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Abstract: - The time-delay issue has been a hot topic over the past two decades. In this paper, the problem of 
stability of linear systems having time delay is addressed. Presently, the system can have parameter 
uncertainties. The problem of parameter uncertainties is not widely addressed. The suggested method is easy 
and differs from the available solutions. In this paper, the stability of the system is dealt with using Lyapunov 
functions or functionals. Finally, several simulation examples have been established to highlight the 
performances of the suggested method. 
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1  Introduction 
The problem of time-delay systems has been a hot 
topic over the past two decades, [1], [2]. Time delay 
can have a significant impact on the system. It can 
have a stabilizing effect, [3]. However, it is, in many 
cases, a source of instability. Then, the study of 
time-delay systems with parameter uncertainties is 
more complicated. Subsequently, they are very little 
studied. Then, several works have been focused on 
the time-delay system issue, [4]. 

Time delays appear in many industrial systems, 
e.g., in medicine and chemical control systems, [5], 
[6]. The presence of non-linearity in the system 
complicates the study and the parameter estimation 
of systems, [7], [8], [9]. 

Delays are often observed in sensitive areas of 
security and communication technologies, [10]. The 
problem of parameter estimation of a system is very 
interesting and has been extensively studied, [11], 
[12]. 

Among the effective methods for studying 
system stability, is the one using the Lyapunov 
approach. For stability analysis of time-delay 
systems, an efficient method is based on the 
Lyapunov method, [13]. The stability of time-delay 
systems using the Lyapunov methods can be divided 
into two main classes. The first one is based on the 
Krasovskii method of Lyapunov functionals, and the 
second class is based on the Razumikhin method of 
Lyapunov functions, [14]. These two Lyapunov 
method classes for stability analysis of time-delay 
linear systems result generally in linear matrix 
inequality conditions. The linear matrix inequality 

to deal with the stability issue of time-delay linear 
systems provides constructive fine-dimensional 
conditions, despite significant model uncertainties.  

Among the methods used for stability of time-
delay systems are those based on observers, [15], 
[16]. In [17], the problem of multiple time-varying 
delays for linear systems is discussed. Nonlinear 
discrete-time system with time-varying delay has 
been dealt in [18]. In [19], the problem of impulsive 
stabilization for a class of time-delay systems in the 
presence of input disturbances has been addressed. 

The delay time problem has been in several 
areas using a variety of techniques, [20], [21]. 

The presence of time delay in systems having 
parameter uncertainties can lead to system 
instability and make their study very difficult. In 
this paper, the problem of time-delay systems with 
parameter uncertainties is proposed.  

The remainder of this paper is organized as 
follows. The problem statement is described in 
Section 2. The problem of stability of the time-delay 
system using the Lyapunov method is proposed in 
Section 3. The stability analysis using the 
Razumikhin method is discussed in Section 4. 
Finally, to show the effectiveness of the obtained 
results, examples of simulations and some 
concluding remarks are given in Section 5. 
 

 

2  Problem Statement  
Presently, the stability problem of time-delay 
systems is addressed. This study is considered when 
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the system parameters are not constant. Then, the 
system under study is described as follows: 
�̇�(𝑡) = 𝑨(𝒕)𝒙(𝒕) + 𝐴𝑑𝒙(𝒕 − 𝒅(𝒕))                                   (𝟏) 
where 𝒙(𝒕) ∈ ℝ𝑛 is the state vector, 𝑨(𝒕) ∈ ℝ𝑛×𝑛 is 
a matrix of uncertain arguments, 𝐴𝑑 ∈ ℝ𝑛×𝑛 is a 
matrix of constant elements, and 𝒅(𝒕) ∈ ℝ is the 
time-delay, that is variable with respect to time. The 
time-delay is supposed to be bounded and time-
varying function 𝒅(𝒕) ∈ [0 𝐷]. It is shown that the 
time-delay affects the stability of the system. 
Specifically, let consider the following time-delay 
system: 
�̇�(𝑡) = 𝐴𝑑𝑥(𝑡 − 𝑑(𝑡))                                                       (2)  

 
It is readily seen that the letter is asymptotically 

stable for 𝒅(𝒕) ∈ [0 𝜋/2]. This system (described 
by (2)) becomes unstable for 𝒅(𝒕) > 𝜋/2. 
Furthermore, the presence of a time-delay in the 
system can stabilize this system. For instance, let us 
consider the following time-delay system: 
�̈�(𝑡) = −𝑦(𝑡) + 𝑦(𝑡 − 𝒅(𝒕))                                           (3)  

 
It is readily seen that, for 𝒅(𝒕) = 𝟎 (i.e., system 

without time delay), the system described by (3) is 
not stable. Unlike the case of 𝒅(𝒕) = 𝟎, the system 
becomes stable for 𝒅(𝒕) = 𝟏. 
 

 

3 Stability Analysis using Lyapunov 

 Method   
In this section, the stability problem of time-delay 
system described by (1) is dealt. In this respect, 
method based on Lyapunov functions is considered 
to deal the system stability problem. Then, at this 
stage a crucial step in the stability study of system 
(1) consists of the choice of Lyapunov functional. 
This study is considered when the system 
parameters are not constant.  

In this work, the following Lyapunov functional 
is proposed: 

𝑉(𝑡, 𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡) + ∫ 𝑥𝑇(𝑠)𝑄𝑥(𝑠)
𝑡

𝑡−𝑑(𝑡)

𝑑𝑠         (4) 

where 𝑃 ∈ ℝ𝑛×𝑛 and 𝑄 ∈ ℝ𝑛×𝑛 are any positive 
defined matrices, noted 𝑃 > 0 and 𝑄 > 0 
respectively. 

Lemma 1. Let consider the time-delay systems 
described by (1). Let suppose that the time-delay 
𝒅(𝒕) is differentiable function satisfying the 
condition �̇�(𝑡) ≤ �̅� < 1, i.e., the derivative �̇�(𝑡) is 
bounded of upper bound �̅�, which less than 1. 

If there exist two positive matrices 𝑃 ∈ ℝ𝑛×𝑛 and 
𝑄 ∈ ℝ𝑛×𝑛 such that the following linear matrix 
inequality is satisfied: 

[
𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 𝑃𝐴𝑑

𝐴𝑑
𝑇𝑃 −(1 − 𝐷)𝑄

] < 0                                (5)  

the time-delay system, given in (1), is thus 
asymptotically stable.  □ 

Proof.  Let consider the Lyapunov functional 
𝑉(𝑡, 𝑥(𝑡)) defined in (4). To show that the system 
(1) is asymptotically stable, it is sufficient to show 
that the derivative �̇�(𝑡, 𝑥(𝑡)) of the Lyapunov 
functional 𝑉(𝑡, 𝑥(𝑡)) under the assumption (5) is 
negative. In this respect, by differentiating this 
Lyapunov functional 𝑉(𝑡, 𝑥(𝑡)) with respect to 
time, one gets: 

�̇�(𝑡, 𝑥(𝑡)) = 2𝑥𝑇(𝑡)𝑃�̇�(𝑡) + 𝑥𝑇(𝑡)𝑄𝑥(𝑡) −

(1 − �̇�(𝑡)) 𝑥𝑇(𝑡 − 𝑑(𝑡))𝑄𝑥(𝑡 − 𝑑(𝑡))                      (6)
 

 
It is readily seen that the derivative �̇�(𝑡, 𝑥(𝑡)) 
satisfies: 

�̇�(𝑡, 𝑥(𝑡)) ≤ 2𝑥𝑇(𝑡)𝑃�̇�(𝑡) + 𝑥𝑇(𝑡)𝑄𝑥(𝑡) −

(1 − �̅�)𝑥𝑇(𝑡 − 𝑑(𝑡))𝑄𝑥(𝑡 − 𝑑(𝑡))                            (7)
 

 
The latter can be rewritten as follows: 

�̇�(𝑡, 𝑥(𝑡)) ≤ 𝑧𝑇(𝑡, 𝑑(𝑡)) 𝑅 𝑧(𝑡, 𝑑(𝑡))                       (8)  
where: 

𝑧(𝑡, 𝑑(𝑡)) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − 𝜏)]𝑇                             (9a)  
and:

𝑅 = [
𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 𝑃𝐴𝑑

𝐴𝑑
𝑇𝑃 −(1 − 𝐷)𝑄

]                           (9b)  

 
The first submatrix 𝑃𝐴 + 𝐴𝑇𝑃 + 𝑄 concerns the 

condition of the stability of the system dynamics 
without delay. If it is defined negative, the system is 
stable regardless of the delayed term. The two sub-
matrices 𝑃𝐴𝑑 and 𝐴𝑑

𝑇𝑃 are related to the effect of 
time delay on our proposed system. More precisely, 
they represent the influence of the delayed state 
𝑥(𝑡 − 𝑑(𝑡)) on the system dynamics. The last 
term −(1 − 𝐷)𝑄 controls the influence of time 
delay on stability and ensures that the amortization 
(introduced by Q) is strong enough to offset the 
effect of the delay. 

To ensure system stability, matrix 𝑅 must be 
negative defined. This means that the energies 
introduced by the delay and dynamics of the system 
are always offset by the global amortization. 

It follows (5) (i.e., the matrix 𝑅 < 0), one 
concludes that �̇�(𝑡, 𝑥(𝑡)) is negative, which 
completes the proof of Lemma1.  ■ 
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4 Stability Analysis using 

 Razumikhin   Method   
Presently, the stability problem of time-delay 
system (1) is addressed. In this section, a solution 
using Lyapunov based on Razumikhin method is 
presented.  

The system under study is subject to the 
following assumptions: 

 

Assumptions.  

A1. Firstly, let consider the candidate Lyapunov 
function: 
𝑉(𝑡, 𝑥(𝑡)) = 𝑥𝑇(𝑡)𝑃𝑥(𝑡)                                                   (10) 

where this Lyapunov function is differentiable for 
any matrix 𝑃 > 0. 

A2. Assume that there exist two continuous 
positive functions 𝑢(𝑡, 𝑥(𝑡)) and 𝑣(𝑡, 𝑥(𝑡)), (ℝ+ →

ℝ+), where 𝑣(𝑡, 𝑥(𝑡)) is strictly increasing, 
satisfying the following condition:  
𝑢(𝑡, 𝑥(𝑡)) ≤ 𝑉(𝑡, 𝑥(𝑡)) ≤ 𝑣(𝑡, 𝑥(𝑡))                            (11)  

Lemma 2. Let's consider the time-delay systems 
described by (1) subjected to assumptions A1-2. If 
the Lyapunov function, defined by (10), satisfies the 
following condition:  

𝑉(𝑡 − 𝜏, 𝑥(𝑡 − 𝜏)) ≤ 𝑉(𝑡, 𝑥(𝑡)) 

𝑓𝑜𝑟 𝑎𝑛𝑦 𝜏 ∈ [0 𝐷]                                                        (12)
 

where 𝐷 is an upper bound of time-delay 𝒅(𝒕) 
(𝒅(𝒕) ∈ [0 𝐷]). 

If there exists a continuous nondecreasing 
function 𝑤(𝑡, 𝑥(𝑡)), which is positive such that: 

𝑤(𝑡, 𝑥(𝑡)) ≤ −�̇�(𝑡, 𝑥)                                                   (13)  
The time-delay system (1) is uniformly stable.  ■ 

 
 

5  Simulation   
To show the effectiveness of this study, numerical 
examples are established in this section.  
Then, let's consider the following time-delay 
system: 
�̇�(𝑡) = 𝑨(𝒕)𝒙(𝒕) + 𝐴𝑑𝒙(𝒕 − 𝒅(𝒕))                                (14) 
where: 
𝑨(𝒕) = 𝑨 + 𝐴𝜀(𝒕)                                                              (15a) 
 

That is, it is equal to a constant matrix 𝑨 plus a 
variable matrix 𝐴𝜀(𝒕), modeling the parameter 
uncertainties. In the simulation part, the state vector 

𝒙(𝒕) = (
𝑥1(𝑡)
𝑥2(𝑡)

) ∈ ℝ2 is:  

 
In this simulation, the matrices 𝑨, 𝐴𝜀(𝒕), and  𝐴𝑑(𝒕) 

are set, respectively, to: 

𝑨 = [
−𝟏 𝟎
𝟎 −𝟐

] ;

𝐴𝜀(𝒕) = [
𝟎. 𝟓𝒔𝒊𝒏(𝒕) 𝟎

𝟎 𝟎. 𝟓𝒄𝒐𝒔(𝒕)
] ;

𝑨𝒅 = [
𝟎. 𝟑 𝟎
𝟎. 𝟐 𝟎. 𝟑

]                                                         (15b)

    

 
The varying time delay is given by: 
𝒅(𝒕) = 𝟎. 𝟗 + 𝟎. 𝟎𝟓 𝐬𝐢𝐧(𝟎. 𝟐𝝅𝒕)                                 (𝟏𝟓𝒄) 

 
Firstly, suppose that the system is free time-

delay, i.e., 𝒅(𝒕) = 𝟎. Then, for an initial state of 

𝒙(𝟎) = (
𝑥01
𝑥02

) = (
0.2

1.02
), Figure 1 and Figure 2 

show the evolution of the state 𝑥1(𝒕) and 𝑥2(𝒕) over 
time, respectively.  

 
 

 

Fig. 1: Evolution of the state 𝑥1 (𝑡)  versus time 

 

Fig. 2:  Evolution of the state 𝑥2 (𝑡)  versus time 

In the following part of the simulation, a 
variable delay has been considered as described in 
(15c). The evolution of 𝒙𝟏(𝒕) and 𝒙𝟐(𝒕) are 
illustrated in Figure 3 and Figure 4. 
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Fig. 3:  Evolution of the state 𝑥1 (𝑡)  versus time 

 

Fig. 4:  Evolution of the state 𝑥2 (𝑡)   versus time 

Under the obtained condition, when the 
proposed system (𝟏) is free time-delay, Figure 1 
and Figure 2 show that 𝒙𝟏(𝒕) stabilizes after 9.3s 
and 𝒙𝟐(𝒕) after 4.2s. In the case of system having a 
variable state delay, 𝒙𝟏(𝒕) stabilizes after 10.5s and 
𝒙𝟐(𝒕)after 5.6s as shown in Figure 3 and Figure 4. 
Figure 3 and Figure 4 demonstrate, respecting the 
condition on delay, that the time delay does not 
affect the system's stability when the time t 
approaches infinity. Which confirms the 
effectiveness of the proposed study. 
 
 

6  Conclusion 
In the present work, the problem of stability of 
linear systems having time delay is discussed.  

Presently, the system can have parameter 
uncertainties. The problem of parameter 
uncertainties is not widely addressed. The suggested 
method is easy and differs from the available 
solutions. In this paper, the stability of system is 
dealt with using Lyapunov functions or functionals. 
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