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Abstract: - The electrocardiogram (ECG) holds paramount importance in diagnosing heart disease, and as it 
persists leading cause of global mortality. Over the past decades, diverse techniques have emerged for 
processing ECG signals, with denoising taking a prominent role in enhancing feature extraction. Nonetheless, 
achieving heightened accuracy remains an enduring challenge. In this study, we introduce an innovative 
approach involving the application of a weighted unbiased finite impulse response (UFIR) filter. Under the 
same noise conditions and in terms of the root mean square error (RMSE) and signal-to-noise ratio (SNR), our 
proposed method showcases worthy performance in comparison to the weighted Savitzky-Golay (SG) filter. 
This research contributes to the progressive evolution of ECG signal processing, offering the potential for more 
precise and dependable detection of cardiac diseases. 
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1  Introduction 
An electrocardiogram (ECG) is a recording that 
represents the electrical activity of the heart and is a 
vital diagnostic tool for detecting cardiac pathology. 
The P-QRS-T waves that make up the ECG signal 
provide valuable information, with the (QRS) 
complex playing a particularly important role in 
identifying cardiac arrhythmias, [1], [2]. Early 
detection of arrhythmia is crucial for predicting and 
preventing heart attacks, making the ECG a critical 
tool in saving lives. However, the accuracy of 
arrhythmia detection can be compromised by noise 
and artifacts, which can result in incorrect 
diagnoses. To address this issue, a preprocessing 
step is essential. Preprocessing is a widely used and 
indispensable process for ECG signal analysis, 

aimed at reducing noise and improving the quality 
of the ECG signal to ensure accurate feature 
extraction and diagnosis. Hence, it is necessary to 
continuously monitor ECG signals over extended 
periods to enable precise diagnoses using electronic 
analog and digital devices for data acquisition and 
processing. Several techniques have been proposed 
to remove noise and artifacts from ECG signals, 
with smoothing techniques of special interest.  

Recent studies have presented wavelet-based 
digital filters and conventional filters as effective 
techniques for reducing noise in biomedical signals 
that have been digitized using embedded systems, 
[3], [4], [5], [6], [7], [8], [9]. In one study, a unique 
methodology was proposed for processing ECG 
signals by utilizing wavelet-based transform 
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techniques and wireless IoT devices to monitor the 
behavior of the heart, [10]. Another study proposed 
the use of the adaptive Fourier-Bessel domain 
wavelet transform (FBDAWT) for the automatic 
detection of anxiety stages, utilizing the signal from 
a single-channel portable electrocardiogram (ECG) 
sensor, [11]. Additionally, a study evaluated the 
performance of Butterworth-type low-pass filters 
configured with fourth and eighth order, compared 
to other filters like Chebyshev-type, [12]. Other 
approaches proposed a deep learning-based artificial 
intelligence technique to classify and reduce the 
noise associated with ECG signals, [13], [14], [15], 
[16]. Moreover, the use of generative adversarial 
neural networks (GANs) for the blind restoration of 
ECG signals was also suggested, [17].  It is worth 
noting that GANs have been utilized for generating 
and classifying ECG signals, [18], [19], [20], [21], 
[22], [23], [24], [25]. 

Finally, a study provided a general overview of 
the stages of ECG signal processing and the 
application of machine learning techniques, [26], 
[27]. Overall, these studies highlight the 
effectiveness of wavelet-based digital filters and 
conventional filters in reducing noise in biomedical 
signals, particularly those that have been digitized 
with embedded systems. The presented techniques, 
including deep learning-based artificial intelligence 
and generative adversarial neural networks (GANs), 
demonstrate the potential for advanced signal 
processing in the biomedical field. The studies also 
showcase the importance of monitoring the behavior 
of the heart, detecting anxiety stages, and utilizing 
machine learning techniques in ECG signal 
processing. 

However, despite the notable benefits of these 
works, they have limitations associated with their 
structure. In the case of the wavelet transform, 
finding a mother wavelet function and its optimal 
parameters is a process that takes computational 
time. In the case of the conventional filters 
mentioned, the filtered signal tends to produce 
delays in the time domain, which is an inherent 
characteristic of these types of filters. Although 
deep learning-based approaches can help reduce 
signal noise, their computational efficiency still lags 
other filtering techniques. Additionally, the ECG 
signal filtering process cannot be easily understood 
using deep learning techniques. 

Various techniques can be used to process ECG 
signals, including the Kalman filter. The extended 
Kalman filter (EKF) is the most popular among 
these methods due to its compatibility with dynamic 
models. Some studies have utilized adaptive filter 
banks with EKF to denoise ECG signals, [28], while 

others have concentrated on analyzing 
morphological features by segmenting the ECG 
signal, [29]. Additionally, some researchers have 
estimated the breathing rate by smoothing ECG and 
photoplethysmogram (PPG) signals using the 
Kalman filter, [30], [31], [32], [33]. Other research 
was conducted to evaluate the effectiveness of the 
Kalman filter in reducing noise in telehealth 
systems, [34]. Although the filter showed 
impressive results, it has limitations when the model 
is unknown. The success of this filter depends on 
the formulation of the ECG signal model, which can 
vary over time. As a result, establishing the 
appropriate parameters of the model can be difficult. 
There are several techniques available for 
smoothing ECG signals and achieving promising 
results, [35], [36], [37]. In one approach presented 
in, [38], a smoothing filter was designed based on 
the delay differential equation (DDE), which 
requires the regularization parameter and the delay. 
The regularization parameter is related to the cutoff 
frequency, while the delay is related to the tuning 
provided by the user. Another technique proposed 
in, [39], is the quantum smoothing filter (QSF), 
which is advantageous in terms of runtime 
complexity compared to other methods like discrete 
wavelet transform (DWT) and Empirical Mode 
Decomposition (EMD). However, the QSF method 
requires quantum computers to work. In, [40], the 
Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN) 
was used to reduce noise in ECG signals. The 
sample entropy was then utilized to identify the 
noisy intrinsic mode functions (IMFs) and 
subsequently apply the non-local mean smoothing 
technique. However, this method is only suitable for 
ECG signals with low Signal Noise to Ratio (SNR). 
When studying cardiac pathologies, decomposition 
methods are often more suitable, such as dynamic 
mode decomposition (DMD), [41]. 

The Savitzky-Golay (SG) smoothing filter, [42], 
on the other hand, is a widely used filter in ECG 
analysis. It is known for yielding significant 
insights, [43], [44]. However, it has certain 
limitations concerning its parameters. For instance, 
the length N of the horizon parameter must be odd, 
otherwise, fractional values arise at the boundaries 
of the summation. Additionally, the fixed delay is 
positioned at the center of the horizon, which may 
not align with the needs of certain applications 
where optimal delays may vary. Despite the 
limitations, the SG filter is still one of the standard 
methods for denoising ECG signals, [45], [46]. 

Once the frequency bands in the ECG are 
removed, a proper smoothing technique can 
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improve the quality of an ECG signal. A p−shift 
finite–length Unbiased Finite Impulse Response 
filter (p−shift UFIR) has been widely used for 
denoising ECG, [47]. The p-shift UFIR filter was 
used in, [48], to achieve an adaptive averaging 
horizon: optimal for slow ECG behaviors and 
minimal for fast excursions. Additionally, in, [49], 
the p-shift UFIR filter was employed to estimate the 
QRS interval based on the information provided by 
its second state. The p-shift UFIR filter has been 
applied to denoise ECG signals, aiming to extract 
ECG signal features, [50]. 

In this paper, we present a robust weighted 
iterative UFIR filter designed for enhancing ECG 
signals and compare it to the weighted SG filter. 
This work is organized into the following sections: 
Section II outlines different methods utilized in this 
study. In Section III, we delve into the key findings, 
as assessed through RMSE and SNR metrics, with 
an additional focus on the practical implementation 
of real ECG signals. Finally, the last section 
describes the conclusions of the work. 
 

 

2   Preliminaries 
 
2.1   ECG Signal State Space Model 
The discrete-time model for representing ECG 
signals is given in, [51], where the signal is 
represented on a horizon [𝑚, 𝑛] of length 𝑁, where 
𝑚 =  𝑛 −  𝑁 +  1. The degree polynomial used in 
the representation is determined in space-state, 
providing a precise representation of the ECG signal 
within the specified time frame. The ECG signal is 
time-invariant and deterministic. It is supposed that 
measurement of the ECG signal is corrupted by 
zero-mean noise with an unknown, standard 
deviation and not necessary Gaussian distribution. 
Under such conditions, an ECG signal can be 
represented as follows: 
 

𝐱𝑘 = 𝐀𝐱k+𝟏                 (1) 
 

𝑦𝑘 = 𝐂𝐱𝒌+𝟏 + 𝑣𝑛                       (2)   
 
where x𝑘 is the process vector of the ECG signal, 𝑦𝑘 
is the measurement observation of the ECG signal, 
𝑣𝑘 is the zero mean measurement noise with 
unknown distribution, 𝐂 is the observation matrix 

𝐂 =  [10 . . . 0] and, the matrix 𝐀 defined as: 
 

𝐀 =

[
 
 
 
 
 
 
 1 𝜏

(𝜏)2

2
…
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0
0
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0
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…
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⋮
0

⋮
0

⋱
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⋮
1 ]

 
 
 
 
 
 
 

                   (3) 

 
2.2   The p-shift UFIR Filter with Weights 
The UFIR approach assumes that a shift to the past 
can be achieved at point k using data taken from 
[𝑚 +  𝑝, 𝑘 +  𝑝] with a positive smoother lag 𝑞 =
 −𝑝, a shift to the future at point k using data taken 
from [𝑚 +  𝑝, 𝑘 +  𝑝] with a positive prediction 
step p > 0, and that p = 0 means filtering. Thus, the 
𝑝-shift UFIR filtering estimate can be defined as: 
 

𝑥𝑛|𝑛−𝑝𝑛
= ∑ ℎ𝑛

(𝑖)(𝑝)𝑦𝑛−𝑘
𝑁−1+𝑝
𝑘=𝑝          (4) 

 
                = ∑ ℎ𝑛

(𝑖)(𝑝)𝑦𝑛−𝑘
𝑁−1+𝑝
𝑘=𝑝          (5) 

 
where the components of the gain �̂�𝑁(𝑝) are formed 
by �̂�𝑁(𝑝) = [𝐻0(𝑝)𝐻1(𝑝) . . . 𝐻𝑁−1 (𝑝)]  each 
matrix 𝐻𝑛 (𝑝) is a diagonal matrix specified by 
𝐻𝑛(𝑝)  =  diag(ℎ𝑛

𝐾−1(𝑝)  ℎ𝑛
𝐾−2(𝑝)  . . . ℎ𝑛

(0)
(𝑝)), 

whose components, in turn, are the values of the 
function ℎ𝑛

(𝑖)(𝑝), [52]. The function ℎ𝑛
(𝑖)

(𝑝). is 
called the 𝑖th degree polynomial impulse response 
and can be calculated by the following equation: 
 

ℎ𝑛
(𝑖)(𝑝) = ∑ 𝑎𝑗𝑖

𝑖
𝑗=0 (𝑝)𝑛𝑗,                  (6) 

             
where 𝑛 ∈ [𝑝, 𝑁 −  1 +  𝑝] and 𝑖 ∈  [0, 𝐾 −  1] 
and finally, the term 𝑎𝑗𝑖  (𝑝) is determined by: 
 

                      𝑎𝑗𝑖  (𝑝) = (−1)𝑗
𝑀(𝑗+1)1

(𝑖)

|𝛬𝑖(𝑝)|
                      (7) 

 
where 𝛬𝑖(𝑝) is a matrix defined as: 
 
𝛬𝑖(𝑝) =

 [

𝑐0(𝑝) 𝑐1(𝑝) 𝑐2(𝑝)

𝑐1(𝑝) 𝑐2(𝑝) 𝑐3(𝑝)

⋯ 𝑐𝑖(𝑝)
⋯ 𝑐𝑖+1(𝑝)

⋮          ⋮           ⋮
𝑐𝑖(𝑝) 𝑐𝑖+1(𝑝) 𝑐𝑖+2(𝑝)

⋯ ⋮
⋯ 𝑐2𝑖(𝑝)

]          (8)   

 
The determinant of matrix 𝛬𝑖(𝑝) is |𝛬𝑖(𝑝)|. The 

𝑚th component 𝑐𝑚 , 𝑚 ∈  [0, 2𝑖], of  |𝛬𝑖(𝑝)| is 
calculated using a power series based on the minor 
𝑀(𝑗+1)1

(𝑖) (𝑝) of 𝛬𝑖(𝑝),  
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                            𝑐𝑚(𝑝) = ∑ 𝑖𝑚𝑁−1
𝑗=𝑝  ,                    (9) 

 
this expression can also be expressed differently, 
 
𝑐𝑚(𝑝) =

1

𝑚+1
[ℬ𝑚+1(𝑁 + 𝑝) − ℬ𝑚+1(𝑝)]         (10) 

 
where the term ℬ𝑚+1 is called Bernoulli 
polynomial. 

The UFIR theory suggests that the process can 
be estimated on [𝑚, 𝑛] in the following batch state-
space form, 
 
     �̂�𝒏 = (𝐖𝑛,𝑚

𝐓 𝐖𝑛,𝑚)−𝟏𝐖𝑛,𝑚
𝐓  Y𝑛,𝑚                            

(11) 
 

As has been shown in, [52], [53], the UFIR filtering 
estimate is �̂�𝑛 ≜ �̂�𝑛|𝑛,, 𝐘𝑛,𝑚 is the extended 
observation vector and  𝐖𝑛,𝑚  is the augmented 
measurement matrix. The p-shift estimate is given 
by:  
 

𝑥𝑛|𝑛−𝑝 = 𝐀−𝒑�̂�𝑛|𝑛                      (12)                 
 

where 𝑝 =
𝑁−1

2
 is known as the digital optimal lag 2 

which is also used in SG smoothing. Unlike the SG, 
the UFIR Smoother can minimize the MSE with an 
optimum horizon 𝑁𝑜𝑝𝑡 . Specifically, without the 
reference signal (ground truth), by minimizing the 
trace of mean square value (MSV) derivative of the 
residual matrix 𝑉 (𝑁), the optimum horizon 𝑁𝑜𝑝𝑡 is 
calculated as: 
          

          𝑁𝑜𝑝𝑡 = argmin
𝑁

𝜕tr 𝑉(𝑁)

𝜕𝑁
+ 1          (13) 

 
Moreover, an iterative UFIR smoothing 

algorithm akin to the Kalman filter is presented in, 
[54], recursively in two distinct phases: prediction 
and update. This algorithm re-calibrates the 
generalized noise power gain (GNPG), with its 
adjustment reliant on a gain derived from batch 
processing. In contrast to the Kalman filter, the 
UFIR algorithm outlined in algorithm 1 presents a 
significant advantage in that it does not necessitate 
any prior knowledge regarding measurement noise. 
This feature endows the UFIR algorithm with a 
superior level of robustness and reliability. In, [55], 
[56], it was shown an improvement of the 
robustness of the UFIR filter with the weight γ, 
defined by: 
 

   𝛾= 1

⌊𝑁/2⌋
∑ √𝜂𝑖/

𝐾𝑘
𝑖=𝑘0

𝜂𝑖−1           (14) 

 

where 𝑘0    =  𝑘 − ⌊ 𝑁/2 ⌋  +  1, ⌊ 𝑁/2 ⌋ and K are 
the iintegerpart of 𝑁/2 and the numbers of states. 
The root mean square (RMS) deviation 𝜂𝑘of the 
estimate is calculated using the innovation residual 
as: 

    𝜂𝑘=√
1

𝐾
(𝑦𝑘 − 𝑯𝑘�̂�𝑘)

𝑇(𝑦𝑘 − 𝑯𝑘�̂�𝑘)       (15) 

 

where k is the dimension of the target motion.  
 

Algorithm 1: Iterative UFIR Filtering 
Algorithm 

1: Data: 𝒚_𝒌 

2: Begin 

3: for 𝑘 = 𝑁 − 1,𝑁 … do 

4:       𝑚 = 𝑘 − 𝑁 + 1, 𝑠 = 𝑘 − 𝑁 + 𝐾; 

5:        𝐺𝑠  = (𝑪𝒎,𝒔
𝑻 𝑪𝒎,𝒔)( 𝒀𝑚,𝑠); 

6:        �̂�𝒔 = 𝐺𝑠𝑪𝒎,𝒔
𝑻 )( 𝒀𝑚,𝑠); 

7:      for 𝑖 = 𝑠 + 1: 𝑘 do  
8:           �̃�𝑖

− = 𝑨𝒊�̃�𝒊−𝟏; 

9:           𝑮𝒊 = [𝑯𝒊
𝑻𝑯𝒊  + ( 𝑨𝒊𝑮𝒊−𝟏𝑭𝒊

𝑻 )
−𝟏

 ]−𝟏; 

10:          𝐾𝑖  =  𝑮𝒊𝑯𝒊
𝑻 

11:         �̃�𝒊=�̃�𝑖
− + 𝐾𝑖(𝑦𝑖 − 𝐻𝑖�̃�𝑖

−)  

12:     end for     

13: end for 
14: Result:   𝑥𝑘  

 

2.3   Savitzky-Golay Filter for ECG Signals 
The SG filter can be considered as a special case of 
the UFIR smoothing filter as shown in, [57]. The 
convolution-based smoothed estimate with a lag 
𝑝 =

𝑁−1

2
 in the middle of the averaging horizon is 

given by 
 

�̂�
𝑘|𝑘−

𝑁−1

2

= ∑  𝜑𝑛 𝑦𝑘−𝑛
(𝑁−1)/2
𝑛=−𝑁−1)/2       (16) 

 
where 𝜑𝑛 represents the convolution coefficients 
determined by the linear least square (LS) method to 
configure with commonly low-degree polynomials 
systems. The coefficients 𝜑𝑛  can be extracted from 
the FIR function ℎ𝑛

𝑖  (−𝑝). The SG filter has the 
following restrictions to ensure accurate 
calculations, the horizon length 𝑁 must always be 
an odd number. If an even number is used, the sum 
limits would include fractional values, which is not 
desirable. 

While the fixed lag is typically set as 𝑝 =
 (𝑁 −  1)/2, it is important to note that different 
applications may require alternative lag values. The 
optimal lag might not necessarily be equal to this 
default value. It is also worth mentioning that the 
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UFIR smoothing filter explained by, [53], extends 
the functionality of the SG filter for arbitrary 𝑁 >
 1 and lags 0 <  𝑝 <  𝑁 −  1. However, in the 
specific case of an odd 𝑁 and 𝑝 =  (𝑁 −  1)/2, the 
UFIR filter corresponds to the SG filter. Also note 
that the 𝑞 -lag can be optimized for even-degree 
polynomials. 
 

 

3    Main Findings 
 
3.1 ECG Signals Denoising by Different 

Filters 
Displayed in Figure 1 are the effects of various 
estimators on filtering results. To conduct our 
experiment, we utilized a simulated ECG signal 
with Gaussian white noise that possessed a standard 
deviatiequal .0316. This ECG signal was generated 
using the model introduced by, [58], which can be 
readily executed on platforms like MATLAB or 
Octave. The SG filters, labeled as SGK-1 and SGK-
2, use the Kaiser window-like weights vector with 
values of 𝛽 = 38 and 𝛽 = 18, respectively. The 
WUFIR q -lag 2 is the UFIR filter with GPNG 
weight and 𝑝 =  𝑝𝑜𝑝𝑡 lag determined by the 
following expression: 
 

            𝑝 =
𝑁𝑜𝑝𝑡−1

2
−

1

2
√

𝑁𝑜𝑝𝑡
2 +1

5
                          (17) 

 

 
Fig. 1: Synthetic ECG estimations from filters 
based on weighted SG and UFIR filters. 
 

Upon examining Figure 2, it is evident that the 
proposed UFIRW method provides greater 
variability compared to the SG estimator. Notably, 

the estimation provided by UFIRW is closer to the 
reference ECG signal. 
 

 
Fig. 2: A detailed visualization of the filtering 
process of the T wave in synthetic ECG signals 
 

 
Fig. 3: Performance of mean square error calculated 
from estimations. 
 
3.2   RMSE Analysis 
Given the filtering estimate, to find the better 
estimator, we calculate the root mean square error 
(RMSE) determined by 
 

            𝑅𝑀𝑆𝐸 =
1

𝐿
√∑ (𝑥𝑖 − 𝑥𝑖)

2𝐿
𝑖=0                    (18) 

 
where L is the sample length of 𝑥𝑖 and 𝑥𝑖. 
Individually, 𝑥𝑖 and 𝑥𝑖 are the samples associated 
with the ECG synthetic signal and estimation of the 
filter. Under the same noise conditions, we 
conducted an experiment, where we tested the 
performance of several filters by iterating the 
process 100 times. The results are presented in 
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Figure 3, where we can see the performance of each 
filter. The filters based on Savitzky-Golay (SGK-1 
and SGK-2) showed an RMSE between 0.04 and 
0.1, which was lower than the RMSE provided by 
the proposed UFIRW method, which showed an 
RMSE value between 0.02 and 0.03. It is well-
known that the UFIR method provides good 
stability, while methods based on SG exhibit high 
variability, which indicates susceptibility to noise. 
 

 
Fig. 4: Signal-to-Noise Ratio (SNR) obtained from 
varying levels of noise in decibels (dB). 
 
3.3   Signal-to-Noise Ratio (SNR) Analysis 
A recent study was conducted to examine how 
different levels of noise affect ECG signals. The 
study used Gaussian noise ranging from -50 to 50 
dB and analyzed the signal-to-noise ratio provided 
by two filters shown in Figure 4 - the UFIR 
weighted estimator and the SG filter. The results 
showed that the UFIR weighted estimator 
outperformed the SG filter in producing a clearer 
ECG signal with less random noise. This study 
helps in understanding the response of each filter to 
noise and highlights the superiority of the proposed 
UFIR method over SG estimators in terms of SNR 
output. 
 
3.4   Applications to Real ECG Signals 
Following a rigorous analysis of the Root Mean 
Square Error (RMSE) and Signal-to-Noise Ratio 
(SNR), this study has identified the Unbiased Finite 
Impulse Response (UFIR) filter with weights as the 
most appropriate option for accurately estimating 
real Electrocardiogram (ECG) signals. The analysis 
has confirmed the filter’s superior performance over 
other filters under consideration. The study focuses 
on two types of pathologies, namely normal sinus 
rhythm and premature ventricular complex (PVC), 
and the ECG signal estimates are showcased 
visually in Figures 5 and Figure 6. The UFIRW-

qlag2 filter provides a precise fit to the ECG real 
signal, as attested by our analysis. 
 

 
Fig. 5: Estimation of real ECG signal with normal 
sinus rhythm, [59]. 
 

 
Fig. 6: Estimation of real ECG signal with 
premature ventricular complex (PVC), [60]. 
 

Our study has demonstrated that the UFIR filter 
with weights is a reliable method for estimating 
ECG signals, and its application can significantly 
improve the accuracy of ECG signal estimation, 
particularly in the context of the two pathologies 
analyzed. As such, the UFIR filter with weights is 
highly recommended for accurately estimating real 
ECG signals. 
 

 

4   Conclusions 
We evaluated the effectiveness of our UFIR filter in 
comparison to the SG filter using Root Mean Square 
Error (RMSE) and Signal-to-Noise Ratio (SNR) 
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metrics. Our results showed that the UFIR filter 
outperformed the SG filter, demonstrating its 
adaptability and effectiveness in various ECG signal 
pathologies.  The UFIRW method displayed 
superior error stability compared to the SG methods. 
However, the weighted SG method showed high 
variance and was easily affected by random noise.  
The UFIR filter performance remained consistent 
despite cardiac variability, and we could adjust the 
horizon parameter, N, to obtain optimal results for 
different noise levels.  

In environments with high levels of noise, it is 
imperative to adopt pre-processing steps to achieve 
optimal results. However, implementing the 
recommended approach on low-power devices in 
such settings may present some challenges. This is 
due to the method requiring a significant number of 
points, represented by horizon N, which could 
potentially impact the memory capacity of the 
device. This limitation creates a promising avenue 
for future research that could lead to the 
development of more efficient solutions for 
applying the method in low-power and high-noise 
scenarios. 

We will continue to explore various pathologies 
to identify patterns associated with significant 
diseases. Ultimately, this project has the potential to 
greatly enhance ECG signal denoising and advance 
medical diagnostics. 
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