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Robust Blood Sugar Monitoring in Diabetic Patients
with Timing Jitter due to Human Factors
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Abstract: Blood sugar monitoring in diabetic patients is commonly provided with timing jitter caused by human
factors. In this paper we address the problem by developing the robust H2 optimal finite impulse response
(OFIR) filter under under possible disturbances, initial errors, and measurement errors. The filter is applied to
data collected daily before breakfast from diabetic patients. It is shown that the robust H2-OFIR filter improves
the accuracy of the OFIR filter by the factor of less than the fractional time jitter. That is, for large fractional
timing jitter of 10% the improvement would be less than 10% that is small. Otherwise, it is worth using robust
estimators.
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1. Introduction
Timing jitter occurs in different practical situations for a
variety of reasons. The first presentation of the problem was
given in [1]. Later, the sampling time jitter was discovered iﬂlt
many practical applications and standardized in [2], [3].

In this paper, we develop thé/, optimal FIR (OFIR)
er for blood sugar monitoring in diabetic persons taking
iEto account timing jitter. Based on glucose measurements

Regular blood sugar monitoring is conducted in diabet diabeti tient . tigate the effect of timing iitt
patients to timely reflect the influence of diet, exercise, streé@, 1abetic patients, we investigate the €etiect of timing Jitter
the H,-OFIR filter performance in a comparison with the

and drugs on the blood glucose level [4]. This also gives t & X
necessary data for evidenced-based clinical decision-maki EIR filter [26], [27].

by healthcare professionals. Monitoring is provided at least

once per day for type 2 diabetes and more than 4 times pe2. Model and Problem Formulation

day for type 1 diabetes [5]. Although glucose monitoring is \we represent the blood sugar dynamics with a linear time-

usually assigned at a certain time, real time may differ Bivariant (LTI) continuous-time state-space equations
several hours due to human factors — thus random timing jitter.

It is worth noting that during glucose measurements, jitter may d O = Ax(f) + Lw(t 1
take several hours [6]. X x(t) +Lw(t), 1)
Of importance is that timing jitter does not depend on the y(t) = ©Cx(t)+v(t), (2

sampling interval, is often normally distributed, and makes the
model uncertain that requires robust approaches [7]-[9]. THE / Kk Xop I
robustHs filter has several distinctive features: it becomes thg1e matricesA € R®~%, L € R®*7, andC € R are
Kalman filter (KF) in white Gaussian environments and giveonstant and known. The glucose measurements are provided
robust estimates for maximized errors. THe filter appears With the sampling timey, = ¢, —t;,_,, wherek is the discrete-
from the transform domain, where the squared Frobenifi@€ index. We assume thaj is random and uncertain due to
norm of the error-to-error transfer functioh is minimized human factors. We represent asr; =+ 7 = 7(1 + ),
for maximized errors, and the solution can also be fourfyf’€re7 is the known mear, is the zero mean random jitter,
numerically using a linear matrix inequality (LMI) [14]—[17].@Ndd-x = == is the fractional jitter.

The robustness can also be improved using batch finite!© 90 to discrete time, we integrate (1) fram., to ¢, and
impulse response (FIR) structures [18], which are bound¥iite the solution as

gex(t) € RE, y(t) e RM, w(t) € RY, and v(t) € RM.

input bounded output stable and can work with full (not th
diagonal) block error matrices and discard errors beyond the X(tx) = e*™x(tr_1) +/ A Lw(6)dd, (3)
averaging horizon. The first receding horizéfy-FIR filter b1
was developed in [18] for disturbed systems and the envelope- ¥ (tr) = Cx(tr) + v(tx). (4)

constrainedH,-FIR filter proposed in [19]. Some other FIR I -~ N N .
solutions can be found in [20]-[24], and it is important thapupstitutingx, = x(tx), yk = y(tx), andvy = v(iy) gives
the H>-FIR filter can be as robust as th€., filter [25].
Even so, theH>-FIR approach is still poorly developed for
uncertain systems, and its robustness to timing jitter still Yk
remains unknown.

X = (F + AFk)kal + (B + ABk)Wk , (5)
= Hxp + v, (6)
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whereH = C, F = ¢A7, AF;, = A7, the disturancew;, whereBy = diag(B B ... B), F5, , andDj, , are gven by

is defined by the stochastic integral N
Ly 0
Biwi, = / A= Ly (8) dg AF,
tr—1
Fook = : : 17)
where B, = B + ABg, and the data errorv, = ’ AF, . Fmil
= ttk’il v(t)dt is supposedo be zero mean and bounded. Al’;*}z_nf;f
For white Gaussiarw;, ~ N(0,Qy), the covarianceQy B k-1
is given byQy, = 5{yvkwf} ~ LS, LT, where‘_Sw_is t_he 0 0 0 0
power spectral density (PSD) &f(¢), and we maximize it as AFi 0 0 0
~ T + max | 7| - D2, = : : . ,
= ——Q=(1+44,)Q, 7 ’ L L : :
« 2=l Q " AF, o FME AR F? .. 000
- - m+-1 ~m—+2
where Q = 7LS, LT ard §, = max |0, = 2217l js AFRFET ARLFTY - AR 0(18)
the maX|m|Bd fractlongl J_'tter‘ _Forvk ~ N(?’Rk)' the and matrix]:"rg of uncertain products is specified as
covarianceRy, = E{vyv, } is defined aR;, = T—kSU, where
S, is the BSD of v(¢), and we similarly have ) FiF_ ... Fy, g<r+1,
) FI = I, g=r+1 . (19)
R = 1+5R%(1—5T)R. (8) 0, g>r+1
" Finally, we write the extended state equation as
3. Extended Model - .
. L. . xm,k = (FN + Fm,k)xm + (FN + Dm,k)Wm,k 5 (20)
The robus H»-OFIR filter can be developed for timing jitter, ~ . ~ .
if we reorganize the model (5) and (6) as whereF,, , = FNF5 . and Dy, = FxD5 .. The statex,
can now be taken as the last row vector in (20),
Xp = FXp_1+ gk ) (9) . FN_l li: ITZ 6 W 21
Vo = Hxp+ve, (10) X = ( + Fme)Xm + (FN 4+ D) Wi, (21)

\ivherel::mik, IEN, andl5m,;C are the last row vectors iﬁm,k,
Fx, andD,, ;, respectively.
& = AFuxe1 + (B+ ABy)wp . (11) Similarly, we obtain the extended observation equation

where the zero mean error vectyr is given by

Next, we follow [26] and extend (9) and (10) to the averagingYm’k = (Hy+Ho ) Xon (G + T ) Won e+ Vi, (22)

horizon|[m, k| of N points, wheren =k — N + 1, as whereH,,» = MyFS ., Tk = MyD2 ., andMy =
. HyEy. ’ ’
Xm,k = FnXm + FNEm,k ; (12) M
Ymre = HNXm +GNEmi + Vinks (13) 4. Robust H>-Ofir Filter
where X, 1 _ XXX Yo _ The FIR filtering estimate can be defined as [23]
[ygm y%Jrl T . ¥£]T’ ETm,k = [537; ;{H-l s _f/r;F]T, )A(k = HNYm,k
Vink = [Vin Ving1 --- Vi ], and the partitioned matrices are H(H + o)X + Hy Vo
- T HN(GN + Tt Won e 23
Fv = [I FT . BN pNUL L g) PG T W @)
r | 0 00 where#H y is the filter gain, antH,, , andT,, ; are uncer-
= | o 00 tain matrices specified after (22). The unbiasedness condition
. _ _ o E{xx} = E{xx} applied to (21) and (23) gives the unbiased-
Fnv = : T (15) ness constrain
FV=2 FN=3 10 N
FN—I FN—2 . F 1 F = HNHN s (24)

_ . _ ] and the estimation errarn, = X;, — X can be written as
Hy =HyFn, Gy = HyFy, andHN :dlag(H H ... H)

) _ N er = (FV7'—HyHN + Em,k — HnHo k)X
The extendedincertain vectoE,, is = = -
+(FN —HNGN + D — HNT ikt ) Wik
Em,k - Fﬁ,kxm + (BN + Dﬁ,k)wmk 5 (16) _HNVm,k . (25)
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Next, we generalize;, in the form
g = (BN + Bm,k)xm + (WN + Wm,k)wm,k
WhereBN = FN —HNHN, WN = FN HNGN, andVN =

Hn, B = Fine —HnHm
This generallses (26) as

& andWm k= Dm,k_HNTm,k-

€k = Exk + Ewk + Eok + Eak + Ewk (27)
where the sub errors are defined as

Exk = BNXm 5 Ewk = WNWm,k ’

Evk = _VNVm,k )

ézk = Bm,kxm 5 éwk = Wm,kwm,k . (28)

We now have five sub transfer functiorg(z) for e,-to-
Ex, T (2) fOr £4-t0-€,, Ty (2) for e,-t0-&,, Tz (z) for e,-to-¢,,

and7;(z) for e,-to-£,,, and can proceed with the derivation

of the batchH,-OFIR filter.
4.1 Batch H2-Ofir Filter

Eli G. Pale-Ramon, Jorge A. Ortega-Contreras,
Karen J. Uribe-Murcia, Yuriy S. Shmaliy

where fo = 5{Dm kW, kakam Kt

- DT

Qn = 5{Dm kW, ka kTm k) 'y QN =

S{Tm ka ka kDm k} and QN =
T

E{Tm,kWM,ka,kTm,k}'

The following theorem states the batehposteriori Hs-
OFIR filter for data with timing jitter.

Theorem 1:Given model (21) and (22) with zero mean
and mutually uncorrelated timing jitter and other errors. The
batch a posteriorH»-OFIR filtering estimatek, = HnY .k
specified by (23) has the gain

Hy = (FV " HY + o FyOnGh + QRT)
X (HyxmHY + .Gy ONGE

+/3TRN + qu\})_l ) (34)

wherea, =1+ 0,, 8, =1 —6,, andd,.
Proof: Consider (27) and represent the traod® =
{eFex} of the error matrixP as

. . trP = 5{(&:11@+§wk+§vk+§mk+§wk)T("')}
To derive the batchf,-OFIR filter, we need a lemma. _ 5{€fk5m} i S{ffﬁkéwk} i S{Efkévk}
Lemma 1:Given the model (9) and (10), Then ti§eto-y (&l 2 (0 &
transfer function orjm, k] is T(z) = Cu(lz — Ay,) 2By, e {E””kizk} - {Ew’;awk}_ 5
where the strictly sparse matricés, andB,, are defined as = HEEZ)”F;' ”7:’3_(2)”1?“;' 175 (2) I
F O . 35
o o o . I Ta(=) 1 + 1T ()13 (35)
co I .. 0 0 Solve the minimization problem
Aw= |1 1 i v Bu= 1 (29)
00 0 ... | 0 Hy = argmintrP
HN
0O 0 O ... 0 I
= argmin tr(BNXmB% + Whn QNW£
andC,, is a real matrix. The squared Frobenius norm of the HN

weighted transfer functioff (z) is
1 21

I
TG = 5
= tr(C,ECL),

tr [T (e?“T)=T*(e?“")] dwT(30)
(31)

where 7 is complex conjugate of and =
positive definite weighting matrix.

is a symmetric

Proof: The proof can be found in [31]. |
Using lemma 1 and introducingy,, = &{Xux%L}1,
On = E{W, W]} and Ry = E{(VmuVi it

we obtain the squared Frobenius norniig;(2)||% =

tr_(BNXmB%), 7 (2)]|% = trWnyONWE), and
|1 T5(2)||% = tr(VNRNVE). Fore,-to-¢,, we obtain
”7;5(2)”% = )251 = trg{Bm kaX Bm k)
= trﬁ{Fm WX XL ka} (32)
and, fore,-to-¢,,, we have
1Ta()F = trEWmaWm Wi, T
~-D ~DT ~TD
= tr(Qy — Qn Hi — HnQy
~T
+HNQNHY), (33)

E-ISSN: 2224-3488
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FVNRNVY + | T ()7 + 1 Ta(2)17) (36)

by considering(%tr P = 0. Substitite Q andR with (7) and
(8), arrive at (34), and complete the proof. |
Finally, compute the error matrix associated with (23) by

P = BnxmBL +a WyONWE + 8. VNRNVE
+P, + Py, (37)
whereP, = Y& and P, = || Ta(2)||%.

5. Two-state Glucose Level Model

We now need to specify the uncertain matrle‘.Q%T and
% in (34) for timing jitter. For the two-state polynomial
model, we write the system matriR, = F + AF;, as

Fr. =F+ 7F, = [1 T] + T [O 1}

0 1 00 (38)

and the uncertain errd, is given by (11).
To provide the averaglng i specified after (33), we
start with Dm = FyD2  whereFy is given by (14) and

m,k?
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Drﬁyk by (18). For small jitter and other errors, we neglect theAlgorithm 1: RobustH,-OFIR Filtering Algorithm
producs of their values and obtain Data: yi, g, m, P, Q, R, max |74

0 0 ... 0 0 1 begin
Fri1F 0 ... 0 0 2 | ap = (14 maxlnly
DA, = : : 1] @) 3 | Br=(1—melnd,
- FEN-3 s FFN-4 0o 0 4 fork:1,2,---do_
T?_ki;FN_g T];_ki;FN_3 %]CF 0 5 m=k—N-+1 if k>N—-1andm =0
i B o otherwise;
This givesD,, ; = FND,%%,C. Similarly we obtainT,, , = © for i =m + 1,m+T2, ok dOT
HyFyD2  and arrive atQR? = FyOAFLHL , where ! Py = PP I 4 - BQB™
NEN m Qv = FvOnFy 8 Sy =HP,H" + 3,R ;
oF = 5{Dﬁ,kwm,kW£,kDﬁTk}- (40) o Kp=P H'S™;
o ~r . AST AT 10 Tk =Fir1 + K(yr — HFZ—1) ;
This givesQy = HyFy ORFyHy . 1 P, = (I — KyH)P ;
Now, we assume thai,, wy, andv, are small, zero mean,,, end for
and mutually uncorrelated white Gaussian processes with the| and for
standard deviations-, o,,, ando,, and first transforT matrix Result: ., Py
D, ;. as follows. The key product in (39) BF" = M we 14 end
thus assign a matrisl,, = [7:":| and obtain 5.1 Effect of Time Jitter on the Filter
0 Performance
0 0 ... 0 O . . .
T 0 0 0 Analyzing @2), the following conclusions can be made.
m+1 I . i . .
A _ _ o There are two types of corrections: the first-order corrections
D= : : : oo (41) by the termsa, and 5, and the secgnd-order corrections
Tr—q1 Tp1 ... 0 O by the termso202. The fractional jitters, affects the blood
T} T, ... T, O sugar measurements in the opposite directions, as in (7) and

Looking into (40), we notice that its key componen 8), which is favorite for jitter reduction. The estimation error

. 5 g S atrix (37) does not directly indicate the robustness offfhe
is &{Fw,}. Then for X = 7/ andY = w, the OFIR filter, and the best is to prove the effect experimentally.

Cauchy-Schwartz inequalit { XY} < /E{X?}E{Y?}
gives E{7Aw2} < /E{7L}E{wi}. Since forGaussian vari-

ables we havee {71} — 301 and £{w!} — 307 after some 6. Glucose Monitoring in Diabetic Patients

transformations we obtai®y < 30202 QY, whereQY = In this section, we apply the filter designed to daily glu-
. . . ;0] . cose measurements in diabetic patients. We use the above-
diag(J; Jo...Jy), inwhichJ, = |* |, i [1,N]. .
fag(Jy ? N) ~lo o’ 1, V] considered two-state model and assume that all errors are
The gain (34) can now be written as Gaussian. Since the glucose measurement error reactisé
Hy = (FN71XmH]7\1/'+aTDNQNG]1\1] in the upper range, we set, = 20mg/dl. The scalar

5 o= NET T r disturbancew; is unknown, and we set,, that gives the
+3050, FNQyFyHY ) (HyxmHy best estimate for each smoothing window. We next consider
+a,GNONGE + B, RN the diabetes data available from [6]. Deliberately, we choose
+30202 HyFyQNFLHE) L. (42) several databases related to monitoring at 8:00 before breakfast

) . and apply a two-state UFIR smoother [33] on 3 days, one
and we notice that under the assumption of small errors, figek, and two week horizons to obtain a pseudo ground truth.
terms witho?o7, can be omitted and (42) becomes To investigate the blood sugar level dynamics, we useHhe

Hy = (F¥ '\mHT + a,DyOnGL)(HyxmHE OFIR, OFIR, Kalman, ML-FIR, and UFIR filters and minimize
4, GNONGT 4 BRy) (43) errors relative to the pseudo ground truth in the MSE sense.
TONZNYEN T PN, The time jitter in “data-01” obtained over 134 days is shown
Note that, since the batch OFIR filtering estimate [27] can Fig. 1a. As we can see, the time variations are ahot

be computed iteratively using Kalman recursions [32], theours that corresponds @ = 3.79%. The daily glucose

batch (43) can also be computed using Kalman recursionseasurements, a pseudo ground truth obtained by 14-days

We finish the derivation of the robusf,-OFIR filter with the smoothing, and the filtering estimates are sketched in Fig.

iterative algorithm, which pseudo code is listed as Algorithrbb. First we notice that the robugf,-OFIR filter produces

1. The algorithm requires a maximized vahiex |7 | of the the smallest RMSE of 19.78 mg/dl. The OFIR filter is less

time jitter in order for the estimate of the blood sugar level taccurate (20.01 mg/dl), and the ML-FIR (28.00 mg/dl) and

be robust. UFIR (27.92 mg/dl) filters give more errors.
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TABLE |
ACCURACY IMPROVEMENT(IN %) BY ROBUST H2-OFIRFILTER FOR
DIFFERENT SMOOTHER WINDOWS AS FUNCTION ON THE FRACTIONAL
TIME JITTER O+ (IN %)

0r, %
3.79
4.77
9.53

3 days
0.224
5.3@
8.044

14 days
1.144
4.581
9.161

7 dgs
0.143
4.014
8.223

a pseudo ground truth (14-days smoothing) are sketched in
Fig. 2b. Again we notice that the robugf,-OFIR filter gives

the smallest RMSE (19.14 mg/dl), while the OFIR filter (19.22
mg/dl), UFIR (23.82 mg/dl), and ML-FIR (25.64 mg/dl) filters
are less accurate.

Now we wonder how robust thH>-OFIR filter is compared
to the OFIR filter, which does not have the tuning option to
mitigate timing jitter. To find out, we compute the difference
between theH,-OFIR and OFIR estimates, relate the result

k to the OFIR estimate, and plot in percents in Fig. 3. What
(b)
Fig. 1. Daly glucose measurements (“data-01") at 8.00 before breakfast in 14
a diabetic patient: (a) timing jitter and (b) filtering estimates for a pseudo /."
ground truth (14-days smoothed). .
Sos . ]
g -
“ ” g . T =6 hours
The time jitter in another “data-29” obtained over 148 daysg B e
is shown in Fig. 2a. Instantly we notice that its mean is not§ 6 e
2 8 o
g1 < .
: [ w
I LI £
:E71 S E 2 “t=24 hours
g -2 -~ ‘. °
E
-3 oL ’ [ ]
’40 0 2 4 6 8 10
50 k 100 Fractional time jitter, %
(a)
400 Fig. 3. Improvement of the OFIR filter accuracy (in %) by the robiist-
—— H,-OFIR UFIR -=== OFIR OFIR filter as function of the fractional time jitteY, (in %).
< 300 ) ) -
® follows is that, for the maximum observeéd = 3.8% related
< to 7 = 24 hours, the filtering accuracy is improved only by
124 . . .
g 200 1.14%. Next, we assume that monitoring is conducted each
> 7 = 12 and 7 = 6 hours and infer that the estimation
% """"" accuracy is improved proportionally t®.. Note that these
100 projections do not accurately apply to glucose monitoring as
Data blood sugar levels are higher during the day and lower at
oL Pseudo ground truth ML-FIR night. Nevertheless, it gives an idea of the effect of fractional
0 50 100 time jitter on the accuracy of a robust filter. This is supported
(’g) by Table I, from which we also deduce that the accuracy

Fig. 2. Daily glucose measurements (“data-29”) at 8.00 before breakfast in
a diabetic patient: (a) timing jitter and (b) filtering estimates for a pseud

ground truth (14-days smoothed).

improvement does not depend on the smoother window.

Finally, we look at the estimated second state and compute
the average rate of the blood sugar level. The most accurate
robust H>-OFIR filter reveals a low rate of 0.089 (mg/dl)/day

zero and that the time variations range freito 1 hours that in “data-01” and a high rate of 0.45 (mg/dl)/day in “data-29".
corresponds té, = 2.29%. The filtering estimates along with Other rates obtained by different filters are listed in Table II.
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TABLE Il
BLOOD SUGAR LEVEL RATES IN (MG/DL)/DAY DETECTED IN “DATA-01"
AND “DATA-29” BY DIFFERENT FILTERS

[17]

(18]
Data set H>-OFIR  OFIR KF ML-FIR  UFIR
“data-01" 0.089 0.058 0.103 0.039 0.129
“data-29” 0.48 0.449 0.557 0.271 0.418 [19]

[20]

7. Conclusions 21]

To provide acarate monitoring of glucose level in diabetic
patients under timing jitter caused by human factors, 2
have developed the robuat posteriori Ho-OFIR filter and
compared its performance to the posteriori OFIR filter. [23]
It turned out that under the maximum observed fraction&l4
daily jitter in glucose measurements afo, the accuracy
improvement by the robust filter is less thdfi, which is
small. In this case, the jitter can be ignored and the stand&fd
filters used. However, more frequent measurements result in
larger fractional jitter that require robust estimates. [26]
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