
Predictive tracking refers to the process of predicting the
future object position [1]. Robust predictive control is required
in vision robot tracking [2], wireless sensor networks (WSNs)
[3], power grids [4], and smart sensing [5]. It is also provided
under missing data caused by latency and propagation losses
[6], [7] and in different kinds of industrial motors to enhance
robustness against parameter perturbations [8].

To organize prediction, one can employ an estimatex̂k at
discrete time indexk and project it ahead using the system
matrix F as x̂k+1 = F x̂k that yields an accurate estimate
under the unknown future noise [9]–[12], When some data
are temporary unavailable, then future observationyk+1 can
be predicted asyk+1 = HFx̂k, whereH is the observation
matrices. A drawback is that recursive forms available for
white noise (diagonal error matrices) produce more errors than
batch estimators operating with full error matrices [13]–[20]

.

An advantage of FIR structures is the bounded input bounded
output stability [16]. A disadvantage is the computational
complexity O(N2) inherent to batch estimators. However

,

unlike in Kalman’s days, the computational complexity is not
already an issue for modern computers [21].

The recursiveH2 approach was extensively investigated in
[22]–[27] and generalized in [28]–[30]. Since theH2 problem
is convex, it has a closed form solution resulting in the KF
under Gaussian noise [29]. It worth noting that, as argued
in [20], the RHH2 FIR filter can perform similarly to the
RH H∞ filter. Even so, the standardH2 FIR approach [16]
has two critical drawbacks: 1) the squared Frobenius norm is
minimized unweighted and 2) data errors and initial errors are
ignored. That requires further investigations.

In this paper, we derive a one-stepH2 optimal FIR (H2-
OFIR) predictor for robust predictive tracking under persistent
disturbances, data errors, and initial errors. By simulations and
experimentally, we show that theH2-OFIR predictor operating

with full error matrices is a more robust estimator than the
Kalman predictor (KP) and unbiased FIR (UFIR) predictor
[32], [33].

Consider a process represented in discrete-time state-space
with the following linear equations

xk+1 = Fxk + Euk +Bwk , (1)

yk = Hxk +Dwk + vk , (2)

where xk ∈ R
K , uk ∈ R

L, yk ∈ R
P , F ∈ R

K×K ,
H ∈ R

P×K , E ∈ R
K×L, B ∈ R

K×M , andD ∈ R
P×M .

Vector wk ∈ R
M represents a disturbance andvk ∈ R

P

is a measurement error; both zero mean, bounded, and with
uncertain distributions and covariances.

Expand model (1) and (2) on a horizon[m, k] of N points,
wherem = k −N + 1, as

xk+1 = FNxm + S̄NUm,k + D̄NWm,k , (3)

Ym,k = HNxm + LNUm,k + TNWm,k + Vm,k , (4)

where Um,k = [uTm uTm+1 . . . u
T
k ]T , Wm,k =

[wT
m wT

m+1 . . . w
T
k ]T , Vm,k = [ vTm vTm+1 . . . v

T
k ]T ,

Ym,k = [ yTm yTm+1 . . . y
T
k ]T , and HN = H̄NFN ,

LN = H̄NSN , TN = GN + T̄N , GN = H̄NDN ,

FN =
[

I FT . . . FN−2T FN−1T
]T

,

SN =












0 0 . . . 0 0 0
E 0 . . . 0 0 0
FE E . . . 0 0 0

...
...

. . .
...

...
...

FN−3E FN−4E . . . E 0 0
FN−2E FN−3E . . . FE E 0












,

2. State Space Model 
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T̄N = diag(D D . . . D
︸ ︷︷ ︸

N

), and H̄N = diag(H H . . . H
︸ ︷︷ ︸

N

).

Matrix DN is equal to matrixSN if we substituteE with
B, S̄N is the last row vector inSN and so isD̄N in DN .

To derive a batchH2-OFIR predictor, we refer to (4) and
define the FIR predicted estimate as

x̂k+1 = HNYm,k +Hf
NUm,k ,

= HNHNxm + (HNLN +Hf
N )Um,k

+HNTNWm,k +HNVm,k , (5)

whereHN is the fundamental gain andHf
N is the forced gain.

The unbiasedness conditionE{xk+1} = E{x̂k+1} applied to
(3) and (5) yields the unbiasedness constraints

I = HNCN , (6)

Hf
N = S̄N −HNLN , (7)

whereCN = HNF
−(N−1). We next define the prediction

error asεk+1 = xk+1 − x̂k+1 and introduce thebias error
residual matrixBN , system error residual matrixWN , and
observation error residual matrixVN as

BN = FN −HNHN , (8)

WN = D̄N −HNTN , (9)

VN = HN (10)

to represent the prediction errorεk+1 as

εk+1 = BNxm + (S̄N −HNLN −Hf
N )Um,k

+WNWm,k − VNVm,k , (11)

which, subjected to (7), can finally be generalized with

εk+1 = εx(k+1) + εw(k+1) + εv(k+1) , (12)

where the sub-errors are given byεx(k+1) = xm − x̂m =
BNxm, εw(k+1) = WNWm,k, andεv(k+1) = −VNVm,k.

The H2 performance is guaranteed by minimizing the
trace of the squared Frobenius norm‖T (z)‖2F of the transfer
functionT (z) averaged over all frequencies [28]. That means
minimizing effects of thexm-to-εk+1 transfer functionTx(z),
wk-to-εk+1 transfer functionTw(z), and vk-to-εk+1 transfer
functionTv(z) at the estimator output.

Since the initial state errorεx(k+1) goes toεk+1 directly,
then it follows that

Tx(z) = I . (13)

The wk-to-εk+1 transfer functionTw(z) can be found by
representingWm,k as [16], [24]

Wm,k = AwWm−1,k−1 +Bwwk , (14)

where the strictly sparse block matrices are constructed as

Aw =










0 I 0 . . . 0
0 0 I . . . 0
...

...
...
.. .

...
0 0 0 . . . I
0 0 0 . . . 0










, Bw =










0
0
...
0
I










. (15)

Then the transform applied to (14) yieldsw(z) = (Iz −
Aw)

−1Bww(z) and the transform applied to errorεw(k+1) =
(D̄N −Hh

NTN )wm,k results in the transfer function

Tw(z) = WN (Iz −Aw)
−1Bw . (16)

Similarly, the transfer function ofVm,k can be found to be

Tv(z) = VN (Iz −Aw)
−1Bw . (17)

To minimize the prediction error, effects of the transfer
functions (13), (16), and (17) must be minimized in the
predictor error (12) as will be shown next.

We now introduce a productT (z)̟k of T (z) and some
proper vector̟ k. The weighted squared Frobenius norm can
be defined by averaging over both variablesz andk as [34]

‖T (z)‖2F = Ez{Ek{tr[T (z)̟k̟
∗

kT
∗(z)]}}

=
1

2π

∫ 2π

0

tr [T (ejωT )E{̟k̟
∗

k}

×T ∗(ejωT )] dωT , (18)

whereT ∗(z) is a conjugate transpose ofT (z) andE{̟k̟
∗
k}

for each error can be assigned as

BNχmBT
N = BNχmBT

N , (19)

QN = E{Wk,mW
T
k,m} , (20)

RN = E{Vk,mV
T
k,m} , (21)

whereχm = E{xmxTm}. If we now combine (19) and (18)
and provide the averaging overωT , then the weighted norm
Tx can be significantly simplified and written as

‖Tx(z)‖
2
F = BNχmBT

N . (22)

Next, the weighted norm ofTw can be written using (20) as

‖Tw(z)‖
2
F =

1

2π

∫ 2π

0

tr
[
Tw(e

jωT )QN

× T ∗

w (e
jωT )

]
dωT . (23)

To arrive at a closed form of (23), we first suppose thatQN =
I and transform (23) to‖Tw(z)‖2F = tr(WNPWT

N), where
matrix P is a solution to the Lyapunov equation

P = AwPA
T
w +M , (24)

in whichM is allowed to be any positive definite matrix. We
thus assignM = BwQNB

T
w and represent a solution to (24) as

P =
∑∞

i=0A
i
wBwQNB

T
wA

T i

w [35] that, forAw andBw given

3.2. H2-OFIR Predictor 

3.1. Disturbance-to-Error Transfer Function 

3. Optimal H2 FIR Predictor 
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by (15), readily becomesP = QN . Consequently,‖Tw(z)‖2F
transforms to

‖Tw(z)‖
2
F = tr(WNQNWT

N ) . (25)

The weighted norm ofTv can be found similarly as

‖Tv(z)‖
2
F = tr(VNRNVT

N ) (26)

and the trace of the error matrixP = E{εkε
T
k } for mutually

uncorrelated errors becomes

trP = E{(εx(k+1) + εw(k+1) + εv(k+1))
T (. . . )}

= tr(BNχmBT
N +WNQNWT

N

+VNRNVT
N ). (27)

Because theH2 problem is convex [35], find the gainHN

using (27) by considering the cost function

J = argmin
HN

trP (HN ) . (28)

By setting the derivative ∂
∂HN

J to zero,come up with

0 = −2(FNχmH
T
N + D̄NQNG

T
N )

+2HN(HNχmH
T
N +GNQNG

T
N +RN ) (29)

that results in theH2-OFIR predictor gain

HN = (FNχmH
T
N + D̄NQNG

T
N )

×(HNχmH
T
N +GNQNG

T
N +RN )−1 , (30)

where the error matrixQN is computed by (21),RN by (22),
and other block matrices are defined after (4).

It can now be shown that theH2-OFIR predictor generalizes
the OFIR predictor in a special case of Gaussian processes in
the following batch estimate

x̂k+1 = HNYm,k + (S̄N −HNLN)Um,k , (31)

where HN is specified by (30). The error matrixPk+1 =
E{εk+1ε

T
k+1} of theH2-OFIR predictor can be shown to be

Pk+1 = BNχmBT
N +WNQNWT

N + VNRNVT
N , (32)

where the error residual matrices are defined above.

To investigate theH2-OFIR predictor properties, we will
think that the robot dynamics and measurements are corrupted
by colored noise. Accordingly, we represent the robot and
its observation along a coordinatex with a two-state space
tracking model

xk+1 = Fxk +Bwk , (33)

wk = φwk−1 + ζk , (34)

vk = ψvk−1 + ξk , (35)

yk = Hxk + vk , (36)

where matrices are assigned as

F =

[
1 τ
0 1

]

, B =

[
τ/2
1

]

, H =
[
1 0

]

TABLE I
RMSES UNDER THEGAUSS-MARKOV DISTURBANCES

Nopt, φ, ψ RMSE, m
H2-OFIR UFIR KF

26, 0, 0 4.1818 4.1802 4.0482
10, 0.95, 0 6.4169 6.5657 9.1782
55, 0, 0.95 37.433 34.836 33.574
3, 0.95, 0.95 37.167 36.187 48.870

Fig. 1. Estimation errors produced by theH2-OFIR, UFIR, and Kalman
predictors in Gaussian environments: (a)φ = ψ = 0, (b) φ = 0.95 and
ψ = 0, and (c)φ = 0 andψ = 0.95.

with τ = 0.5 s. Vectorswk and vk are chosen to be stable
Gauss-Markov processes (34) and (35) with the scalar factors
0 6 φ < 1 and 0 6 ψ < 1. The white Gaussian driving
sources are set asζk ∼ N (0, σ2

ς ) and ξk ∼ N (0, σ2
ξ ), The

goal is to learn effects produced by the colored process noise
(CPN) and colored measurement noise (CMN) on theH2-
OFIR predictor performance.

The case of Gaussian errors is favorable for KP. To compare
the root mean square errors (RMSEs) under the Gauss-Markov
disturbances, we setσζ = 0.3m/s andσξ = 10m, simulate
the processes for extreme values ofφ and ψ, measure the
optimal horizonNopt for the UFIR predictor [33], compute
full block error matricesQN and RN , set Q = (QN )1,1
and R = (RN )1,1 to the KP, run the algorithms, and list
the RMSEs in Table I, where the minimum errors are bolded.
Examples of the estimation errors are sketched in Fig. 1.

As expected, the KP performs better whenφ = ψ = 0,
although the difference with other predictors appears to be
insignificant (Table I). A situation changes dramatically under
the sever disturbance withφ = 0.95. Here all FIR structures
perform very consistently, while the KP produces of about
30% larger errors. An explanation to this results can be found
in the nonzero components of the error matrixQN whenφ =
0.95 and the fact that the KP discards the cross components,
which become nonzero when noise is not white. An example

4. Simulations 
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Fig. 2. RMSEs produced by theH2-OFIR, UFIR, and Kalman estimators
with ψ = 0 as functions of factorφ under the Gauss-Markov disturbances.

Fig. 3. RMSEs produced by theH2-OFIR, UFIR, and Kalman estimators
with φ = 0 as functions of factorψ of the Gauss-Markov disturbance.

of matrix QN measured forN = 5 andφ = 0.95,

QN =









1.0882 1.0425 0.9990 0.9575 0.9169
1.0425 1.0895 1.0436 1.0001 0.9584
0.9990 1.0436 1.0904 1.0446 1.0009
0.9575 1.0001 1.0446 1.0914 1.0453
0.9169 0.9584 1.0009 1.0453 1.0920









,

reveals even more: all of the components are of the same
order of magnitude and thus neglecting the cross components
will cause errors. The effect is negligible whenφ is small
and it becomes brightly pronounced whenφ approaches unity
(Fig. 2). However, this inference does not hold for the Gauss-
Markov disturbances (Fig. 3), in which case all the predictors
produce consistent error, although theH2-OFIR predictor still
performs better. We explain it by the observation that the
disturbed state is required to be tracked, while the Gauss-
Markov noise needs to be filtered out that is better provided
by other algorithms [36], [37]. A conclusion one can arrive
at is that theH2-OFIR and UFIR predictors are more robust
trackers than the KP.

Fig. 4. UWB-based measurement data of a robot travelling along a planned
path (dashed) in the indoor environment with four reference nodes deployed
as RN1...RN4.

To verify the H2-OFIR predictor performance, we have
organized an experimental set and conducted measurements
of a moving robot platform in the indoor environment of the
Machine Building of the University of Jinan, Jinan, China.
Data were obtained withτ = 0.05 s using the ultra wide band
(UWB) technology as described in [38].

Four reference nodes (RNs) were deployed with known
coordinates as shown in Fig. 4: RN1(−9.4,−3)m, RN2
(−9.4, 11.78)m, RN3 (2.63, 11.78)m, and RN4(2.63,−3)m.
The planned path trajectory along the east coordinatex is
shown in Fig. 5 together with the UWB data. It is seen that
some data jump from one point to another, while some others
are reminiscent of the Gaussian and uniformly-distributed
noise. There are also several outliers associated with the
Cauchy noise. We therefore model data errors as the Gauss-
Markov disturbance, compute the difference with the planned
path, and measure the full error matrixRN . The robot
velocity in this experiment is about0.4m/s and we accept
σw = 0.1m/s, setQ = 0.01m/s, specify the diagonal matrix
QN with all components equal toQ, and measureNopt = 30.
That allows evaluating the estimator robustness against the
CMN and CPN.

The RMSEs of predictive tracking are sketched in Fig. 6 for
the initial path of 1100 points. It is seen that the KP and UFIR
predictor perform consistently with the RMSEs of0.1268m
(UFIR) and0.1270m (KP) and demonstrate the well-known
transient effects [33] aroundk = 500. In turn, theH2-OFIR
estimator operating with full matrixRN produces smaller

5. Robot Predictive Tracking 
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Fig. 5. The planned path along the coordinatex of a robot moving in an indoor
environment and measurement data provided using the UWB technology with
four RNs.

Fig. 6. Measurement data and predictive tracking estimates produced bythe
H2-OFIR, UFIR, and Kalman predictors at the beginning of the planned path
(dashed) trajectory shown in Fig. 5.

RMSEs of0.0665m and ranges closer to the planned path.
This gives an evidence of a better accuracy and robustness of
the batchH2-OFIR predictor.

TheH2-OFIR predictor derived in this paper under bounded
industrial persistent disturbances, data errors, and initial errors
has demonstrated a better performance and robustness than
the KP and UFIR predictor. Namely, theH2-OFIR predictor
operating with full error matrices has appeared to be more
robust than the Kalman and UFIR predictors. The effect has
been achieved by improving the derivation procedure and
minimizing the squared weighted Frobenius norms at the
predictor output. The performance of theH2-OFIR predictor
was investigated by simulating the Gauss-Markov environment
associated with industrial operation conditions. Thereby, it has
been confirmed that the derived predictor is more robust than

the KP and UFIR predictor. An experimental verification was
provided for a moving robot travelling along a planned path
in an indoor environment using the UWB technology.

We are now working on a more generalH2-OFIR predictor
for uncertain industrial processes observed under the distur-
bances, data errors, and initial errors and plan to report the
results in near future.
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