT. (A-79)
0

Differentiating (A-79) with respect to T, we have
dr(0,T)

daT
=J(T, T)HC(T)

TOJ(T,T) 1 x
+J, %HC‘(T)C{T.

(A-80)
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Substituting (A-57) into (A-80) and using (A-76),
we obtain

dF(0,T) .
T J(T, TY(HC(T) (A-81)
_HC(T)B(0,T)), #(0,0) = 0.
By putting ¢ =0 in (A-20), T'(0, T) is given by
T
T, 1) = f J(T,©)HC (1)dx. (A-82)
0

Differentiating (A-82) with respect to T, we have
dT’(0,T)
ar
= J(T,T)HC(T)

TAJ(TT) = =
+J, ]aTT HC(7)d.

(A-83)

Substituting (A-72) into (A-83) and using (A-76),
we obtain
dr(0.7) = J(T,T)(HC(T)
T =J(T,T)(

—HC(T)p(0,T)), T(0,0) = 0.

(A-84)

By putting t = 0 in (A-26), we have
J(T,T)R = CT(T)AT
T

- f J(T, O HK(z, T)H dx. (A-85)
0

From (14) and (A-73), we obtain
J(T,T)R = CT(THT

—7(0,T)CT(T)HT. (A-86)

From (A-45), (0, T) is given by

x(0,T7) = a(T)e(0,T). (A-87)

From (A-44), e(0,T) is given by
T

e(0,T) =f J(T,s)y(s)ds. (A-88)
0

Differentiating (A-88) with respect to 7', we have
de(0,T)

dT
= J(T,T)y(T) +

To)(T, )V (A-89)
e s

Substituting (A-57) into (A-89) and introducing
T

f(@,T) = f L(T,s)y(s)ds, (A-90)
0
we obtain
20D _ e (A-91)
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—HC(T)f(0,T)), e(0,0) = 0.

Differentiating (A-90) with respect to T, we have
df(0,7) o
= L(T, T)y(T)

dT )
aL(T,

N f (T,s)
o OT

(A-92)

y(s)ds,

Substituting (A-63) into (A-92) and using (A-90),
we obtain

J S)T Dotan(m
~ HEMFO.1)), (A-93)
£(0,0) = 0.
By putting t = 0 in (A-48), we have
50,T) = fo e )y(s)ds. (A-94)

Differentiating (A-94) with respect to T, we have
de(0,T) . -
=J(T, T)y(T)

dT S
aJ (T,
+f J(T,s)

(A-95)

y(s)ds.

Substituting (A-72) into (A-95) and using (A-90),
we obtain

LD _ jer,m (5
—HEMFO.1)), (A-96)
8(0,0) = 0.
(Q.E.D)
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