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Abstract: - Object tracking is a study area of great interest to various researchers whose main objective is to 

improve the trajectory estimation for object tracking. In practical applications, the information available that 

allows the application of algorithms to improve the tracking process sometimes is missing. One of the main 

obstacles is obtaining ground truth, which takes a long processing time. There are manual methods and 

applications of reference algorithms. On the other hand, in most cases, the tracking information obtained using 

a camera is contaminated with noise during the acquisition process. In this paper, we applied smoothing 

algorithms to compute a pseudo-ground truth achieving lower estimation errors and higher precision than the 

measurement data. The test results showed that the proposed algorithms with the highest performance are q-lag 

UFIR and q-lag ML FIR. These smoothing algorithms can be useful in practical applications in object-tracking 

tasks. 
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1 Introduction 
Many times, the data about the trajectory of an 

object tracking is obtained through a tracking 

camera, these data are contaminated by noise in the 

tracking process, the factors causing this noise can 

be the movement of the camera, lighting, occlusion, 

rapid changes of direction, blur, among others. 

These factors cause the camera not to follow exactly 

the trajectory of the object, there being variations 

between the position measured by the camera and 

the true position of the object. 

When tracking algorithms are implemented, it is 

necessary to know the ground truth trajectory to 

correctly evaluate the effectiveness of the tracking 

process. Estimator algorithms require the 

application of a method to eliminate this noise and 

compute a pseudo-ground truth that should be a 

more accurate estimation of the ground truth. 

If a video of the object tracking process is 

available, it is possible to manually annotate each 

position of the object. This implies a slow process 

and human errors are possible as well when the 

complete information about the video is unavailable, 

such as frame rate and frame size. 

Also, in the evaluation of object tracking 

algorithms, it is necessary to contrast the estimates 

obtained by the tracking algorithms against the 

ground truth to evaluate their performance. With an 

inadequate ground truth, we will have an evaluation 

of the algorithms that is further from the truth.  

In this sense, smoothing algorithms are a suitable 

tool to remove noise from data. Therefore, 

smoothing algorithms are useful for reconstructing 

pseudo-ground truth, which can be used in the 

estimate process for object tracking [1]. 

This article shows the application of smoothing 

algorithms to reconstruct the ground truth and 

derive a pseudo-ground truth that is accurate enough 

to the ground truth. The results obtained using 

smoothing algorithms prove that they are useful for 

the estimation stage in object tracking. 

Based on the test results, the smoothing 

algorithms provide pseudo-ground truth with lower 

estimation errors and higher precision than noise-
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contaminated measurement data. Being q-lag UFIR 

and q-lag ML FIR the algorithms that exhibit the 

best results. 

Therefore, the pseudo-ground truth 

reconstruction through smoothing algorithms will 

have a practical application for those researchers 

who work in object tracking, where the ground truth 

is unavailable or incorrect, i.e., the measured 

tracking data is contaminated with noise. 

 

2 Data of video object tracking 
In the video object tracking process, image 

processing operations seek to identify the target at 

each position throughout the entire trajectory, which 

implies recognizing the appropriate features to 

differentiate the target from the background of the 

scene. The target information can be described 

through its properties. One of the most common 

methods of containing target information during 

object tracking is the bounding box [2]. 

The bounding box (BB) is a rectangular box that 

contains the target object information in a sequence 

of frames. The target position information is 

included in a BB array. The measurements of each 

BB represent the coordinates of the upper left and 

lower right corners of the box that encloses the 

target [3]. The BB matrix consists of the bounding 

box measurements, " x" coordinate, " y " coordinate, 

width (xw), and height (yh) for each of the object 

positions throughout the trajectory. 

According to the measurements of each BB, the 

object centroid can be obtained in each position. 

This information represents the trajectory followed 

by the target object. As previously mentioned, this 

information is measured by the tracking camera, 

considered as contaminated by measurement noise. 

It is necessary to evaluate the performance through 

the information provided by the bounding boxes 

when using smoothing to reconstruct the pseudo-

ground truth, that is, how accurate the pseudo-

ground truth is compared to the ground truth. The 

most common method to evaluate the effectiveness 

of smoothing is by estimation error and precision. 

 

3 Ground truth 
In the computer vision field in object tracking tasks, 

the ground truth (GT)  can be interpreted as the set 

of true data, that is known to be real or true 

positions of the object during the entire trajectory of 

the tracking process. These measurements can be 

represented through coordinates, bounding box 

measurements, camera pose measurements, etc. The 

ground truth information can be collected at the 

source or can be pre-programmed. 

On the other hand, pseudo-ground truth (p-GT) 

can be interpreted as an estimation of the ground 

truth, which is used as reference data for the 

application of tracking algorithms and their 

performance evaluation. This data set can be 

obtained through hand annotation by a human 

operator or using a reference algorithm. 

Generally, we can establish that there are two 

methods to obtain the ground truth. The first is 

through manual annotation of the ground truth data 

set and the second is a reference algorithm4]. 

Two of the most common annotation methods 

are: 

 Bounding annotations. A box is drawn 

based on the characteristics of the object 

target. 

 Point annotations. The position of the object 

target corresponds to the features extracted 

from a single point. 

 

4 Performance evaluation 
We used standard metrics for evaluating the 

smoothing performance can be done using metrics, 

precision, and root mean square error (RMSE). 

Precision can be defined as the percentage of the 

number of correct predictions over the total number 

of predictions [5]-[9]. 

The RMSE is a measure of the variation between 

truth values and estimated values [10]. In the case of 

object tracking, it measures the difference between 

the truth trajectory and the estimated trajectory. The 

equation of RMSE is well known and is shown 

below. 

RMSE⁡(𝑦, 𝑦̂) = √
∑  𝑁

𝑖=1   (𝑦𝑖 − 𝑦̂𝑖)
2

𝑁
 (1) 

Where 𝑁 is the number of data points, 𝑖-th 

measurement, 𝑦 is the truth value and 𝑦̂ is the 

predicted value. 

To calculate the precision, it is necessary to first 

calculate another metric, intersection over union 

(IoU), which indicates the percentage of overlap of 

the predicted bounding box over the True Bounding 

box (TBB). The variables used in the calculation of 

the precision are obtained from the comparison of 

the IoU result with an established threshold. The 

variables used for computing the precision are 

obtained from the comparison of the IoU result with 

an established threshold [5]-[7], [11]. The equations 

for calculating IoU and precision are (2) and (3), 

respectively. 

IoU= 
IA

(TBB- PBB)-IA
 (2) 
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Precision =
Σ𝑇𝑃

Σ𝑇𝑃 + Σ𝐹𝑃
=

Σ𝑇𝑃

 All detections 
 (3) 

 

Where the IA is the area of intersection between 

the bounding box of the target object, the true 

bounding box (TBB), and the estimated bounding 

box (EBB). The TP is true positive, and FP is false 

positive. 

The IoU metric allows establishing the degree or 

percentage of EBB overlap over TBB, for which it 

is necessary to establish an IoU threshold that works 

as the comparison parameter to establish whether it 

is a correct or incorrect detection. Usually, the IoU 

threshold is set to 0.5 and 0.75 [12]. 

Considering a single object tracking, many 

measures to evaluate the performance of the 

tracking algorithm are based on the overlap 

comparison of the EBB versus the TBB. The 

possible qualification of the bounding box overlap 

in object tracking compared to a given threshold is 

shown below [4][6]: 

 True Positive (TP). It is a correct detection 

of a bounding box, that is, the IoU between 

the EBB and TBB is greater than or equal to 

the established threshold value. 

 False positive (FP). It is an incorrect 

detection of an object or an off-site 

detection. The IoU is less than the given 

threshold value but greater than zero. 

 False negative (FN). It is an undetected 

TBB. 

 

5 State-Space Model 
According to the motion of a physical system in 

space, the next position of the object can be 

calculated using Newton’s equation of motion [13] 

as shown below: 

 

𝑐𝑥 = 𝑐𝑥0 + 𝑣0𝜏 +
1

2
𝑎𝑐𝑡2, (4) 

where 𝑐𝑥 is the object position, 𝑐𝑥0 is the 

object's initial position, 𝑣0 is the object's initial 

velocity, 𝑎𝑐 is the object's acceleration, and 𝜏 is the 

time interval. The state equation is derived from 

Newton’s equation of motion. So, we can construct 

the dynamic model, the model is represented in 

discrete-time state-space using the following state 

and observation equations: 

𝑥𝑛 = 𝐴𝑛𝑥𝑛−1 + 𝐵𝑛𝑤𝑛 (5) 

𝑦𝑛 = 𝐶𝑛𝑥𝑛 + 𝑣𝑛 (6) 

 

where 𝑥𝑛 ∈ ℝ𝐾 is the state vector, 𝑦𝑛 ∈ ℝ𝑀 is 

the observation vector, 𝑣𝑛 ∈ ℝ𝑀 is the colored 

Gauss-Markov noise, and 𝐴𝑛 ∈ ℝ𝐾×𝐾 is the state 

transition matrix, 𝐵𝑛 ∈ ℝ𝐾×𝑃 is the gain matrix 

model, 𝐶𝑛 ∈ ℝ𝑀×𝐾 is the measurement matrix. 

The zero mean Gaussian noise vectors 𝑤𝑛 ∼
𝒩(0, 𝑄𝑛) ∈ ℝ𝑃 and 𝜉𝑛 ∼ 𝒩(0, 𝑅𝑛) ∈ ℝ𝑀 have the 

covariances 𝑄𝑛 and 𝑅𝑛 and the property 𝐸{𝑤𝑛𝜉𝑘
𝑇} =

0 for all 𝑛 and 𝑘. 

We estimated the state of the 4 coordinates of the 

bounding box. So, the state-space model is designed 

for the 4 measurements of the bounding box: left 

lower corner in x-axis (xc) left upper corner in y-axis 

(yc), BB width (xw), and BB height (yh). 

For a constant velocity model [14], the state 

transition (A) is a block diagonal matrix with: 

[
1 𝜏
0 1

], (7) 

where τ is the sample time. This block is 

repeated for the xc, yc, xw and yh to build the 

complete matrix A. 

The gain matrix model (B) and observation 

matrix (C) are defined as shown below: 

[
 
 
 
 
 
 
 
 
 
 
 
𝜏2

2
0 0 0

𝜏 0 0 0

0
𝜏2

2
0 0

0 𝜏 0 0

0 0
𝜏2

2
0

0 0 𝜏 0

0 0 0
𝜏2

2
0 0 0 𝜏 ]

 
 
 
 
 
 
 
 
 
 
 

, (8) 

𝐶 = [

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0

] 

(9) 

 

6 Smoothing algorithms 

6.1 Fixed-lag Kalman smoother 
With equations (4) and (5) the Kalman filter (KF) 

estimates the state through observation of input and 

output. The KF can estimate the state dynamics of 

the system iteratively [15], [16], and consists of two 

steps: predict, where the optimal state 𝑥̂𝑛
− previous 

to observing 𝑦𝑛 is calculated, and update, where 

after observing 𝑦𝑛 the optimal posterior state 𝑥̂𝑛 is 

calculated. Additionally, it computes the prior 
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estimation error 𝜖𝑛
− = 𝑥𝑛 − 𝑥̂𝑛

−, the posterior 

estimation 𝜖𝑛
− = 𝑥𝑛 − 𝑥̂𝑛

−, the a priori estimate error 

covariance 𝑃𝑛
− = 𝐸{𝜖𝑛

−𝜖𝑛
−𝑇}, and the posterior 

estimate error covariance 𝑃𝑛 = 𝐸{𝜖𝑛𝜖𝑛
𝑇}. 

The prior state estimate is computed by (10), and 

the prior error covariance matrix is estimated by 

(11). 

𝑥̂𝑛
− = 𝐴𝑥̂𝑛−1 + 𝐵𝑛𝑤𝑛 (10) 

𝑃𝑛
− = 𝐴𝑛𝑃𝑛𝐴 + 𝐵𝑛𝑄𝑛𝐵𝑛

𝑇 (11) 

 

Then, in the update phase, the current prior 

predictions are combined with the current state 

observation to redefine the state estimate and the 

error covariance matrix. The combination of the 

prediction with the current observation is used to 

calculate the optimal state estimate and is called the 

posterior state estimate. The measurement 𝑦𝑛 is 

corrupted by colored measurement noise 𝑣𝑛. The 

measurement residual is (12). 

𝑦𝑛 = 𝐶𝑥̂𝑛−1 + 𝑣‾𝑛 (12) 

The residual covariance matrix is calculated as 

follow: 

𝑆𝑛 = 𝐶𝑛𝑃𝑛
−𝐶𝑛

𝑇 + 𝑅𝑛 (13) 

The optimal gain for Kalman is given by: 

𝐾𝑛 = 𝑃𝑛
−𝐶𝑛

𝑇𝑆𝑛
−1 (14) 

A posteriori state estimate: 

𝑥̂𝑛 = 𝑥̂𝑛
− + 𝐾𝑛(𝑦𝑛 − 𝑐𝑥̂𝑛

−) (15) 

A posteriori matrix of error covariance: 

𝑃𝑛 = (𝐼 − 𝐾𝑛𝐶)𝑃𝑛
− (16) 

For the fixed-lag Kalman smoother, first it is run 

the standard Kalman filter and initialize the update 

of fixed-lag smoother for 𝑖 = 𝑙, … , 𝑞 + 𝑙[17], [18], 
as follows: 

𝐿𝑛 = 𝑃𝑛
−𝐶𝑛

𝑇(𝑆𝑛)−1 (17) 

𝑃𝑛+1
𝑖,𝑖 = 𝑃𝑛

𝑖−1,𝑖−1 − 𝑃𝑛
0,𝑖−1𝐶𝑘

𝑇𝐿𝑛
𝑇𝐴𝑛

𝑇 (18) 

𝑃𝑛+1
(0,𝑖)

= 𝑃𝑛
(0,𝑖−1)

[𝐴𝑛 − 𝐿𝑘,0𝐶𝑛]
𝑇
 (19) 

𝑥̂𝑛+1−𝑖 = 𝑥̂𝑛+2−𝑖,𝑛 + 𝐿𝑛,𝑖(𝑦𝑛 − 𝐶𝑛𝑥̂𝑛) (20) 

6.2 q-lag ML FIR smoother 
We used a batch q-lag maximum likelihood (ML) 

Finite Impulse Response (FIR) smoother, q-lag ML 

FIR, for full covariance matrices. The q-lag ML FIR 

smoother can be derived from the ML estimate at 

𝑘 − 𝑞 [20]. We use the (4) and (5) and extend them 

on [𝑚, 𝑘] in the conventional forms shown below. 

 

𝑥𝑚,𝑘 = 𝐴𝑚,𝑘𝑥𝑚 + 𝐷𝑚,𝑘𝑊𝑚,𝑘 (21) 

𝑦𝑚,𝑘 = 𝐶𝑚,𝑘𝑥𝑚 + 𝐺𝑚,𝑘𝑊𝑚,𝑘 + 𝑣𝑚,𝑘 (22) 

The state 𝑥𝑘−𝑞 can be defined at 𝑘 − 𝑞 for 𝑢𝑘 =

0 as 

𝑥𝑘−𝑞 = 𝐴𝑘−𝑞
𝑚+1𝑥𝑚 + 𝐷‾𝑚,𝑘

𝑁−𝑞
𝑊𝑚,𝑘 (23) 

Where a matrix 𝐷‾𝑚,𝑘
𝑁−𝑞

 can be represented with 

𝐷‾𝑚,𝑘
𝑁−𝑞

= 

[𝐴𝑘−𝑞
𝑚+1𝐵𝑚⁡𝐴𝑘−𝑞

𝑚+2𝐵𝑚+1 …𝐴𝑘−𝑞
𝑘 𝐵𝑘−1⁡𝐴𝑘−𝑞

𝑘+1𝐵𝑘 ] 

(24) 

Rearranging the terms in equation (23), we 

represent the initial state as 

𝑥𝑚 = (𝐴𝑘−𝑞
𝑚+1)

−1
𝑥𝑘−𝑞 − (𝐴𝑘−𝑞

𝑚+1)
−1

𝐷‾𝑚,𝑘
𝑁−𝑞

𝑊𝑚,𝑘 (25) 

 

The q-lag ML FIR estimate and estimation error 

in batch forms are calculated in the following. 

Substituting equation (25) in (23), which separates 

the regular terms and the random terms. 

𝑌𝑚,𝑘 − 𝐻𝑚,𝑘
𝑞

𝑥𝑘−𝑞 = 𝒩𝑚,𝑘 (26) 

Where (𝐻𝑚,𝑘
𝑞

) = 𝐶𝑚,𝑘
𝑞

𝑊𝑚,𝑘 + 𝑉𝑚,𝑘 and the 

random term 

𝒩𝑚,𝑘 = 𝐶𝑚,𝑘(𝐷𝑚,𝑘 − 𝐻𝑚,𝑘
𝑞

𝐷‾𝑚,𝑘𝑥𝑘−𝑞 (27) 

The likelihood of 𝑥𝑘−𝑞 can be written as 

𝑝(𝑌𝑚,𝑘 ∣ 𝑥𝑘−𝑞) ∝ 

exp {−
1

2 (𝑌𝑚,𝑘 − 𝐻𝑚,𝑘
(𝑞)

𝑥𝑘−𝑞⁡)

𝑇

Σ𝑚,𝑘
−1 (… )} 

(28) 

We determine the 𝑞-lag ML FIR estimate 𝑥̃𝑘−𝑞 

and Σ𝑚,𝑘 = ℰ{𝒩𝑚,𝑘𝒩𝑚,𝑘
𝑇 } as 

𝑥̃𝑘−𝑞 = argmin
𝑥𝑘−𝑞

 (29) 
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{−
1

2
(𝑌𝑚,𝑘 − 𝐻𝑚,𝑘

(𝑞)
𝑥𝑘−𝑞)

𝑇
Σ𝑚,𝑘

−1 (… )} 

Setting the derivative equal to zero 

∂

∂𝑥𝑘−𝑞
(𝑌𝑚,𝑘 − 𝐻𝑚,𝑘

(𝑞)
𝑥𝑘−𝑞)

𝑇
Σ𝑚,𝑘

−1 (… )

⁡= 𝐻𝑚,𝑘
(𝑞)𝑇

Σ𝑚,𝑘
−1 (𝑌𝑚,𝑘 − 𝐻𝑚,𝑘

(𝑞)𝑇
𝑥𝑘−𝑞) = 0,

 (30) 

We derive the 𝑞-lag ML FIR smoothing estimate 

in the canonical maximum likelihood form. 

𝑥̂𝑘−𝑞 ⁡= (𝐻𝑚,𝑘
(𝑞)𝑇

Σ𝑚,𝑘
−1 𝐻𝑚,𝑘

(𝑞)
)
−1

𝐻𝑚,𝑘
(𝑞)𝑇

Σ𝑚,𝑘
−1 𝑌𝑚,𝑘

⁡= ℋ𝑚,𝑘
ML(𝑞)

𝑌𝑚,𝑘 .
 (31) 

This leads to the q-lag ML FIR smoother gain. 

ℋ𝑚,𝑘
ML(𝑞)

= (𝐻𝑚,𝑘
(𝑞)𝑇

Σ𝑚,𝑘
−1 𝐻𝑚,𝑘

(𝑞)
)
−1

𝐻𝑚,𝑘
(𝑞)𝑇

Σ𝑚,𝑘
−1  (32) 

6.3 q-lag UFIR smoother 
The q-lag Unbiased Finite Impulse Response 

smoother, q-lag UFIR smoother, can be designed to 

satisfy the unbiasedness condition. 

ℰ{𝑥̃𝑘−𝑞∣𝑘} = ℰ{𝑥𝑘−𝑞}, (33) 

where the 𝑞-lag estimate can be defined as 

𝑥̃𝑘−𝑞 ≜ 𝑥̃𝑘−𝑞∣𝑘 = ℋ̂𝑚,𝑘
(𝑞)

𝑌𝑚,𝑘 (34) 

The state model is represented by the (𝑁 − 𝑞) 

the row vector of the extended state equation (35) 

on [𝑚, 𝑘] as 

𝑥𝑘−𝑞 = 𝒜𝑘−𝑞
𝑚+1𝑥𝑚 + 𝐷‾𝑚,𝑘

(𝑁−𝑞)
𝑊𝑚,𝑘 (35) 

where 𝐷‾𝑚,𝑘
(𝑁−𝑞)

 is the (𝑁 − 𝑞) th row vector in 

𝐷‾𝑚,𝑘. 

The batch forms of q-lag UFIR smoother are 

given by the following equations. Applying the 

condition (33) to (34) and 

(35) gives two unbiasedness constraints, the UFIR 

smoother gain ℋ̂𝑚,𝑘
(𝑞)

 is given by. 

ℋ̂𝑚,𝑘
(𝑞)

= 𝒜𝑘−𝑞
𝑚+1(𝐶𝑚,𝑘

𝑇 𝐶𝑚,𝑘)
−1

𝐶𝑚,𝑘
𝑇  (36) 

Referring to 𝒜𝑘−𝑞
𝑚+1 = (𝒜𝑘

𝑘−𝑞+1
)
−1

𝒜𝑘
𝑚+1, then 

we transform (36) to 

ℋ̂𝑚,𝑘
(𝑞)

= (𝒜𝑘
𝑘−𝑞+1

)
−1

ℋ̂𝑚,𝑘 (37) 

Where ℋ𝑚,𝑘 = 𝒜𝑘−𝑞
𝑚+1(𝐶𝑚,𝑘

𝑇 𝐶𝑚,𝑘)
−1

𝐶𝑚,𝑘
𝑇  is the 

UFIR filter gain and it gives the homogeneous 

smoothed estimate. 

𝑥̃𝑘−𝑞
h ⁡= (𝒜𝑘

𝑘−𝑞+1
)
−1

ℋ̂𝑚,𝑘𝑌𝑚,𝑘

⁡= (𝒜𝑘
𝑘−𝑞+1

)
−1

𝑥̂𝑘

 (38) 

Where 𝑥̂𝑘 is the UFIR filtering estimate. In this 

work we use a system without input, 𝑢𝑘 = 0, so the 

smoothing estimate is obtained by simple projection 

of (38) as described in [19], [20]. 

It is significant to mention that the q-lag UFIR 

and q-lag ML FIR are of FIR type, i.e. FIR filtering 

structures are bounded input bounded output 

(BIBO) stable by design [19]. On the other hand, the 

Fixed-lag Kalman is a Kalman filter structure, and it 

is known to be asymptotically stable even when the 

initial state is unknown [21]. 

 

7 Ground truth approximation tests 
7.1 Numerical simulation tests 
We conducted a computer simulation using the 

moving object tracking model. In this case, the 

simulation only represents one possible trajectory 

followed by an object. The dynamic model 

corresponds to a constant velocity. The moving 

object model can be described by (4) and (5). A 

discrete constant velocity model is simulated where 

acceleration is a zero-mean Gaussian white noise 

process. The dynamics of simulated movement 

correspond to a trajectory in the x and y plane with 

the following matrices. 

𝐴 = [

1 𝜏 0 0
0 1 0 0
0 0 1 𝜏
0 0 0 1

] , 𝐵 =

[
 
 
 
 
 
𝜏2

2
0

𝜏 0

0
𝜏2

2
0 𝜏 ]

 
 
 
 
 

,

𝐶 = [
1 0 0 0
0 0 1 0

] .

 

In addition to computing the actual trajectory of 

the object tracking, the ground truth, we created a 

trajectory that simulates the tracking data by a 

camera in the presence of noise that affects the 

tracking measurement. We called this trajectory the 

measurement data and we used it as input data for 

the smoothing algorithms. The purpose of this was 

to prove that the pseudo-ground truth obtained by 
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the smoothing algorithms is suitable in cases where 

the ground truth is unknown. 

The numerical stability of the simulation was 

verified on the basis that a numerical method is 

stable if small changes in the initial data cause small 

effects in the final numerical solution. On the other 

hand, it is numerically unstable if it produces large 

errors in the final solution [22]-[24]. We used the 

measurement data, where we perturbed the initial 

state x0, and it was compared to the RMSE obtained 

between the estimate calculated by q-lag UFIR and 

the actual trajectory with the original initial state x0. 

The results are shown in Table 1, which 

corroborates that small disturbances to the initial 

state generate small changes in the solution obtained 

by the UFIR q-lag algorithm. So, we can establish 

that the simulation method used is stable. 

Table 1 Simulation stability. 

Initial state x0 
RMSE 

difference 

0.1 0.0103 

0.3 0.0600 

0.5 0.0020 

0.7 0.0111 

0.9 0.0469 

 

For the first simulation we consider that an 

object target is disturbed by white Gaussian 

acceleration noise with a standard deviation of 𝜎𝑤 =
5 m/s2. The data noise originates from white 

Gaussian with 𝜎𝜉 = 3 m. The simulation of the 

trajectory was 500 points with sample time 𝑇 =
0.05s seconds, 𝑃0 = 0, 𝑄 = 𝜎𝑤

2 , 𝑅 = 𝜎𝑣
2. 

The RMSE results assessed from smoothing 

algorithms, fixed lag Kalman, q-lag UFIR, and q-lag 

ML FIR, and measurement data are presented in 

Table 2. For the computed RMSE with the q-lag 

UFIR and q-lag ML FIR, the 𝑁𝑜𝑝𝑡 was 4. The 

results show that q-lag UFIR smoother presented a 

higher performance since the value is lower than the 

other algorithms, followed by ML FIR, which was 

only surpassed by a small value of 4−7. Fixed-lag 

Kalman presents a higher RMSE value compared to 

the other smoothing algorithms. However, it reduces 

the estimation error of the measurement data. 

Fig 1. presents the trajectories reconstructed 

through the smoothing algorithms, as well as the 

measurement data. It describes the resulting 

smoothing of measurement data as observed, 

reducing the noise and calculating a pseudo-ground 

truth that closely follows the ground truth. Results 

of the q-lag UFIR and the q-lag ML FIR smoothers 

are similar, as mentioned above UFIR is slightly 

better than ML FIR, which is consistent with the 

RMSE results. 

 

Table 2 RMSE results of simulated data 1. 

Data 

RMSE results of 

algorithms 

RMSE 

Value 

Performance 

ranking 

Measurement data 3.0353 4 

Fixed-lag Kalman 2.6938 3 

q-lag UFIR 2.1054 1 

q-lag ML FIR 2.1054 2 

Fig.2 presents separately ground truth, 

measurement data, and the smoothed estimates to 

clarify the smoothing algorithms' performance. The 

tracking measurement data, which represents the 

measurements obtained by a tracking camera under 

noise conditions, presents large estimation errors. 

Fixed-lag Kalman smooths the estimates, which is 

similar to the ground truth; However, the behaviour 

pattern differs. On the other hand, q-lag UFIR and 

q-lag ML FIR perform higher at smoothing the 

estimates, computing a pseudo-ground truth close to 

the ground truth. 

To corroborate the effect of smooth we 

performed another simulation test. For this test, the 

moving object model is the same as the example 

above with the same matrices. The model was 

developed with a standard deviation of 𝜎𝑤 =
10 m/s2, and the data noise with 𝜎𝑣 = 30 m. The 

simulated trajectory with 500 points with a sample 

time 𝑇 = 0.05 seconds. 

Fig. 1 Smoothing and measurement trajectories of 

simulated data 1. 
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Fig. 2 Smoothing and measurement trajectories 

(separated) of simulated data 1. 

 

The RMSE results obtained by smoothing 

algorithms, fixed-lag Kalman, q-lag UFIR, and q-

lag ML FIR, and measurement data are shown in 

Table 3. For the computed RMSE with the q-lag 

UFIR and q-lag ML FIR, the 𝑁𝑜𝑝𝑡 was 6. In the 

same way, as in the previous simulation test, q-lag 

UFIR smoother presented a higher performance 

with a lower value than the other algorithms, 

followed by ML FIR, which was only surpassed by 

a small value of 1.1−7. The UFIR and ML FIR 

obtain an estimation error equivalent to half that 

generated by measurement data. In this case fixed-

lag Kalman with a higher RMSE value compared to 

the other smoothing algorithms. However, it reduces 

the estimation error of the measurement data. 

 

Table 3 RMSE results of simulated data 2. 

Data 

RMSE results of 

algorithms 

RMSE 

Value 

Performance 

ranking 

Measurement data 9.7477 4 

Fixed-lag Kalman 7.1000 3 

q-lag UFIR 4.8168 1 

q-lag ML FIR 4.8168 2 

 

Fig 3 shows the trajectories reconstructed using 

the smoothing algorithms and the measurement 

data. As in the previous test, the measurement data 

represents data measured by a tracking camera, 

which explain the observed high estimation errors. 

The smoothing algorithms reduce estimation errors 

providing a pseudo-ground truth more similar to the 

ground truth. Results of the q-lag UFIR smoother 

and the q-lag ML FIR smoother are similar, as 

mentioned above UFIR slightly performs higher 

than ML FIR. In this case, fixed-lag Kalman shows 

poor performance, reducing the estimation errors to 

a lesser extent. 

For a broader visualization of the smoothing 

algorithms' performance, in Fig. 4 ground truth, 

measurement data, and the smoothed estimates are 

shown separately. Fixed-lag Kalman smoothing with 

poor performance, although pseudo-ground truth has 

similarities with ground truth, the pattern of 

behaviour is different. While q-lag UFIR and q-lag 

ML FIR perform better in obtaining a pseudo-ground 

truth whose behaviour is more similar to the GT. 

 

 

Fig. 3 Smoothing and measurement trajectories of 

simulated data 2. 

Fig. 4 Smoothing and measurement trajectories 

(separated) of simulated data 2. 
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According to the results of the simulation data, 

the performance of the q-lag UFIR and q-lag ML 

FIR show great capacity to reduce disturbances, 

providing a smoothed pseudo-ground truth with 

fewer estimation errors. This gives another proof 

that these smoothing algorithms are suitable for 

obtaining a pseudo-ground truth when the ground 

truth is unavailable. 

7.2 Results of experimental test 
The smoothing algorithms have shown a high 

performance capable of reducing estimation errors 

by close to 50%. Therefore, we decided to test these 

algorithms with true tracking data. For this purpose, 

we use the data called "Remotecar" available in 

[25]. In this case, we used the bounding box data to 

estimate and assess the performance of the 

smoothing algorithms. 

The experimental test was performed using the 

moving object tracking model and matrices 

proposed in section V.  In the object tracking model, 

we considered that the car target is disturbed by 

white Gaussian acceleration noise with a standard 

deviation of 𝜎𝑤 = 30 m/s2. The data noise 

originates from white Gaussian 𝜎𝑣 = 20 m. The 

sample time T = 0.05 seconds, 𝑃0 = 0,𝑄 =
𝜎𝑤

2 , 𝑅 = 𝜎𝑉
2, on a short horizon 𝑁𝑜𝑝𝑡 = 10. The 

model of a moving target is completed according to 

what is established in section V. 

The estimated smoothing trajectories and 

measurement data are shown in Fig. 5. In this case, 

a more complex trajectory with greater variation 

between states is observed. As in the tests with 

simulated data, the q-lag UFIR and q-lag ML FIR 

present a higher performance with similar results, an 

overview of these results indicates that these 

algorithms manage to reduce the noise present in the 

measurement to a greater degree. Likewise, fixed-

lag Kalman performed with lower performance, but 

managed to reduce the noise of the measurement 

data.  
In Fig. 6 ground truth, measurement data, and the 

smoothed estimates are shown separately. It can be 

observed that the measurement data contains a high 

variation concerning to the ground truth, 

representing the measurements obtained by a 

tracking camera in noise conditions. Fixed-lag 

Kalman had a lower performance. While q-lag 

UFIR and q-lag ML FIR smooth the estimates in a 

better way. The performance of the smoothing 

algorithms will be better analyzed by the precision 

metric.  
We have the complete information on the object 

tracking available for assessing the precision, 

therefore we have the measurements of the 

bounding box at each point of the trajectory so we 

can evaluate the performance of the smoothing 

algorithms. 

 

 

The precision values of each of the smoothing 

filters in the entire intersection over union (IoU) 

threshold range are shown in Fig.7. The q-lag UFIR 

and q-lag ML FIR smoothers presented the best 

performance. 

Setting the IoU threshold equal to 0.5, the 

precision of all smoothing algorithms is close to 

20%, obtaining a higher precision than the 

measurement data which is below 10%. The 

average precision over the full range of the IoU 

threshold of the smoothing algorithms and the 

measurement data are shown in Table 4. With these 

Fig. 5 Smoothing and measurement trajectories of 

Remotecar 

Fig. 6 Smoothing and measurement trajectories 

(separated) of Remotecar 
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results it is confirmed that q-lag UFIR and q-lag ML 

FIR generate a pseudo-ground truth reducing the 

noise of the measurement data, providing adequate 

information to use as a reference in the development 

of object tracking tasks when the ground truth does 

not is available. 

 

Table 4 Precision results of Remotecar 

Data 

Precision results of 

algorithms 

Precision 
Performance 

ranking 

Measurement data 27% 4 

Fixed-lag Kalman 31% 3 

q-lag UFIR 37% 1 

q-lag ML FIR 37% 2 

 

4 Conclusion 
Smoothing algorithms for deriving the ground truth 

from the measurement data proved to be able to 

reduce noise, producing pseudo-ground truth with 

less estimation error than the measured data. 

With both simulated data and truth object 

tracking data, the q-lag UFIR and q-lag ML FIR 

algorithms exhibited the highest performance, being 

able to provide a pseudo-ground truth with higher 

precision and lower estimation error. 

Since the q-lag UFIR and q-lag ML FIR 

algorithms are more robust against measurement 

data under noise, they provide a reliable pseudo-

ground truth for use as a reference in object-tracking 

research in the field of computer vision. Being 

practical and robust methods against the lack of 

ground truth information, data noise, and when 

complete information on video object tracking is 

unavailable, they can be useful for state estimation 

applied with different artificial intelligence 

methodologies, neural networks, and machine 

learning, among others, to improve the tracking 

object process. 

Due to the higher robustness of the q-lag UFIR 

and q-lag ML FIR smoothing algorithms, we are 

currently working on efficient algorithms that use 

smoothing and state estimator algorithms for object 

tracking and plan to report the results in the near 

future. 
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