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Abstract: - The non-invasive and non-ionizing properties of Magnetic Resonance Imaging (MRI) in addition to 
the associated good image quality as well as high resolution make MRI more attractive than many other medical 
imaging techniques. However, during the acquisition, transmission, compression and storage processes, the 
Magnetic Resonance (MR) images are corrupted by various types of noise and artifacts that degrade their visual 
quality. Most of the existing MR images denoising techniques give good quality images only when the noise 
density is low with their performances deteriorating as the noise power increases. The few methods that yield 
high quality images for all noise densities involve multiple complex and time-consuming processes.  This paper 
proposes a computationally simple MR images denoising technique that consistently gives good denoising results 
for low as well as high noise densities. The proposed procedure fuses an MR image that is denoised by a Modified 
Discrete Fast Fourier Transform (MDFFT) filter with one that is denoised using a non-local means filter in 
frequency domain to yield a high quality output image. The main contribution of this proposed method is the 
employment of a novel image fusion approach that greatly improves the quality of the denoised image. The 
performance of the proposed technique is compared with those of the Wiener, median, adaptive median and the 
MDFFT filters. Objective metrics such as the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity 
(SSIM) index were used in the performance assessments. The outcomes of these assessments showed that the 
proposed algorithm yielded images of higher quality in terms of the PSNR measure than the existing denoising 
techniques by at least 7.11 dB for a noise density of up to 0.5. 
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1 Introduction 
Magnetic Resonance Imaging (MRI) is one of the 
most efficient imaging techniques for medical 
diagnostics because of its non-invasive and non-
ionizing capabilities [1]. However, the Magnetic 
Resonance (MR) images are corrupted by various 
noises such as Gaussian, salt and pepper and Rician 
noise in addition to artifacts that degrade the 
images. These noises and artifacts make it difficult 
to extract the useful information for human 
interpretation or computer- aided clinical analysis of 
the images [2]. In the development of medical 
imaging, various denoising techniques have been 
developed but the challenge of   maintaining a good 
filtering performance as the noise amount increases 
still persists.  
The process of noise removal must not degrade the 
useful features in an image. In particular, the edges 
are important features for medical images and thus 
the denoising must be balanced with edge 
preservation [3]. The choice of the denoising   
technique to be used is based on either the amount 
and type of noise or the       performance of the filter 
itself. The objective of this paper was to develop  

 

and test the performance of a proposed robust 
denoising method for MR images. The technique 
fuses the output of a low pass modified fast Fourier 
transform filter with that of a spatial domain high 
pass non-local means filter.  
Ali compared the performances of the median, 
adaptive median and adaptive Wiener filters in 
removing Gaussian noise as well as salt and pepper 
noise from MRI images. To evaluate the 
performance of each of the three filters, noise with 
densities ranging from 10% to 90% was gradually 
added to ground-truth MR images. Then, the Peak 
Signal-to-Noise (PSNR) for every filter output and 
for every noise density was calculated [4]. The 
results showed that the adaptive Wiener filter has a 
poor performance in removing both salt and pepper 
and Gaussian noises from the images. The median 
filter was the best in removing Gaussian noise. The 
adaptative median filter was better than both the 
median and adaptive Wiener filters in removing the 
salt and pepper noise. However, all the three filters 
showed poor performance for high noise densities.       
 In order to improve denoising performance, Sarker 
et al. combined the adaptive median filter and the 
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non-local means filter algorithms to remove salt 
and pepper noise from MR images. Salt and pepper 
noise with a variance ranging from 0.1 to 0.9 was 
added to ground-truth MR images prior to 
denoising. The PSNR values of the denoised 
images for median, adaptive median as well as the 
adaptive median-based non-local means filters, at a 
noise variance equal to 0.9 were 54.12 dB, 
56.80 dB and 58.70 dB respectively[5]. 
Therefore, a combination of the adaptive median 
filter and the non-local means filter performed 
better than both the median filter and adaptive 
median filters. The main limitation of this 
combined filters denoising technique is the long 
processing time required because it is a two-stage 
method that involves a large number of 
computations [5].  
These related works reveal two challenges. On one 
hand, the filters perform well at low noise densities 
and poorly at higher noise densities. On the other 
hand, the combination of adaptive median filter and 
non-local means filter algorithm proved to be good 
for both low and high noise densities but its 
operation takes a long processing time. To address 
these gaps, fusion of the outputs of a Modified 
Discrete Fast Fourier Transform (MDFFT) filter 
algorithm and a Non-Local Means Filter (NLMF) 
was employed in the method proposed in this paper. 
The MDFFT algorithm denoises the low frequency 
components of the MR images while the NLMF 
was used to denoise the high frequency components 
of the same image. In order to reconstruct the 
denoised MR image, the outputs of the two filter 
algorithms were fused in the Discrete Fourier 
Transform (DFT) domain. The main contribution of 
this research work is a proposed frequency domain-
based image fusion technique that yields better 
quality images than conventional image fusion 
methods. The image fusion used in this paper 
selects the high frequency components from the 
high pass filtered image and discards the still noisy 
low frequency components of high pass filtered 
image. From the output of the low pass filter, the 
low frequency components are selected while 
completely removing the high frequency ones. This 
is followed by combining the selected high and low 
frequency components to reconstruct the denoised 
image in frequency domain. This proposed fusion 
procedure results in a better output quality than the 
conventional image fusion techniques that are 
based on combining scaled versions of the inputs 
and therefore retaining significant amounts of noise 
power in their fused images. The rest of this paper 
is organized as follows: section 2 presents some 

background theory on MRI principles, image 
denoising techniques and image quality measures. 
Section 3 gives a presentation of the proposed 
methodology. Simulation test results and their 
discussions are presented in section 4 while section 
5 gives the conclusion and suggestions for future 
research. 

2 Theoretical Background 
This section summarizes the principles of the MRI 
process. Some types of the noises and artifacts that 
corrupt the MR images are discussed. Also, 
objective measures that are commonly used to 
assess the quality of MR images are presented here. 
 
2.1 Magnetic Resonance Imaging 
 The Magnetic Resonance Images (MRI) technique 
is based on the phenomenon of nuclear magnetic 
resonance of the hydrogen nuclei contained in the 
human body in form of water, fat and other 
chemical components [6]. It is a powerful tool for 
imaging the structure and the function of soft tissues 
in the human body because of its high image 
contrast and resolution capabilities as well the 
absence of ionizing radiations and the ability of 
arbitrary spatial encoding [7]. The abundance of 
hydrogen in the human body coupled with its 
solitary proton per atom leads to the generation of 
large values of net magnetization in the body.  
When nuclei of certain elements are placed in a 
magnetic field, they absorb energy in the Radio 
Frequency (RF) range of electromagnetic waves 
and emit that energy while returning to their initial 
state [8]. In the absence of an external magnetic 
field, the magnetic moments (μ) of the hydrogen 
protons in a body tissue are oriented randomly in all 
directions. Consequently, the net magnetic 
moment (magnetization) is equal to zero as shown 
in the following equation [9]. 

�⃗⃗� = ∑𝜇 = 0     (1) 

Where �⃗⃗�  is the net magnetization. 
In the presence of an external static magnetic field  
𝐵0
⃗⃗ ⃗⃗ , the magnetic moments are oriented in the 
longitudinal direction of 𝐵0

⃗⃗ ⃗⃗   and rotate (precess) 
around  𝐵0

⃗⃗ ⃗⃗   at the Larmor frequency f0 given by; 
fo =

𝛾

2𝜋
𝐵0
⃗⃗ ⃗⃗   (2) 

where 𝛾 is the gyromagnetic ratio of the precessing 
nucleus [10]. During the precession, the longitudinal 
component of the magnetization (Mz) remains 
constant whereas its transverse component (Μ𝑋𝑌

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) is 
zero. 
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2.1.1 RF Excitation and MR Image Formation 
In MRI, an RF pulse is used to flip some of the 
magnetization into the transverse plane. The 
precession motion is then transformed into a 
spinning motion of the nucleus around the axis of 
the static magnetic field. Application of RF pulses 
that have a frequency equal to the Larmor 
frequency lead to the decrease of longitudinal 
magnetization (Μ⃗⃗⃗ 𝑧 ) and the creation of transverse 
magnetization component (Μ𝑋𝑌

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ). The net 
magnetization (Μ⃗⃗⃗ )   continues to revolve around the 
magnetic field Β0

⃗⃗ ⃗⃗  at the Larmor frequency but with 
a tilt angle (α) that is proportional to the RF pulse 
duration time (𝜏). At the end of RF pulse 
application, the transverse magnetization 
component (Μ𝑋𝑌

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) starts to decrease towards its 
minimum value whereas the longitudinal 
magnetization starts to increase towards its 
maximum value. The increase in longitudinal 
component of magnetization Μ𝑍

⃗⃗ ⃗⃗  ⃗ when returning 
back to its equilibrium value M0 is called 
longitudinal relaxation which can be expressed as 
follows; 
𝑀𝑍(𝑡) = 𝑀0(1 − 𝑒−𝑡 𝑇1⁄ ) + 𝑀𝑍(0)𝑒−𝑡 𝑇1⁄  (3) 

Where T1 is the longitudinal relaxation time 
constant, M0 is the equilibrium magnetization, 
Mz(0) is the longitudinal instantaneous 
magnetization after pulse excitation [11].  
The decay of the transverse magnetization Μ𝑋𝑌

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is 
called transverse relaxation given by; 

𝑀𝑋𝑌(𝑡) = 𝑀𝑋𝑌(0)𝑒−𝑡 𝑇2⁄  (4) 

Where T2 is the transverse relaxation time constant 
and Mxy(0) is the instantaneous transverse 
magnetization after pulse excitation [11]. The 
collapsing of the transverse magnetization 
component induces an electric voltage in the 
receiver coil of the MRI equipment. This induced 
signal is called the Free Induction Decay (FID) 
signal given by; 

𝑆(𝑘𝑥 , 𝑘𝑦)= 

∫ ∫ 𝑀(𝑥, 𝑦)𝑒−𝑗2𝜋[𝑘𝑥(𝑡)𝑥+𝑘𝑦(𝑡)𝑦]

𝐹𝑋
2

−𝐹𝑋
2

𝐹𝑌
2

−𝐹𝑌
2

𝑑𝑥 𝑑𝑦   

 
 

(5) 

Where S(kx, ky) is the FID signal, kx(t) and ky(t) are 
the spatial frequency components in the read-out 
and phase -encoding directions respectively. Fx and 
Fy are the fields of view in x and y directions 
respectively [12]. The MR image is obtained by 
evaluating the two-dimensional inverse Fourier 
transform of the FID signal.  

2.1. 2 MRI Noises 
Magnetic resonance images are prone to various types 
of noise that degrade their quality. These noises include the 
Gaussian noise and the salt and pepper noise. 
Gaussian noise is a random noise that has the 
following normal probability density function(pdf)  

𝑃(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2  
 

(6) 

where P(x) is the Gaussian noise pdf, 𝜇 is its mean 
and 𝜎 is its standard deviation [13]. 
The salt and pepper noise is a random noise whose 
value at any position in the image is either the 
maximum intensity level (salt value) or the minimum 
one (pepper value) [14]. It manifests itself as dark 
and bright spots in the image and has the following 
probability density function.  

𝑃(𝑥) ={

 𝑝𝑎 , 𝑓𝑜𝑟 𝑥 = 𝑎
𝑝𝑏 , 𝑓𝑜𝑟 𝑥 = 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
 

(7) 

where P(x) is the salt and pepper noise pdf while pa 
and pb are the values of the pdf for the intensity 
levels  a and b respectively [5].  

2.1.3 Types of MRI Artifacts 
Image artifacts refer to any image features that are 
not inherently present in the imaged scene. They 
lead to misinterpretation of medical information in 
MR images [15]. Some of the artifacts associated 
with MRI are: truncation, motion, aliasing and 
chemical shift artifacts. The sources of these 
artifacts include: body motion, magnetic field 
inhomogeneities, body chemical state shift and 
image processing techniques used. Truncation 
artifacts occur at the boundaries with sharp contrast 
in the form of multiple alternating bright and dark 
lines. For example, the symmetric truncation in k-
space leads to the oscillations of sampled data or 
Gibbs-ringing artifacts around the boundaries of the 
tissue[16] .They can be misinterpreted as a syrinx 
in the spinal cord or a mechanical tear in the knee 
[17]. Motion artifacts originate from the various 
movements in the body parts of the patient such as 
the lungs and heart during the MRI process. 
Aliasing artifacts affect the MR images when the 
Field of View (FoV) is small. They result in some 
body parts that are outside the FoV being mapped 
at the opposite end of the image. The chemical shift 
artifacts appear like dark and bright bands at the 
interface between lipid and water. These artifacts 
are sometimes helpful as a diagnostic aid for 
confirming the presence of fat within lesions [17]. 
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2.2 Spatial Domain Filtering Method 
Spatial domain filtering can be categorized into 
linear and non-linear methods [18]. The linear 
filters such as the mean and maximum filters 
operate in spatial and temporal domain. They 
reduce the noise by changing the value of each pixel 
based on the values of the pixels in its 
neighborhood. The problem associated with these 
filters is that they blur the image edges and other 
fine details. The non-linear filters such as the 
median and non-local means filters are more 
preferred over the linear ones because they reduce 
noise and also preserve the image edges and 
boundaries [19]. Despite the advantageous features 
of non-linear filters, they still suffer from serious 
drawbacks such as blurring of the filtered images.  

2.2.1 Non-Local Means Filter  
The operation of a Non-Local Means (NLM) filter 
is based on estimating the intensity of each pixel 
from the information obtained from the entire 
image. It exploits the redundancy due to the 
presence of similar patterns and features in the 
image [2]. The weight W(m,n) assigned to a pixel is 
proportional to the similarity between the local 
neighborhood of the pixel under consideration and 
the neighborhood corresponding to other pixels in 
the image.  The limitation of non-local means filter 
is that the denoised image is affected by the blurring 
due to appearance of the artifacts in the smooth 
regions of filtered image and loss of the fine details 
when the amount of noise becomes high [20]. For a 
pixel n in the image I, corrupted by noise of value 
v=𝑣(𝑛)|𝑛 ∈ 𝐼 the estimated value of that pixel 
denoised by a non-local means filter, LM[ 𝑣(𝑛)], is 
calculated as a weighted average of all pixels in the 
image.  
The weight, W(m,n), depends on the similarity 
between the pixels m and n as shown in the 
following equation [18]. 

𝑁𝐿𝑀[𝑉(𝑛)] = ∑ 𝑊(𝑚, 𝑛)𝑉(𝑛)𝑛∈𝐼   
with 0 ≤ 𝑊(𝑚, 𝑛) ≤ 1 

(8) 

The advantages of spatial domain filters are their 
simplicity as well as the ability to operate in real 
time. Their shortcomings include lack of robustness 
and the imperceptibility of their filtering effects. 
The frequency domain filters can be used to address 
these challenges associated with spatial domain 
filters [21]. 

2.3 Frequency Domain Filters 
In frequency domain filtering, the image to be 
denoised is first transformed into frequency domain 

by evaluating it two-dimensional Discrete Fourier 
Transform (2D-DFT) [22].  
Filtering is then achieved by multiplying the 
frequency domain image by the transfer function of 
an appropriate filter. The MR image to be denoised 
in frequency domain is first divided into spectral 
bands and the filtering mechanism is applied to 
each of these bands [23]. Finally, two-dimensional 
Inverse Discrete Fourier Transformation (2D-
IDFT) is performed on the product to obtain the 
filtered image in spatial domain. One of the 
advantages of frequency domain filtering is the 
ability to concentrate most of the signal energy in 
the low frequency components allowing easy 
removal of high frequency noise. Other merits of 
these filters are their low computation complexity as 
well as the ease of visualizing and manipulating the 
image in frequency domain. The challenges 
associated with the frequency domain filtering are 
image blurring as a result of low pass filtering as 
well as image over-sharpening by high-pass filters. 
One of the commonly used frequency domain 
filters is the Gaussian low-pass filter whose transfer 
function is given by; 

𝐻(𝑢, 𝑣) = 𝑒
−𝐷2(𝑢,𝑣)

2𝐷𝑜
2  

(9) 

where H(u,v) is the transfer function of the 
filter, Do is a constant and D(u,v) is the two 
dimensional spatial frequency [22]. 

2.4 Objective Quality Measures 
Two of the widely used objective measures for 
assessing the quality of an image are the Peak 
signal-to-Noise Ratio (PSNR) and the Structural 
similarity (SSIM) index. 

2.4.1 Peak Signal-to-Noise Ratio (PSNR)  
The Peak Signal-to-Noise Ratio is an objective 
measure that is obtained by dividing the 
maximum possible power of the ground-truth 
image by the mean squared power of the noise 
in the denoised image. In digital images 
processing, the PSNR metric considers the 
Mean Squared Error(MSE) between the 
ground-truth or original image and the 
denoised image [24]. It is usually expressed in 
decibels as follows; 

PSNR =10log10(
(𝑀𝐴𝑋)2)

𝑀𝑆𝐸
) (10) 

Where MSE is mean squared error and MAX is the 
maximum pixel intensity value [25]. 
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2.4.2 Structural Similarity (SSIM) Index     
The SSIM o f  an image is a quality assessment 
measure t h a t  i s  w i d e l y  u s e d  f o r  q u a l i t y  
e v a l u a t i o n  i n  i m a g e s  p r o c e s s i n g .  I t  
c o m p a r e s  the similarity between two images. 
This metric quantifies the difference between a 
degraded image and the ground-truth image based 
on the luminance, structure and contrast of the two 
images [26]. The SSIM is calculated as follows; 

𝑆𝑆𝐼𝑀(𝑥, 𝑦)

=
(2𝜇𝜒𝜇𝛾 + 𝐶1)(2𝜎𝜒𝛾 + 𝐶2)

(𝜇𝜒
2 + 𝜇𝛾

2 + 𝐶1)(𝜎𝜒
2 + 𝜎𝛾

2 + 𝐶2)
 

 

(11) 

Where 𝜇𝜒 is the mean of the pixel values of the 
reference image (x). 𝜇𝛾 is the mean of the pixel 
values of the degraded image (y). 𝜎𝜒  and 𝜎𝛾  are 
the standard deviations of the pixel values of the 
reference image and the degraded image 
respectively. C1 and C2 are constants to ensure that 
the value of the SSIM is always finite [12]. 

3 Methodology 
The proposed MR image denoising technique 
presented in this section is composed of the stages 
shown in Fig. 1. The algorithm separately denoises 
a noisy image using both a frequency domain 
Gaussian low pass filter and a spatial domain high 
pass non-local means filter. Since the Gaussian 
filter denoises low frequency components better 
than it does for higher frequency ones, its denoised 
low frequency components are extracted to form 
the low frequency part of the denoised output image 
of the algorithm. On the other hand, the non-local 
means filter, denoises the higher frequency 
components better than lower frequency ones. The 
high frequency components of the output of this 
filter are extracted to constitute the high frequency 
components of the denoised output image. The 
extracted low and high frequency components are 
then combined by matrix summation to reconstruct 
the denoised output image.  
The process of extracting and fusing the frequency 
components to reconstruct the denoised image was 
carried out using the following procedure. Salt and 
pepper or Gaussian noise was added gradually 
(variance between 0.1 to 0.9) to a P × Q  pixels 
ground-truth image, A(m, n) to form a noisy image, 
AN(m, n) as follows; 

 

 

               Ground-truth image 
                                   

 

 

 

 

 

 

 

 

 
 
     
 
 
 
   
 
 
 
   
 
 
 
 
 
 
 
      
                                    
                                
                            Denoised image 
Fig. 1: Flowchart of the proposed method. 

𝐴𝑁(𝑚, 𝑛) = 𝐴(𝑚, 𝑛) + 𝑁(𝑚, 𝑛)        (12) 
Where 𝑁(𝑚, 𝑛) is an 𝑃 × 𝑄  noise matrix, 1 ≤
𝑚 ≤ 𝑃 and 1 ≤ 𝑛 ≤ 𝑄. The noisy image was then 
transformed into frequency domain by taking its 
two-dimensional Discrete Fourier Transform (2D-
DFT).  

Noise addition  
AN(m, n) = 
A(m, n) + 
N(m, n) 

 
Centered 2D-
DFFT evaluation 

ANC(u, v) =  
2D-DFT{AN(m, 

n)} 

Non-local 
means filtering 

AHF(m,n) = 
NLMF{AN(m, 

n)} 

Frequency domain 
Gaussian low-pass 

filtering  
ALF(u, v)= 

H(u, v).∗ ANCD(u, 
v) 

Centered 2D-
DFFT evaluation  

AFC(u, v)=  
2D-DFT{AHF(m, 

n)} 

High frequency 
components 
extraction 
AH(u, v)= 

B(u, v) .∗ AFC(u, 
v) 

Matrix addition 
A0(u, v) =  

AL(u, v) + AH(u, v) 

Low frequency 
components 
extraction 
AL(u, v)= 

L(u, v).∗ ALF(u, v) 

 

2D-IDFT 
evaluation 
A1(m, n)= 

2D-IDFT{A0(u, v)} 
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The 2D-DFT was centered in order to put the low 
frequency components of the noisy image at the 
center of matrix 𝐴𝑁𝐶(𝑢, 𝑣) as follows; 

𝐴𝑁𝐶(𝑢, 𝑣) = 2𝐷 − 𝐷𝐹𝑇{𝐴𝑁(𝑚, 𝑛)} (13) 

Where 1 ≤ 𝑢 ≤ 𝑃, 1 ≤ 𝑣 ≤ 𝑄 and 2𝐷 − 𝐷𝐹𝑇{. } 
denotes the centered 2D-DFT. The centered 
frequency domain image was low pass filtered by 
multiplying it element-wise by the transfer 
function of a Gaussian low pass filter as follows; 

𝐴𝐿𝐹(𝑢, 𝑣) = 𝐻(𝑢, 𝑣).∗ 𝐴𝑁𝐶𝐷(𝑢, 𝑣) (14) 

Where {.*} denotes element-by-element matrix 
multiplication, 𝐴𝐿𝐹(𝑢, 𝑣) is the low pass filtered 
image in frequency domain and 𝐻(𝑢, 𝑣) is the 
transfer function of the modified Gaussian low pass  
filter given by; 

𝐻(𝑢, 𝑣) = 𝐻𝑂𝑒
−
𝑐𝐷2(𝑢,𝑣)

2𝐷0
2

 
(15) 

Where 𝐻0, 𝑐  and 𝐷0  are constants while  𝐷(𝑢, 𝑣) is 
the two-dimensional spatial frequency given by; 

𝐷(𝑢, 𝑣) = √((𝑢 −
𝑃

2
)
2

+ (𝑣 −
𝑄

2
)
2

) (16) 

The low frequency components of the filtered 
image were extracted by element-wise 
multiplication of 𝐴𝐿𝐹(𝑢, 𝑣) by a low pass filter 
mask 𝐿(𝑢, 𝑣) as follows; 

𝐴𝐿(𝑢, 𝑣) = 𝐿(𝑢, 𝑣).∗ 𝐴𝐿𝐹(𝑢, 𝑣) (17) 

Where 𝐴𝐿(𝑢, 𝑣)is a matrix containing only the low 
frequency components of 𝐴𝐿𝐹(𝑢, 𝑣) and 𝐿(𝑢, 𝑣)  is 
the low pass mask defined as follow; 

𝐿(𝑢, 𝑣) = {
1 𝑓𝑜𝑟 𝐷(𝑢, 𝑣) ≤ 𝐾 
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

Where K is the highest frequency extracted by the 
mask. The value of K used was obtained as follows;  

𝐾 = 5 × 10−3(√𝑃2 + 𝑄2) (19) 

The same noisy image (AN(m, n)) was also 
denoised by the non-local              means filter to produce 
the image 𝐴𝐻𝐹(𝑚, 𝑛) as follows; 

𝐴𝐻𝐹(𝑚, 𝑛) = 𝑁𝐿𝑀𝐹{𝐴𝑁(𝑚, 𝑛)} (20) 

where 𝑁𝐿𝑀𝐹{. } denotes non local means filtering. 
The filtered image (𝐴𝐻𝐹(𝑚, 𝑛)) was transformed 
into frequency domain by evaluating its centered 
2D-DFT so that its high frequency components are 
at the periphery of matrix 𝐴𝐹𝐶(𝑢, 𝑣) as; 

𝐴𝐹𝐶(𝑢, 𝑣) = 2𝐷 − 𝐷𝐹𝑇{𝐴𝐻𝐹(𝑚, 𝑛)} (21) 

The high frequency components of the filtered 
image were extracted using element-wise 
multiplication of 𝐴𝐹𝐶(𝑢, 𝑣) by a high pass filter 
mask 𝐵(𝑢, 𝑣) as follows; 

𝐴𝐻(𝑢, 𝑣) = 𝐵(𝑢, 𝑣).∗ 𝐴𝐹𝐶(𝑢, 𝑣) (22) 

Where 𝐴𝐻(𝑢, 𝑣) is a matrix containing only the 
high frequency components of 𝐴𝐹𝐶(𝑢, 𝑣) and 
𝐵(𝑢, 𝑣)  is the high pass mask defined as follow; 

𝐵(𝑢, 𝑣) = {
1 𝑓𝑜𝑟 𝐷(𝑢, 𝑣) > 𝐾 
0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (23) 

The 2D-DFT of the denoised image was 
reconstructed as matrix 𝐴0(𝑢, 𝑣) by combining the 
extracted low and high frequency components as 
follows; 

𝐴0(𝑢, 𝑣) = 𝐴𝐿(𝑢, 𝑣) + 𝐴𝐻(𝑢, 𝑣) (24) 
Finally, the denoised output image was obtained by 
taking the two-dimensional Inverse Discrete 
Fourier Transform (2D-IDFT) of  𝐴0(𝑢, 𝑣) as; 

𝐴1(𝑚, 𝑛) = 2𝐷 − 𝐼𝐷𝐹𝑇{𝐴0(𝑢, 𝑣)} (25) 

where 2𝐷 − 𝐼𝐷𝐹𝑇{. } denotes the 2D-IDFT and  
𝐴1(𝑚, 𝑛) is the denoised output image. 
 

4 Results and Discussions 
The test results of the proposed algorithm are 
presented in this section. The results were 
generated by computer simulation of the algorithm 
using maths works MATLAB 2018a software. The 
t e s t  MR images were obtained   from the Kenya 
Sonar Imaging Center and t h e  Siemens 
Healthineers website [27]. The values of the 
constants used are: 𝐻0 = 1, 𝑐 = 0.5,  𝐷0 = 650,   
701 ≤ 𝑃 ≤ 1801 𝑎𝑛𝑑 751 ≤ 𝑄 ≤ 1851.  

To generate the results, salt and pepper or Gaussian 
noise was added  gradually (from a variance of 0.1 
to 0.9) to one of a sample of ten MR images at a 
time. The Peak Signal to Noise Ratio (PSNR) and the 
Structural Similarity(SSIM) index were calculated for every 
salt and pepper or Gaussian noise density and for every filter. 
The proposed algorithm was used to denoise the 
MR images and its results compared with those of 
other denoising techniques such as: modified 
discrete fast Fourier transform, median, adaptive 
median and Wiener filters. The comparison was 
done both qualitatively and quantitatively using 
objective measures such as the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity 
(SSIM) index.  
The statistical summary was used to represent 
graphically the denoising performance of every 
filter and to compare the filtering activities of all 
the filter algorithms. 
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4.1 Qualitative analysis 
In Fig. 2, a subjective comparison of the 
performances of the proposed method to that of the 
modified discrete fast Fourier transform filter is 
presented. Column (a) shows the ground-truth 
𝑃 × 𝑄  pixels head MR image. Column (b) from 
top to bottom shows the image corrupted by salt 
and pepper noise of variances 0.1, 0.3, 0.5 and 0.7 
respectively. More the noise density increases from 
top downward, more the Head MR image gets 
corrupted. For example, at 0.3 and 0.5 salt and 
pepper noise variances, the Head image is much 
corrupted in such way it is very difficult to 
recognize it.  Results of denoising the noisy image 
using the MDFFT filter as well as the proposed 
algorithm are presented in columns (c) and (d) 
respectively. By visual observation, the proposed 
algorithm yielded images of higher quality than the 
MDFFT filter for all the noise variances tested.  
In fig. 3, another subjective comparison of the 
performances of the proposed method to that of the 
modified discrete fast Fourier filter is presented. 
Four different MR images (Head, Ankle, Shoulder 
and Neck) are corrupted by salt and pepper noise. 
Column (a) shows four different ground-truth MR 
images. The images corrupted by a salt and pepper 
noise of variance 0.3 are presented in column (b). 
Results of denoising the images using the MDFFT 
filter as well as the proposed algorithm are 
presented in columns (c) and (d) respectively. By 
observation, the proposed algorithm produced 
images of better quality than the MDFFT filter.  
A qualitative comparison of the performances of 
the proposed and the MDFFT methods for images 
corrupted by Gaussian noise is presented in fig. 4. 
Column (a) shows a ground-truth Neck MR image. 
From top to bottom of column (b), the MR image 
corrupted by Gaussian noise of variances 0.1, 0.3, 
0.5 and 0.7 respectively is given. The Gaussian 
noise is added increasingly from top downward and 
more the noise density increases more the Neck MR 
image get corrupted. Denoising results of the 
MDFFT filter and the proposed algorithm are 
shown in columns (c) and (d) respectively. By 
subjective comparison, the proposed algorithm 
yielded images of higher quality than the MDFFT 
filter for low noise variances. For higher noise 
variances, the visual quality for MDFFT and the 
proposed methods are similar. This means that the 
denoising performance of the proposed algorithm is 
better than that of MDFFT filter for low Gaussian 
noise densities. But for high Gaussian noise 
densities, the denoising performances of MDFFT 
filter and proposed algorithm are almost equal. 

Original 
image 

Noisy 
image 

MDFFT 
Filter 

Proposed 
Method 

    

    

    

    
      (a)                (b)                (c)                (d) 

Fig. 2: Comparison between the MDFFT filter and 
the proposed method. (a) Original image. (b) Salt 
and pepper noise corrupted image. (c) MDFFT 
filter denoised image. (d) Proposed method 
denoised image.  

In fig. 5, a comparison of the Gaussian noise 
removal capabilities of the proposed method and 
the MDFFT filter is presented. The MR images 
used are those of a Head, Ankle, Shoulder and Neck 
as presented in column (a). Column (b) presents the 
four MR images corrupted by Gaussian noise of 
variance 0.3. Results of denoising the noisy images 
using the MDFFT filter as well as the proposed 
algorithm are presented in columns (c) and (d) 
respectively. By visual observation, it was found 
that the proposed algorithm produced images of 
better quality than the MDFFT filter for low 
Gaussian noise variances. However, there is no 
perceptible difference between the noise removal 
efficacies of the two methods when the Gaussian 
noise variance is higher than 0.3. This is evident 
from the denoising results presented in third and 
fourth rows of fig. 4 for noise variances equal to 0.5 
and 0.7 respectively.  
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Original 
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MDFFT 
filter  

Proposed 
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(a) (b) (c) (d) 

Fig. 3: Performance comparison for different 
images. (a) Original image. (b) Salt and pepper 
noise corrupted images. (b) MDFFT filter denoised 
image. (d) Proposed method denoised. 

Original 
image 

Noisy 
image 

MDFFT 
filter 

Proposed 
 method 

    

    

    

    
          (a)           (b)          (c)      (d)  
Fig. 4: Gaussian noise removal comparison. (a) 
Original image. (b) Gaussian noise corrupted 
image. (c) MDFFT filter denoised image. (d) 
Proposed method denoised image.  

Original 
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Image  

MDFFT 
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Proposed 
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(a) (b) (c) (d) 

Fig. 5: Performance comparison for different 
images. (a) Original image. (b) Noisy image with 
0.3 noise variance. (c) MDFFT filter denoised 
image. (d) Proposed method denoised image. 

4.2 Quantitative analysis 
For objective quality analysis, five filter algorithms 
were used to remove salt and pepper and Gaussian 
noises from MR images. The algorithms used are 
the Wiener, median, adaptive median and the 
MDFFT filters in addition to the proposed method. 
The PSNR and SSIM measures were used to 
compare their filtering performances. Table 1 
shows the denoising performances of the five 
algorithms in removing salt and pepper noise in 
terms of the mean PSNR for ten MR images.  
The proposed method produced images of higher 
quality than the other algorithms for both low and 
high noise densities (variances). For example, the 
mean PSNR of the proposed method is 9.73 dB and 
5.72 dB higher than for any of the other filters at 0.2 
and 0.7 noise densities respectively. For Gaussian 
noise removal, the performances of the proposed 
method and four other algorithms are presented in 
table 2 in terms of mean PSNR. The other four 
methods are the Wiener, median, adaptive median 
and the MDFFT algorithms.  
The proposed method out-performs all the other 
four filters when the Gaussian noise density is low.  
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For example, at a noise of density of 0.1, the mean 
PSNR of the proposed method is at least 1.86 dB 
higher than those of the other four filters. At higher 
noise densities, the performance of the proposed 
method is comparable to that of the MDFFT filter 
but better than those of the Wiener, median and 
adaptive median filters. In terms of the SSIM index, 
table 3 gives a comparison of the denoising 
performances of the proposed method and the 
MDFFTF in removing salt and pepper noise. The 
SSIM values were averaged for ten MR images at 
different noise densities.  

Table 1. Mean PSNR for salt and pepper noise 
removal  
Salt 
and 
pepper 
noise 
density 

Denoising algorithms 
Wiener Median Adaptive 

median 
MDFF 
filter 

Proposed  
method 

PSNR 
in dB 

PSNR 
in dB 

PSNR 
in dB 

PSNR 
in dB 

PSNR 
in dB 

0.1 45.25 61.82 66.86 64.87 71.13 
0.2 42.78 58.78 62.32 61.79 72.05 
0.3 40.88 56.66 59.45 59.97 69.14 
0.4 39.20 54.22 57.25 58.65 66.68 
0.5 37.80 52.05 54.92 57.61 64.72 
0.6 36.55 49.33 52.80 56.76 63.11 
0.7 35.37 46.55 50.66 56.03 61.75 
0.8 34.38 43.26 45.75 55.39 60.57 
0.9 33.47 39.13 40.19 54.82 59.53 

Table 2. Mean PSNR for Gaussian noise removal 

Gaussian 
noise 
density 

Denoising algorithms 
Wiener Median Adaptive 

.median 
MDFFT Proposed  

method 
PSNR 
 in dB 

PSNR 
in dB 

PSNR 
in dB 

PSNR 
in dB 

PSNR 
in dB 

0.1 43.21 51.98  
 
38.98 66.17 68.03 

0.2 40.72 50.00  
 
36.61   61.65 62.21 

0.3 39.40  48.81  
 
35.53   58.54 58.78 

0.4 38.54 47.90 34.94 56.26 56.38 
0.5 37.92  

 
47.27 34.55 54.50 54.56 

0.6 37.46 46.77 34.28 53.13 53.14 
0.7 37.05  

 
46.27 34.08 52.09 52.08 

0.8 36.78 45.94 33.93 51.39 51.37 
0.9 36.53 45.54 33.79 50.98 50.97 

 
 

 

Table 3. Mean SSIM for salt and pepper 
noise removal 

Salt and  
Pepper 
noise 
density 

Denoising algorithms 
MDFFTF  
 

Proposed 
method  

SSIM SSIM 

0.1 0.81 0.94 
0.2 0.66 0.95 
0.3 0.55 0.91 
0.4 0.45 0.85 
0.5 0.37 0.78 
0.6 0.30 0.70 
0.7 0.24 0.61 
0.8 0.19 0.52 
0.9 0.14 0.43 

The proposed method yielded a better salt and 
pepper noise removal capability than the MDFFT 
filter. This superiority of the proposed method to 
MDFFT filter holds for both low as well as high 
noise densities. For example, at a noise density of 
0.2, the mean SSIM indexes of the images denoised 
using the proposed method and MDFFT filter are 
0.95 and 0.66 respectively. When the noise density 
is 0.8, the proposed method produced an output 
image with a mean SSIM index of 0.52 compared 
to the value of 0.19 obtained using the MDFFT 
filter. This is a confirmation of the mean PSNR 
results presented in table 1. 

4.3 Statistical Summary 
A statistical summary of the performance of the 
proposed method in comparison with other 
denoising methods is graphically presented in 
fig.6.  In part (a), plots of the mean PSNR values of 
Wiener, median, adaptive median, MDFFT and the 
proposed algorithms versus the noise density of salt 
and pepper noise are shown. For every filter, the 
mean PSNR reduces as the noise density increases. 
The proposed method has the highest mean PSNR 
for all the noise densities tested. At 0.2 and 0.7 
noise variances, the proposed algorithm out-
performs the other four methods by at least 9.73 dB 
and 5.72 dB respectively.  Hence, it exhibits better 
salt and pepper filtering performance than the other 
four algorithms. 
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 Fig.6: Statistical summary. 

(a) Mean PSNR versus Salt and pepper noise 
density. (b) Mean PSNR versus Gaussian 
noise density.   (c) Mean SSIM mean versus 
Salt & pepper density. 
A performance comparison of the five denoising 
techniques for images corrupted by Gaussian noise 
is presented in part (b) of the figure. The mean 
PSNR values of the denoised images are plotted 
against the noise density. When the noise variance 
is 0.3 or lower, the proposed method portrays a 
better noise removal performance than the other 
four filters. For example, at a noise density of 0.1, 
the proposed method yielded a mean PSNR of 

68.03 dB while all the other four methods gave 
PSNR values that are lower than 66.20 dB. For 
noise densities above 0.3, the quality performance 
of the proposed technique is comparable to that of 
the MDFFT filter but better than those of the other 
three filters. 
 In part (c), plots of the mean SSIM index versus 
salt and pepper noise density for the MDFFT filter 
as well as the proposed method are presented. The 
mean SSIM index values for the proposed method 
are higher than those of the MDFFT filter. These 
results reaffirm the findings of part (a) that the 
proposed method is superior to the MDFFT filter in 
removing salt and pepper noise from MR images. 

5  Conclusion 
In this Paper, a proposed novel MR images 
denoising technique has been presented. The 
performance of the method has been compared with 
the Wiener, median, adaptive median and modified 
discrete fast Fourier transform filters for the removal 
of salt and pepper as well as Gaussian noise. Objective 
quality assessments showed that the proposed 
method performed better than the others in 
removing salt and pepper noise for both low and 
high noise densities. For example, the proposed 
method yielded average PSNR values that were 
higher than those of the other filters by at least 9.73 dB 
and 5.72 dB for noise variances of 0.2 and 0.7 
respectively. Further research work will be focused 
on optimizing the performance of the proposed 
algorithm by adjusting the parameters of the 
Gaussian filter.  
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