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Abstract: Object detection is a fundamental task in computer vision, which involves the identification and local-
ization of objects within image frames or video sequences. The problem is complicated by large variations in the
video camera bounding box, which can be thought of as colored measurement noise (CMN). In this paper, we use
the general unbiased finite impulse response (GUFIR) approach to improve detection performance under CMN.
The results are compared to the general Kalman filter (GKF) and two detection methods: “Faster-RCNN” and
“Tensorflow PASCAL Visual Object Classes (VOC)”. Experimental testing is carried out using the benchmark
data ”Car4”. It is shown that GUFIR significantly improves the detection accuracy and demonstrates the proper-
ties of the effective tool for visual object tracking.
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1 Introduction
Object detection is a key task in computer vision, [1],
[2], [3], [4], [5], that involves identifying objects
and their locations in image frames or video se-
quences, [6], [7], [8], [9]. The problem arises in var-
ious research areas, including autonomous driving,
surveillance, medical imaging, and robotics, among
others, [10], [11], [12], [13]. The annoying thing is
that discrepancies usually arise between the estimated
positions of objects and the truth, primarily due to en-
vironmental factors, [14], [15], [16], [17]. Since dis-
crepancies are not white, they can be treated as col-
ored measurement noise (CMN), making accurate de-
tection difficult, [18], [19], [20], [21], [22].

The goal is thus to discusses the potential for re-
fining object detections through post-processing us-
ing filtering methods to improve detection or track-
ing accuracy under CMN. We do it by using the un-
biased finite impulse response (UFIR) filtering ap-
proach, [23], [24]. We use the general Kalman fil-
ter (GKF) as a benchmark and perform a comparative
analysis with two widely-used detection tools called
“Faster R-CNN in CNKT” and “Tensorflow PASCAL
Visual Object Classes (VOC)”, [25], [26], [27], [28],
[29], [30]. Testing is provided using video sequences,

utilizing classic methods of object initialization and a
combination of region labeling and contour search for
object detection. The object position is represented
by a bounding box (BB), whose coordinates serve as
inputs for filtering algorithms. For the “Faster R-
CNN in CNKT” and “Tensorflow PASCALVOC” al-
gorithms, the Visual Object Tagging Tool (VOTT) is
employed. The VOTT facilitates the gathering of BB
values from each frame. These assets are then con-
verted into the “Faster R-CNN in CNKT” and “Ten-
sorflow PASCAL VOC” formats for model training
and obtaining object detection information.

2 Object Detection Process
The object detection process utilizes information ex-
tracted from images or video sequences to identify
and locate objects. Pose information used with this
aim is collected in the video camera BB, [31], [32],
which is one of the most important tasks, [33], [34],
[35]. The process starts with region labeling, divides
the image into regions and identifies boundaries be-
tween them. Object is then described through the
properties, requiring the extraction of parameters and
properties for representation. Next, an object detec-
tion algorithm is applied to analyze the image and
predict the location of objects in the scene. Post-
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processing techniques, like detection refinement and
filtering algorithms such as Kalman, can be used to
improve detection precision, [36], [37], [38], [39],
[40]. Finally, the results of object detection are eval-
uated for the ground truth data. Evaluation metrics
include precision, Root Mean Square Error (RMSE),
and Center of the Rectangle (CoR), among others,
[41], [42].

2.1 Bounding Box Information
The BB is a rectangular frame that describes the loca-
tion of a detected object within an image or a video
sequence. The BB is represented by four coordi-
nates: the x-coordinate and y-coordinate of the top-
left corner of the box, and the width and height of the
box, [43]. The BBs are commonly used to locate ob-
jects and provide spatial information about their posi-
tions.

2.2 Ground truth
The ground truth (GT) is the actual, real, or correct ob-
ject position in a scene, [44]. The GT can be obtained
by manual annotation, through a reference algorithm,
or by automatic annotation using specialized software
tools. Generating a reliable and valid reference anno-
tation can be a time-consuming and complicated pro-
cedure. The ground truth includes information such
as the object locations, and their coordinates in the
image or video sequence. The GT serves as a bench-
mark for evaluating the accuracy, and effectiveness
of detection. It is also used to evaluate tracking algo-
rithms, [45].

3 Performance Evaluation
The detection performance can be evaluated using the
precision metric, RMSE, and CoR, [46]. The RMSE
is a measure of the variation between truth values and
estimated values, [47]. It is computed by taking the
square root of the average of the squared differences
between each truth value yi and its corresponding es-
timated value ŷi for N (observations), where i rep-
resents the i-th measurement out of N total observa-
tions. Precision is a measure of how well the esti-
mated positions alignwith the ground truth, [42], [48].
Precision can be quantified using intersection over
union (IoU), which indicates the percentage of over-
lap of the predicted BB over the true BB (TBB). To
compute the precision, it needs comparing the IoU re-
sults with an established threshold, [42], [48], [49],
[50], which can be done as follows:

IoU = IA(TBB− EBB)− IA (1)

Precision =ɆTP/ΣTP+ ΣFP                 (2)
where IA is the area of intersection between the BB
of the target object, the TBB, and the estimated BB

(EBB). Also TP is true positive and FP is false posi-
tive. The center of the rectangle is a metric to measure
the distance between the estimated and ground truth
BB (GT BB). This metric determines whether the de-
tection is true or false. It is positive when the center of
EBB iswithin the geometrical limit of theGTBB. The
results can be presented by the percentage of CoR of
estimated BB that is within the ground truth BB, [41].
The estimation error in object detection indicates the
difference between the EBB and the ground truth po-
sition. The estimation error can be measured using
diverse metrics. The relative error is a statistical met-
ric, which is calculated as the result of the difference
between the estimated value and GT value divided by
the GT value, [51], and is often expressed in percent-
age.

4 State-Space Model with
Measurement Disturbances

Input data are the object position information saved
in the BB. Since these data are heavily disturbed by
the environment, we consider the measurement dis-
turbances as CMN. The object coordinates are stored
at the BB coordinates Xc, Yc, Xw, an Yh. To detect
the object in the discrete-time index n, we need mea-
surements of the BB coordinates at every n. There-
fore, we represent the object dynamics in discrete-
time state-space by the following state and observa-
tion equations:

xn = Fxn−1 +Bwn , (3)
vn = Ψvn−1 + ξn , (4)
yn = Hxn + vn , (5)

wherexn ∈ RK ,K = 8, is the partitioned state vector

xn =
[
XT

c Y T
c XT

w Y T
h

]T
, (6)

in which the vector components are defined by

Xc =

[
xc
Vxc

]
, Yc =

[
yc
Vyc

]
, Xw =

[
xw
VXw

]
, Yh =

[
yh
Vyh

]
.

The correspondent velocities VXc
, VYc

, VXw
, and VYh

are considered constant, following, [52]. The system
matrix F is a block diagonal with the components

F̄ =

[
1 τ
0 1

]
, (7)

where the block is repeated for the ”x”,”y”, ”width”,
and ”height” spatial dimensions, and τ is the sampling
time. The system noise matrix B̄ is defined for each
of the states by

B̄ =

[
τ2

2
τ

]
, (8)
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ad the observation matrix is

H =

 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

 . (9)

We suppose that the object noisewn ∼ N (0, Q) ∈
R4,

wn = [wxcn wycn wxwn wyhn]
T
,

has the known covariance Q. Since the measurement
data are heavily affected by CMN, we treat the mea-
surement noise vn ∈ R4,

vn = [vxcn vycn vxwn vyhn]
T
,

as colored and represent by the Gauss-Markov
model (4), where the components in the diagonal col-
oredness factor matrix

Ψ = diag [ψxc
ψyc

ψxw
ψyh ]

are chosen such that vn remains stationary. The driv-
ing zero mean white Gaussian noise ξn ∼ N (0, R) ∈
R4 in (4),

ξn = [ξxcn ξycn ξxwn ξyhn]
T
, (10)

has the known covariance R. The noise vectors wn

and ξn are mutually uncorrelated, so the property
E{wnξ

T
k } = 0 holds for all n and k.

The standard UFIR and KF algorithms cannot be
applied to models with CMN. Therefore, we first con-
vert the model (3)–(5) to the standard form with white
Gaussian noise components. To this end, we will
use the measurement differencing approach proposed
in [53], in the form developed for the Euler forward
method-based state model (3) in [54].

4.1 State-Space Model Transformation
To avoid CMN in the observation equation (5), we use
the measurement differencing approach, [53], [55],
and introduce a new observation vector zn = yn −
Ψyn−1 as

zn = Hxn + vn −ΨHxn−1 −Ψvn−1 , (11)
zn = H̄xn + v̄n , (12)

where H̄ = H−Γ, Γ = ΨHF−1, and v̄n = ΓBwn+
ξn. In the new observation equation (12), the noise v̄n
is white Gaussian with the properties:

E{v̄nv̄Tn } = ΓΦ+R , (13)
E{v̄nwT

n } = ΓBQ , (14)
E{wnv̄

T
n } = QBTΓT , (15)

where Φ = BQBTΓT . So, v̄n and wn are time-
correlated.

To implement the robust UFIR filter and optimal
KF for the new state space model (3) and (12), we
need new bias correction gains for time-correlated
v̄n and wn. Our transformations will be based on
the following measures: x̂−n ≜ x̂n|n−1 is the a pri-
ori estimate, x̂n ≜ x̂n|n is the a posteriori esti-
mate, ϵ−n = xn − x̂−n is the a priori estimation er-
ror, ϵn = xn − x̂n is the a posteriori estimation error,
P−
n ≜ Pn|n−1 = E{ϵ−n ϵ−T

n } is the a priori error co-
variance, and Pn ≜ Pn|n = E{ϵnϵnT } is the a poste-
riori error covariance.

5 General Filters for CMN
In this section, we will follow, [24], and develop the
GKF and GUFIR algorithms for CMN using mea-
sured information contained in BBs.

5.1 General KF for CMN
There are two options to develop GKF under time-
correlated wn and v̂n, [24]: 1) derive a new bias cor-
rection gain or 2) de-correlate the noise vectors. Since
the ultimate algorithms are equivalent and do not have
significant advantages over each other, we will base
our developments on the first option, which implies a
new bias correction gain. A pseudo code of the GKF
developed for object detection under Gauss-Markov
CMN with time-correlated wn and v̂n is listed as Al-
gorithm 1, [21], [24]. In the predict phase, this algo-

Algorithm 1: GKF for Object Detection un-
der CMN with Time-Correlated wn and v̄n
Data: yn, x̂0, P0, Q, R
Result: xn, Pn

1 begin
2 Γ = ΨHF−1 ; H̄ = H − Γ ;

Φ = BQBTΓT ;
3 for n = 1, 2, · · · do
4 zn = yn −Ψyn−1 ;
5 P−

n = FPn−1F
T +BQBT ;

6 Sn = H̄P−
n H̄

T +R+HΦ+ΦT H̄T ;
7 Kn = (P−

n H̄
T +Φ)S−1

n ;
8 x̂−n = Fx̂n−1 ;
9 x̂n = x̂−n +Kn(zn − H̄x̂−n ) ;
10 Pn = (I −KnH̄)P−

n −KnΦ
T ;

11 end for
12 end

rithm computes the a priori state estimate x̂−n and the
a priori state estimation error covariance P−

n . In the
update phase, it uses the new observation equation zn,
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computes the innovation covariance Sn, and updates
the bias correction gainKn, the a posteriori estimate
x̂n, and the a posteriori error covariancePn. The sub-
sequent minimization of the trace of Pn by Kn gives
the optimal gain Kn for the GKF. Note that the zero
coloredness factor Ψ = 0 makes Γ = 0 and Φ = 0
and converts GKF to the standard KF.

5.2 General UFIR Filter for CMN
Unlike GKF, the general UFIR (GUFIR) filter does
not require any prior knowledge about noise, ex-
cept for the zero mean assumption, and initial val-
ues. Therefore, wn and v̄n can be ignored in the
model (3) and (12). This means that the GUFIR is in-
variant to time-correlation between wn and v̄n, [24],
[56]. The GUFIR filter, being of the FIR type, op-
erates without the feedback. The unbiasedness con-
dition assumes orthogonality between the linear esti-
mator and the observation. In this sense, the struc-
ture of GUFIR resembles the Gaussian least squares.
Moreover, a GUFIR filter does not require initial con-
ditions, [57]. However, the GUFIR filter cannot ig-
nore CMN, which violates the zero-mean assumption
at short horizons, [24]. Also, the GUFIR filter pro-
cesses data over the averaging horizon [m,n] of N
points, fromm = n−N +1 to n, and minimizes the
MSE when the horizon is set optimally as Nopt, [58].
Note that the FIR filter theory is given in [24].

A pseudo code of the GUFIR filter developed for
CMN in [21], [24], and modified for object detection
is listed as Algorithm 2. The GUFIR filter operation
is divided into two parts: 1) batch initial values and 2)
iterative update. The short batch forms are used to ini-
tialize the iterations. Accordingly, the algorithm re-
quires a short measurement vector ym,s = [ym…ys]

T ,
where s = n − N +K, and an auxiliary partitioned
matrix CN computed by [24], [57]

CN =


H̄F−(N−1)

...
H̄F−1

H̄

 , (16)

The initial state xs is also computed in batch form
(line 7).

Similarly to GKF, iterations in the GUFIR are per-
formed in two phases: predict and update. In the
predict phase, only the a priori state estimate xs is
computed. Recall that GUFIR does not require the
noise statistics. In the update phase, the state esti-
mate is combined with the actual observation state
to refine the state. The a posteriori state estimate is
updated iteratively using the generalized noise power
gain (GNPG)Gl, the new observation zl, and the bias
correction gain Kl. Finally, the a posteriori state es-
timate x̄l goes to the GUFIR filter output.

Algorithm 2: GUFIR Filtering Algorithm
for Object Detection under CMN
Data: yn
Result: x̂n

1 begin
2 Γ = ΨHF−1 ; H̄ = H − Γ ;

Φ = BQBTΓT ;
3 for n = N − 1, N, · · · do
4 m = n−N + 1 , s = n−N +K ;
5 Gs = (CT

NCN )−1 ;
6 Ym,s = [ym ym+1 . . . ys]

T ;
7 x̄s = GsC

T
NYm,s ;

8 for l = s+ 1 : n do
9 zl = yl −Ψyl−1 ;
10 Gl = [H̄T H̄ + (FGl−1F

T )−1]−1 ;
11 Kl = GlH̄

T ;
12 x̄−l = Fx̄l−1 ;
13 x̄l = x̄−l +Kl(zl − H̄x̄−l ) ;
14 end for
15 x̂n = x̄n ;
16 end for
17 end

6 Experimental Results

To perform testing of the proposed algorithms, we
choose the benchmark data “Car4” available from
[59]. Before starting detecting objects using GUFIR
filter and GKF, we tune them under the following as-
sumptions. By analyzing the car trajectory, we com-
pute the standard deviation of the acceleration noise to
be σw = 3m/s2 and that suppose that the CMN orig-
inates from white Gaussian noise with the standard
deviation of σv = 2m. To obtain the ground truth,
we manually annotate the positions of the object us-
ing VOTT, [60], for the sample time of τ = 1 s and
the coloredness factor of Ψ = 0.3. This procedure
gives Q = σ2w, R = σ2V , and Nopt = 20. The object
dynamics is described by (3) as shown in Section 4.

Figure 1 illustrates the trajectories based on the
centroids of the BBs detected by GKG, GUFIR,
faster-RCNN, and TPVOC algorithms.

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2024.20.7

Eli G. Pale-Ramon, Luis J. Morales-Mendoza, 
Oscar G. Ibarra-Manzano, Rene Fabián Vázquez-Bautista, 

Jorge A. Ortega-Contreras, Yuriy S. Shmaliy

E-ISSN: 2224-3488 63 Volume 20, 2024



60 80 100 120 140 160 180 200 220 240 260

Coordinate x

50

55

60

65

70

75

C
o
o
rd

in
a
te

 y

Measurement

Ground Truth

GKF

GUFIR

faster-RCNN

Tensorflow P VOC

Fig. 1:    Measured and estimated positions of the
“Car4” benchmark trajectory

The ground truth trajectory and the measured tra-
jectory are also shown here. Inherently, the measure-
ments produce the highest level of noise, while all
filtering algorithms reduce variations with respect to
the GT trajectory. It also follows that GUFIR effec-
tively smoothes data and reduces noise much better
than GKF, which exhibits greater variation. Mean-
while, both “Faster-RCNN” and “Tensorflow PAS-
CAL VOC” algorithms perform in-between. So, we
see that GUFIR algorithm outperforms others. To
evaluate the performance, the precision metrics were
calculated as shown in Figure 2.

As can be seen, GKF demonstrates the high pre-
cision up to an IoU threshold of 0.8, with precision
decreasing to around 96% between the IoU thresh-
olds of 0.8 and 0.9. In the meantime, the remaining
algorithms exhibit the highest precision between the
IoU thresholds of 0 and 0.9. Even so, all algorithms
demonstrate low precision at the IoU threshold equal
to 1. In other words, no algorithm has the ability to
estimate BB that overlaps 100% with the GT BB.

Although the GUFIR, “Faster-RCNN” and “Ten-
sorflow PASCAL VOC” algorithms exhibit similar
performances, as can be seen in Figure 1, GUFIR is
much more successful in noise reduction. The con-
sistency observed in the precision metric might be at-
tributed to the confinement of values within a certain
range. If we set a commonly employed IoU threshold
of 0.5, [42], then the estimated BB overlaps at least
50% with the GT BB. In this case, the precision be-
comes the same as for the levels of 53% or 59%.

The relative error, illustrating the estimation error
of each algorithm compared to the ground truth, are
sketched in Figure 3. Here, each line represents the
difference between the centroids of the EBB and the
centroid of the GT BB. While all algorithms exhibit
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Fig. 2:  Precision of the filtering algorithms
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Fig. 3: The relative error of the estimated BB

similar overall behaviors, GUFIR produces smaller
errors in each object detection. On the contrary, GKF
exhibits gives larger errors, and the “Faster-RCNN”
and “Tensorflow PASCAL VOC” algorithms give in-
termediate error values.

In Table 1, we list the performance metrics, Root
Mean Square Errors (RMSEs), and relative Errors, for
the GKF, GUFIR, “Faster-RCNN”, and “Tensorflow
PASCAL VOC” algorithms.
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Table 2. Percentage of Centroids within the Ground
                                      Truth

Data Percentage
GKF 19%
GUFIR 23%

faster-RCNN 22%
Tensorflow Pascal VOC 22%

Table 1. RMSE and Relative Errors Produced by the
Algorithms

Metric results
Data RMSE Average
GKF 4.1381 0.4053
GUFIR 2.8707 0.3936

faster-RCNN 3.2883 0.4024
Tensorflow Pascal VOC 2.1054 0.4024

As can be seen, the GKF has the highest RMSE
of 4.1381, indicating a significant deviation from the
GT values. Moreover, its relative error of 0.4053 sug-
gests that, in average, the GKF predictions deviate
from the ground truth by approximately 40.53%. The
GUFIR has the best performance, having the RMSE
of 2.8707 and reducing the relative prediction error to
0.3936. This means a slightly lower average devia-
tion from GT values, around 39.36%. In the mean-
time, the standard “Faster-RCNN”, and “Tensorflow
PASCALVOC” algorithms exhibit intermediate inte-
gral performances.

Additionally, we calculated another metric, Cen-
ter of Rectangle (CoR), Table 2. This metric evalu-
ates the accuracy of detections by determining if the
center of EBB is within the geometrical limits of the
GT BB. The results are presented as the percentage
of CoR of the estimated BB that is within the GT BB
for each of the proposed algorithms. GUFIR exhibits
slightly better performance than the “Faster-RCNN”,
“Tensorflow PASCAL VOC” and GKF algorithms,
while GKF shows the lowest performance. These re-
sults confirm that GUFIR demonstrates superior per-
formance, effectively improving the detection process
with lower estimation error and high precision.

7 Conclusion
The GUFIR filtering algorithm developed in this pa-
per for visual object tracking using information about
the bounding box coordinates has demonstrated su-
perior precision over the GKF and comparable with
the standard “Faster-RCNN” and “Tensorflow PAS-
CAL VOC” algorithms, especially in the 0 to 0.9
threshold range. This has become possible by treat-
ing the environmental disturbances as Gauss-Markov

colored noise. The GUFIR algorithm effectively mit-
igates estimation errors and improve detection accu-
racy. Therefore, it can be recommended as a useful
tool for visual object detection.

We are now exploring the integration of GUFIR
filter into real-time detection systems and its adapta-
tion to different environmental conditions for robust
performance. The results will be reported it the near
future.
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