
Timing jitter occurs in different practical situations for a
variety of reasons. The first presentation of the problem was
given in [1]. Later, the sampling time jitter was discovered in
many practical applications and standardized in [2], [3].

Regular blood sugar monitoring is conducted in diabetic
patients to timely reflect the influence of diet, exercise, stress,
and drugs on the blood glucose level [4]. This also gives the
necessary data for evidenced-based clinical decision-making
by healthcare professionals. Monitoring is provided at least
once per day for type 2 diabetes and more than 4 times per
day for type 1 diabetes [5]. Although glucose monitoring is
usually assigned at a certain time, real time may differ by
several hours due to human factors – thus random timing jitter.
It is worth noting that during glucose measurements, jitter may
take several hours [6].

Of importance is that timing jitter does not depend on the
sampling interval, is often normally distributed, and makes the
model uncertain that requires robust approaches [7]–[9]. The
robustH2 filter has several distinctive features: it becomes the
Kalman filter (KF) in white Gaussian environments and gives
robust estimates for maximized errors. TheH2 filter appears
from the transform domain, where the squared Frobenius
norm of the error-to-error transfer functionT is minimized
for maximized errors, and the solution can also be found
numerically using a linear matrix inequality (LMI) [14]–[17].

The robustness can also be improved using batch finite
impulse response (FIR) structures [18], which are bounded
input bounded output stable and can work with full (not
diagonal) block error matrices and discard errors beyond the
averaging horizon. The first receding horizonH2-FIR filter
was developed in [18] for disturbed systems and the envelope-
constrainedH2-FIR filter proposed in [19]. Some other FIR
solutions can be found in [20]–[24], and it is important that
the H2-FIR filter can be as robust as theH∞ filter [25].
Even so, theH2-FIR approach is still poorly developed for
uncertain systems, and its robustness to timing jitter still
remains unknown.

In this paper, we develop theH2 optimal FIR (OFIR)
filter for blood sugar monitoring in diabetic persons taking
into account timing jitter. Based on glucose measurements
in diabetic patients, we investigate the effect of timing jitter
on theH2-OFIR filter performance in a comparison with the
OFIR filter [26], [27].

We represent the blood sugar dynamics with a linear time-
invariant (LTI) continuous-time state-space equations

d

dt
x(t) = Ax(t) + Lw(t) , (1)

y(t) = Cx(t) + v(t) , (2)

where x(t) ∈ R
K , y(t) ∈ R

M , w(t) ∈ R
P , and v(t) ∈ R

M .
The matricesA ∈ R

K×K , L ∈ R
K×P , andC ∈ R

M×K are
constant and known. The glucose measurements are provided
with the sampling timeτk = tk−tk−1, wherek is the discrete-
time index. We assume thatτk is random and uncertain due to
human factors. We representτk asτk = τ + τ̃k = τ(1 + δτk),
whereτ is the known mean,̃τk is the zero mean random jitter,
andδτk = τ̃k

τ
is the fractional jitter.

To go to discrete time, we integrate (1) fromtk−1 to tk and
write the solution as

x(tk) = eAτkx(tk−1) +

∫ tk

tk−1

eA(tk−θ)Lw(θ)dθ , (3)

y(tk) = Cx(tk) + v(tk) . (4)

Substitutingxk
∼= x(tk), yk

∼= y(tk), andvk
∼= v(tk) gives

xk = (F+∆Fk)xk−1 + (B+∆Bk)wk , (5)

yk = Hxk + vk , (6)
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whereH = C, F = eAτ , ∆Fk = eAτ̃k , the disturbancewk

is defined by the stochastic integral

Bkwk =

∫ tk

tk−1

eA(tk−θ)Lw(θ) dθ ,

where Bk = B + ∆Bk, and the data errorvk =
1
τk

∫ tk

tk−1

v(t) dt is supposedto be zero mean and bounded.
For white Gaussianwk ∼ N (0,Qk), the covarianceQk

is given byQk = E{wkw
T
k }

∼= τkLSwL
T , whereSw is the

power spectral density (PSD) ofw(t), and we maximize it as

Q̄ =
τ +max |τ̃k|

τ
Q = (1 + δ̄τ )Q , (7)

where Q = τLSwL
T and δ̄τ = max |δτk| = max |τ̃k|

τ
is

the maximized fractional jitter. Forvk ∼ N (0,Rk), the
covarianceRk = E{vkv

T
k } is defined asRk = 1

τk
Sv, where

Sv is the PSD of v(t), and we similarly have

R̄ =
1

1 + δ̄τ
R ∼= (1− δ̄τ )R . (8)

The robust H2-OFIR filter can be developed for timing jitter,
if we reorganize the model (5) and (6) as

xk = Fxk−1 + ξk , (9)

yk = Hxk + vk , (10)

where the zero mean error vectorξk is given by

ξk = ∆Fkxk−1 + (B +∆Bk)wk . (11)

Next, we follow [26] and extend (9) and (10) to the averaging
horizon [m, k] of N points, wherem = k −N + 1, as

Xm,k = FNxm + F̂NΞm,k , (12)

Ym,k = HNxm + GNΞm,k +Vm,k, (13)

where Xm,k = [ xTm xTm+1 . . . xTk ]
T , Ym,k =

[ yTm yTm+1 . . . yTk ]
T , Ξm,k = [ ξTm ξTm+1 . . . ξTk ]

T ,
Vm,k = [ vTm vTm+1 . . . vTk ]

T , and the partitioned matrices are

FN =
[

I FT . . . FN−2T FN−1T
]T

, (14)

F̂N =










I 0 . . . 0 0
F I . . . 0 0
...

...
. . .

...
...

FN−2 FN−3 . . . I 0
FN−1 FN−2 . . . F I










, (15)

HN = H̄NFN , GN = H̄N F̂N , andH̄N = diag(H H . . . H
︸ ︷︷ ︸

N

).

The extendeduncertain vectorΞk is

Ξm,k = F∆
m,kxm + (B̄N + D∆

m,k)Wm,k , (16)

whereB̄N = diag(B B . . . B
︸ ︷︷ ︸

N

), F∆
m,k andD∆

m,k are given by

F∆
m,k =










0
∆Fm+1

...
∆Fk−1F̃

m+1
k−2

∆FkF̃
m+1
k−1










, (17)

D∆
m,k =










0 0 . . . 0 0

∆Fm+1 0 . . . 0 0
...

...
. . .

...
...

∆Fk−1F̃
m+1
k−2 ∆Fk−1F̃

m+2
k−2 . . . 0 0

∆FkF̃
m+1
k−1 ∆FkF̃

m+2
k−1 . . . ∆Fk 0










,

(18)
and matrixF̃g

r of uncertain products is specified as

F̃g
r =







Fu
rFu

r−1 . . .F
u
g , g < r + 1 ,

I , g = r + 1
0 , g > r + 1

. (19)

Finally, we write the extended state equation as

Xm,k = (FN + F̃m,k)xm + (F̂N + D̃m,k)Wm,k , (20)

where F̃m,k = F̂NF∆
m,k and D̃m,k = F̂ND∆

m,k. The statexk
can now be taken as the last row vector in (20),

xk = (FN−1 + ¯̃Fm,k)xm + (
¯̂FN + ¯̃Dm,k)Wm,k , (21)

where ¯̃Fm,k, ¯̂FN , and ¯̃Dm,k are the last row vectors iñFm,k,
F̂N , andD̃m,k, respectively.

Similarly, we obtain the extended observation equation

Ym,k = (HN + H̃m,k)xm+(GN + T̃m,k)Wm,k+Vm,k, (22)

where H̃m,k = MNF∆
m,k, T̃m,k = MND∆

m,k, and MN =

H̄N F̂N .

The FIR filtering estimate can be defined as [23]

x̂k = HNYm,k

= HN (HN + H̃m,k)xm +HNVm,k

+HN(GN + T̃m,k)Wm,k , (23)

whereHN is the filter gain, and̃Hm,k and T̃m,k are uncer-
tain matrices specified after (22). The unbiasedness condition
E{x̂k} = E{xk} applied to (21) and (23) gives the unbiased-
ness constrain

FN−1 = HNHN , (24)

and the estimation errorεk = xk − x̂k can be written as

εk = (FN−1 −HNHN + ¯̃Fm,k −HN H̃m,k)xm

+(
¯̂FN −HNGN + ¯̃Dm,k −HN T̃m,k)Wm,k

−HNVm,k . (25)

3. Extended Model 

4. Robust H2-Ofir Filter 
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Next, we generalizeεk in the form

εk = (BN + B̃m,k)xm + (WN + W̃m,k)Wm,k

−VNVm,k , (26)

whereBN = FN−1−HNHN , WN =
¯̂FN−HNGN , andVN =

HN , B̃m,k = ¯̃Fm,k−HN H̃m,k andW̃m,k = ¯̃Dm,k−HN T̃m,k.
This generalises (26) as

εk = ε̄xk + ε̄wk + ε̄vk + ε̃xk + ε̃wk , (27)

where the sub errors are defined as

ε̄xk = BNxm , ε̄wk = WNWm,k ,

ε̄vk = −VNVm,k ,

ε̃xk = B̃m,kxm , ε̃wk = W̃m,kWm,k . (28)

We now have five sub transfer functions:Tx̄(z) for εx-to-
ε̄x, Tw̄(z) for εw-to-ε̄w, Tv̄(z) for εv-to-ε̄v, Tx̃(z) for εx-to-ε̃x,
andTw̃(z) for εw-to-ε̃w, and can proceed with the derivation
of the batchH2-OFIR filter.

2

To derive the batchH2-OFIR filter, we need a lemma.

Lemma 1:Given the model (9) and (10), Then theξ-to-y
transfer function on[m, k] is T (z) = Cw(Iz − Aw)

−1zBw,
where the strictly sparse matricesAw andBw are defined as

Aw =










0 I 0 . . . 0
0 0 I . . . 0
...

...
...
. . .

...
0 0 0 . . . I
0 0 0 . . . 0










, Bw =










0
0
...
0
I










(29)

and Cw is a real matrix. The squared Frobenius norm of the
weighted transfer function̄T (z) is

‖T̄ (z)‖2F =
1

2π

∫ 2π

0

tr [T (ejωT )ΞT ∗(ejωT )] dωT(30)

= tr(CwΞCT
w) , (31)

whereT ∗ is complex conjugate ofT andΞ is a symmetric
positive definite weighting matrix.

Proof: The proof can be found in [31].

Using lemma 1 and introducingχm = E{xmxTm},
QN = E{Wm,kWT

m,k}, and RN = E{Vm,kVT
m,k},

we obtain the squared Frobenius norms‖T̄x̄(z)‖2F =
tr(BNχmBT

N), ‖T̄w̄(z)‖2F = tr(WNQNWT
N ), and

‖T̄v̄(z)‖2F = tr(VNRNVT
N ). For εx-to-ε̃x, we obtain

‖T̄x̃(z)‖
2
F = χ̃F

m = trE{B̃m,kxmxTmB̃T
m,k}

= trE{¯̃Fm,kxmxTm
¯̃FT
m,k} , (32)

and, forεw-to-ε̃w, we have

‖T̄w̃(z)‖
2
F = tr E{W̃m,kWm,kWT

m,kW̃
T
m,k}

= tr(Q̃
D

N − Q̃
DT

N HT
N −HN Q̃

TD

N

+HNQ̃
T

NHT
N ) , (33)

where Q̃
D

N = E{ ¯̃Dm,kWm,kWT
m,k

¯̃DT
m,k},

Q̃
DT

N = E{ ¯̃Dm,kWm,kWT
m,kT̃

T

m,k}, Q̃
TD

N =

E{T̃m,kWm,kWT
m,k

¯̃DT
m,k}, and Q̃

T

N =

E{T̃m,kWm,kWT
m,kT̃

T

m,k}.
The following theorem states the batcha posteriori H2-

OFIR filter for data with timing jitter.
Theorem 1:Given model (21) and (22) with zero mean

and mutually uncorrelated timing jitter and other errors. The
batch a posterioriH2-OFIR filtering estimatêxk = HNYm,k

specified by (23) has the gain

HN = (FN−1χmHT
N + ατ

¯̂FNQNGT
N + Q̃DT

N )

×(HNχmHT
N + ατGNQNGT

N

+βτRN + Q̃T
N )−1 , (34)

whereατ = 1 + δ̄τ , βτ = 1− δ̄τ , and δ̄τ .
Proof: Consider (27) and represent the tracetrP =

{εTk εk} of the error matrixP as

trP = E{(ε̄xk + ε̄wk + ε̄vk + ε̃xk + ε̃wk)
T (. . . )}

= E{ε̄Txkε̄xk}+ E{ε̄Twkε̄wk}+ E{ε̄Tvkε̄vk}

+E{ε̃Txkε̃xk}+ E{ε̃Twkε̃wk}

= ‖T̄x̄(z)‖
2
F + ‖T̄w̄(z)‖

2
F + ‖T̄v̄(z)‖

2
F

+‖T̄x̃(z)‖
2
F + ‖T̄w̃(z)‖

2
F . (35)

Solve the minimization problem

HN = argmin
HN

trP

= argmin
HN

tr(BNχmBT
N +WNQNWT

N

+VNRNVT
N + ‖T̄x̃(z)‖

2
F + ‖T̄w̃(z)‖

2
F ) (36)

by considering ∂
∂HN

trP = 0. SubstituteQ andR with (7) and
(8), arrive at (34), and complete the proof.

Finally, compute the error matrix associated with (23) by

P = BNχmBT
N + ατWNQNWT

N + βτVNRNVT
N

+P̃x + P̃w , (37)

whereP̃x = χ̃F
m and P̃w = ‖T̄w̃(z)‖

2
F .

We now need to specify the uncertain matricesQ̃DT
N and

Q̃T
N in (34) for timing jitter. For the two-state polynomial

model, we write the system matrixFk = F+∆Fk as

Fk = F + τ̃kF̄k =

[
1 τ
0 1

]

+ τ̃k

[
0 1
0 0

]

(38)

and the uncertain errorξk is given by (11).
To provide the averaging iñQDT

N specified after (33), we
start with D̃m,k = F̂ND∆

m,k, whereFN is given by (14) and

4.1 Batch H2-Ofir Filter 

5. Two-state Glucose Level Model 

WSEAS TRANSACTIONS on SIGNAL PROCESSING 
DOI: 10.37394/232014.2022.18.16

Eli G. Pale-Ramon, Jorge A. Ortega-Contreras, 
 Karen J. Uribe-Murcia, Yuriy S. Shmaliy

E-ISSN: 2224-3488 118 Volume 18, 2022



D∆
m,k by (18). For small jitter and other errors, we neglect the

products of their values and obtain

D∆
m,k =










0 0 . . . 0 0

τ̃m+1F̄ 0 . . . 0 0
...

...
. . .

...
...

τ̃k−1F̄F
N−3 τ̃k−1F̄F

N−4 . . . 0 0

τ̃kF̄F
N−2 τ̃kF̄F

N−3 . . . τ̃kF̄ 0










. (39)

This gives ¯̃
Dm,k =

¯̂
FND∆

m,k. Similarly we obtainT̃m,k =

H̄N F̂ND∆
m,k and arrive atQ̃DT

N =
¯̂
FNQ∆

N F̂T
NH̄T

N , where

Q∆
N = E{D∆

m,kWm,kW
T
m,kD

∆T

m,k} . (40)

This givesQ̃T
N = H̄N F̂NQ∆

N F̂T
NH̄T

N .
Now, we assume that̃τk, wk, andvk are small, zero mean,

and mutually uncorrelated white Gaussian processes with the
standard deviationsστ , σw, andσv, and first transform matrix

D∆
m,k as follows. The key product in (39) is̄FFn =

[
1
0

]

. We

thus assign a matrix̃Tn =

[
τ̃n
0

]

and obtain

D∆
m,k =










0 0 . . . 0 0

T̃m+1 0 . . . 0 0
...

...
. . .

...
...

T̃k−1 T̃k−1 . . . 0 0

T̃k T̃k . . . T̃k 0










. (41)

Looking into (40), we notice that its key component
is E{τ̃2kw

2
n}. Then for X = τ̃2k and Y = w2

n the
Cauchy-Schwartz inequalityE{XY } 6

√

E{X2}E{Y 2}
gives E{τ̃2kw

2
n} 6

√

E{τ̃4k}E{w
4
n}. Since forGaussian vari-

ables we haveE{τ̃4k} = 3σ4
τ and E{w4

k} = 3σ4
w, after some

transformations we obtainQ∆
N 6 3σ2

τσ
2
wQ

N
N , whereQN

N =

diag(J1 J2 . . .JN ), in which Ji =

[
i 0
0 0

]

, i ∈ [1, N ].

The gain (34) can now be written as

HN = (FN−1χmHT
N + ατ D̄NQNGT

N

+3σ2
τσ

2
w
¯̂
FNQN

N F̂T
NH̄T

N )(HNχmHT
N

+ατGNQNGT
N + βτRN

+3σ2
τσ

2
wH̄N F̂NQN

N F̂T
NH̄T

N )−1 . (42)

and we notice that under the assumption of small errors, the
terms withσ2

τσ
2
w can be omitted and (42) becomes

HN = (FN−1χmHT
N + ατ D̄NQNGT

N )(HNχmHT
N

+ατGNQNGT
N + βτRN )−1 . (43)

Note that, since the batch OFIR filtering estimate [27] can
be computed iteratively using Kalman recursions [32], the
batch (43) can also be computed using Kalman recursions.
We finish the derivation of the robustH2-OFIR filter with the
iterative algorithm, which pseudo code is listed as Algorithm
1. The algorithm requires a maximized valuemax |τ̃k| of the
time jitter in order for the estimate of the blood sugar level to
be robust.

Algorithm 1: RobustH2-OFIR Filtering Algorithm

Data: yk, uk, x̂m, Pm, Q, R, max |τ̃k|
1 begin
2 ατ = (1 + max |τ̃k|

τ
) ;

3 βτ = (1− max |τ̃k|
τ

) ;
4 for k = 1, 2, · · · do
5 m = k −N + 1 if k > N − 1 andm = 0

otherwise;
6 for i = m+ 1,m+ 2, · · · , k do
7 P−

k = FPk−1F
T + ατBQBT ;

8 Sk = HP−
k HT + βτR ;

9 Kk = P−
k HTS−1 ;

10 x̂k = F x̂k−1 +K(yk −HFx̂k−1) ;
11 Pk = (I −KkH)P−

k ;
12 end for
13 end for

Result: x̂k, Pk

14 end

Analyzing (42), the following conclusions can be made.
There are two types of corrections: the first-order corrections
by the termsατ and βτ and the second-order corrections
by the termsσ2

τσ
2
w. The fractional jitterδ̄τ affects the blood

sugar measurements in the opposite directions, as in (7) and
(8), which is favorite for jitter reduction. The estimation error
matrix (37) does not directly indicate the robustness of theH2-
OFIR filter, and the best is to prove the effect experimentally.

In this section, we apply the filter designed to daily glu-
cose measurements in diabetic patients. We use the above-
considered two-state model and assume that all errors are
Gaussian. Since the glucose measurement error reaches±20%
in the upper range, we setσv = 20mg/dl. The scalar
disturbancewk is unknown, and we setσw that gives the
best estimate for each smoothing window. We next consider
the diabetes data available from [6]. Deliberately, we choose
several databases related to monitoring at 8:00 before breakfast
and apply a two-state UFIR smoother [33] on 3 days, one
week, and two week horizons to obtain a pseudo ground truth.
To investigate the blood sugar level dynamics, we use theH2-
OFIR, OFIR, Kalman, ML-FIR, and UFIR filters and minimize
errors relative to the pseudo ground truth in the MSE sense.

The time jitter in “data-01” obtained over 134 days is shown
in Fig. 1a. As we can see, the time variations are about±2
hours that corresponds tōδτ = 3.79%. The daily glucose
measurements, a pseudo ground truth obtained by 14-days
smoothing, and the filtering estimates are sketched in Fig.
1b. First we notice that the robustH2-OFIR filter produces
the smallest RMSE of 19.78 mg/dl. The OFIR filter is less
accurate (20.01 mg/dl), and the ML-FIR (28.00 mg/dl) and
UFIR (27.92 mg/dl) filters give more errors.

5.1 Effect of Time Jitter on the Filter 
Performance 

6. Glucose Monitoring in Diabetic Patients 
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Fig. 1. Daily glucose measurements (“data-01”) at 8.00 before breakfast in
a diabetic patient: (a) timing jitter and (b) filtering estimates for a pseudo
ground truth (14-days smoothed).

The time jitter in another “data-29” obtained over 148 days
is shown in Fig. 2a. Instantly we notice that its mean is not
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Fig. 2. Daily glucose measurements (“data-29”) at 8.00 before breakfast in
a diabetic patient: (a) timing jitter and (b) filtering estimates for a pseudo
ground truth (14-days smoothed).

zero and that the time variations range from−3 to 1 hours that
corresponds tōδτ = 2.29%. The filtering estimates along with

TABLE I
ACCURACY IMPROVEMENT(IN %) BY ROBUSTH2-OFIR FILTER FOR
DIFFERENT SMOOTHER WINDOWS AS FUNCTION ON THE FRACTIONAL

TIME JITTER δ̄τ (IN %)

δ̄τ , % 3 days 7 days 14 days
3.79 0.224 0.143 1.144
4.77 5.362 4.014 4.581
9.53 8.044 8.223 9.161

a pseudo ground truth (14-days smoothing) are sketched in
Fig. 2b. Again we notice that the robustH2-OFIR filter gives
the smallest RMSE (19.14 mg/dl), while the OFIR filter (19.22
mg/dl), UFIR (23.82 mg/dl), and ML-FIR (25.64 mg/dl) filters
are less accurate.

Now we wonder how robust theH2-OFIR filter is compared
to the OFIR filter, which does not have the tuning option to
mitigate timing jitter. To find out, we compute the difference
between theH2-OFIR and OFIR estimates, relate the result
to the OFIR estimate, and plot in percents in Fig. 3. What
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Fig. 3. Improvement of the OFIR filter accuracy (in %) by the robustH2-
OFIR filter as function of the fractional time jitter̄δτ (in %).

follows is that, for the maximum observed̄δτ = 3.8% related
to τ = 24 hours, the filtering accuracy is improved only by
1.14%. Next, we assume that monitoring is conducted each
τ = 12 and τ = 6 hours and infer that the estimation
accuracy is improved proportionally tōδτ . Note that these
projections do not accurately apply to glucose monitoring as
blood sugar levels are higher during the day and lower at
night. Nevertheless, it gives an idea of the effect of fractional
time jitter on the accuracy of a robust filter. This is supported
by Table I, from which we also deduce that the accuracy
improvement does not depend on the smoother window.

Finally, we look at the estimated second state and compute
the average rate of the blood sugar level. The most accurate
robustH2-OFIR filter reveals a low rate of 0.089 (mg/dl)/day
in “data-01” and a high rate of 0.45 (mg/dl)/day in “data-29”.
Other rates obtained by different filters are listed in Table II.
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TABLE II
BLOOD SUGAR LEVEL RATES IN (MG/DL)/DAY DETECTED IN “ DATA -01”

AND “ DATA -29” BY DIFFERENT FILTERS

Data set H2-OFIR OFIR KF ML-FIR UFIR
“data-01” 0.089 0.058 0.103 0.039 0.129
“data-29” 0.451 0.449 0.557 0.271 0.418

To provide accurate monitoring of glucose level in diabetic
patients under timing jitter caused by human factors, we
have developed the robusta posteriori H2-OFIR filter and
compared its performance to thea posteriori OFIR filter.
It turned out that under the maximum observed fractional
daily jitter in glucose measurements of4%, the accuracy
improvement by the robust filter is less than4%, which is
small. In this case, the jitter can be ignored and the standard
filters used. However, more frequent measurements result in
larger fractional jitter that require robust estimates.
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