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Abstract: - Complex Kalman filters are used in complex signal processing. A comparison between the complex 

Kalman filter and the complex Information filter is presented in the general case of discrete-time widely linear 

models. The complex Kalman filter and the complex Information filter compute iteratively the same 

estimations. The computational burdens of these complex filters are determined and a method is derived to 

decide which filter is the faster one, taking into account only the model dimensions. 
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1  Introduction 
Kalman filter [1], [2] and Information filter [2], [3] 

are known estimation algorithms that have been 

successfully used in many linear estimation 

problems: applications of Kalman filter are referred 

in [2], [4], [5], [6] and applications of Information 

filter are referred in [3], [7], [8], [9], [10], [11]. 

Applications of complex Kalman filter include 

tracking, oceanography, array processing, 

communications, biomedicine [6], [12], tracking for 

Global Navigation Satellite System (GNSS) meta-

signals [13], power system frequency [14], [15], 

unbalanced grids [16], proper and improper signals 

applications [17], two-dimensional local navigation 

system using complex Kalman and particle filters 

[18]. 
The basic statistical properties of a complex 

signal are (a) the covariance matrix that concerns 

the total power of the complex signal and (b) the 

pseudo-covariance matrix (complementary 

covariance) that concerns the correlations between 

the real and imaginary parts of the complex signal, 

[12]. In linear estimation, the complex Kalman filter 

is derived assuming (a) the traditional state space 

model which takes into account the covariance 

matrix only; the derived conventional complex 

Kalman filter (CCKF) takes into account the 

covariance matrix only and hence it is applicable to 

proper (circular) signals (b) the augmented model or 

widely linear model, which takes into account the 

covariance as well as the pseudo-covariance 

matrices; the derived augmented complex Kalman 

filter (ACKF) is applicable to improper (non-

circular) complex signals that are correlated with 

their complex conjugates. It is worth noting that the 

use of the pseudo-covariance matrix in ACKF can 

improve the performance of CCKF, [19].  

Motivated by minimizing the computational 

time, the paper derives the augmented complex 

Information filter (ACIF) from the equations of the 

augmented complex Kalman filter. A comparison 

between the complex Kalman filter and the complex 

Information filter is presented in this paper. The 

origin of this idea is a comparison of the 

corresponding filters in linear estimation, where real 

signals are involved, [3]. The key contributions of 

this paper are as follows: a) the calculation burdens 

of the augmented complex Kalman and complex 

Information filters are derived, b) a method is 

derived to determine the faster complex filter. 

 

 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2024.19.34

Athanasios Polyzos, Christos Tsinos, 
Maria Adam, Nicholas Assimakis

E-ISSN: 2224-2856 324 Volume 19, 2024



2  Augmented Model  
Let a complex variable x. The complex conjugate is 

denoted as x̅. Let a complex matrix M. The 

transpose matrix is denoted as MT and the conjugate 

transpose matrix as M∗. The augmented matrix is 

Ma = [
M Ν
N̅ M̅∗] and Ma∗

= [
M Ν
N̅ M̅

]
∗

= [M∗ Ν∗̅̅̅̅

Ν∗ M∗̅̅ ̅̅
].  

 

The augmented matrix inversion is [
X Y
Y̅ X̅

]
−1

=

[
A B
B̅ A̅

] with A = (X − YX̅−1Y̅)−1, B = −AYX̅−1 

The following widely linear model [19] is used 

in complex Kalman filters: 

x(k) = F(k)x(k − 1) + A(k)x̅(k − 1) + w(k) 

z(k) = H(k)x(k) + B(k)x̅(k) + v(k) 

 

Here, x(k) is the n × 1 state complex vector, 

z(k) is the m × 1 measurement complex vector, 

F(k) and A(k) are the n × n transition complex 

matrices, H(k) and B(k) are is the m × n output 

complex matrices, w(k) is the n × 1 state noise 

complex vector and v(k) is the m × 1 measurement 

noise complex vector at (discrete) time k. 

Furthermore, the state noise w(k) is a Gaussian 

process with zero mean and known n × n 

dimensional covariance Q(k) and pseudo-

covariance U(k). The measurement noise v(k) is a 

Gaussian process with zero mean and known m × m 

dimensional known covariance R(k) and pseudo-

covariance V(k). 

The initial state x(0) is Gaussian with known 

mean x0, covariance P0 and pseudo-covariance Π0.  

Consider the 2n × 1  augmented state vector 

xa(k) = [
x(k)
x̅(k)

] and the 2m × 1  augmented 

measurement vector za(k) = [
z(k)
z̅(k)

]. 

Using the complex augmented state and 

measurement vectors, the augmented model (or 

widely linear model) becomes: 

xa(k) = Fa(k)xa(k − 1) + wa(k)      (1) 

 

za(k) = Ha(k)xa(k) + va(k)                (2) 

 

Here, the augmented noise vectors are wa(k) =

[
w(k)
w̅(k)

] and va(k) = [
v(k)
v̅(k)

] and the augmented 

matrices are Fa(k) = [
F(k) A(k)

A̅(k) F̅(k)
] and Ha(k) =

[
H(k) B(k)

B̅(k) H̅(k)
]. 

 

 

Furthermore assume that: 

- the augmented state noise process wa(k) is non-

circular Gaussian with zero mean and covariance 

matrix Qa(k) = [
Q(k) U(k)

U̅(k) Q̅(k)
], 

- the augmented measurement noise process va(k) 

is non-circular Gaussian with zero mean and 

covariance matrix Ra(k) = [
R(k) V(k)

V̅(k) R̅(k)
], 

- the augmented initial state xa(0) is non-circular 

Gaussian with mean x0
a = [

x0

x0̅̅ ̅] and covariance 

matrix P0
a = [

P0 Π0

Π0
̅̅̅̅ P0̅

]. 

 

It is worth to note that a) Qa(k) and Ra(k) are 

Hermitian matrices (M is a Hermitian matrix when 

M∗ = M), as covariance matrices and b) U(k) and 

V(k) are symmetric matrices (N is a symmetric 

matrix when NT = N), as  pseudo-covariance 

matrices, [9].  

 

 

3 Augmented Complex Kalman Filter 
Let denote a) the state prediction as x(k|k − 1) with 

covariance P(k|k − 1) and pseudo-covariance 

Π(k|k − 1); then, the augmented state prediction is 

xa(k|k − 1) with covariance matrix Pa(k|k − 1) =

[
P(k|k − 1) Π(k|k − 1)

Π̅(k|k − 1) P̅(k|k − 1)
], b) the state estimation 

as x(k|k) with covariance P(k|k) and pseudo-

covariance P̅(k|k); then the augmented state 

estimation is xa(k|k) with covariance matrix 

Pa(k|k) = [
P(k|k) Π(k|k)

Π̅(k|k) P̅(k|k)
]. Let denote the 

augmented Kalman filter gain as Ka(k|k) =

[
K(k|k) G(k|k)

G̅(k|k) K̅(k|k)
]. 

The augmented (widely linear) complex Kalman 

filter (ACKF) computes the augmented state 

prediction and estimation and the corresponding 

covariances, using the augmented Kalman filter 

gain, which is derived by minimizing the cost 

function based on the MSE criterion, and is 

summarized as follows, [6]: 

 

Augmented Complex Kalman Filter (ACKF) 

initial conditions 

xa(0|−1) = x0
a, Pa(0|−1) = P0

a 

iterations k = 0,1, … 
Ka(k) = Pa(k|k − 1)Ha∗(k) 

               [Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 

xa(k|k) = [Ia − Ka(k)Ha(k)]xa(k|k − 1) + Ka(k)za(k) 

Pa(k|k) = [Ia − Ka(k)Ha(k)]Pa(k|k − 1) 
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xa(k + 1|k) = Fa(k)xa(k|k) 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 

 

Here, Ia = I2n is the 2n × 2n identity matrix. 

 

In the special case of time-invariant models, 

where the augmented model parameters 

Fa(k), Ha(k), Qa(k), Ra(k) are constant matrices, 

the Time Invariant Augmented Complex Kalman 

Filter is derived.  

 

 

4 Augmented Complex Information 

 Filter 
The idea [2], [3] is the use of the Information 

matrix, which is the inverse of the covariance matrix 

and the information state vector which is connected 

to the estimation vector through the information 

matrix. Let define: 

Sa(k|k) = Pa−1(k|k)         

ya(k|k) = Pa−1(k|k)xa(k|k) 

Sa(k + 1|k) = Pa−1(k + 1|k) 

ya(k + 1|k) = Pa−1(k + 1|k)xa(k + 1|k) 
 

Then we can derive the augmented complex 

Information filter equations strictly from the 

augmented complex Kalman filter equations and 

using the matrix inversion lemma. In fact: 

- concerning the Kalman filter gain, we get 

Ka(k) = Pa(k|k − 1)Ha∗(k) 

          [Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 

Ka(k)[Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]

= Pa(k|k − 1)Ha∗(k) 

Ka(k)Ha(k)Pa(k|k − 1)Ha∗(k) + Ka(k)Ra(k)
= Pa(k|k − 1)Ha∗(k) 

Ka(k)Ra(k) = Pa(k|k − 1)Ha∗(k)
− Ka(k)Ha(k)Pa(k|k − 1)Ha∗(k) 

Ka(k)Ra(k) = [Ia − Ka(k)Ha(k)]Pa(k|k − 1)Ha∗(k) 

Ka(k)Ra(k) = Pa(k|k)Ha∗(k) 

Ka(k) = Pa(k|k)Ha∗(k)Ra−1(k)

= Sa−1(k|k)Ha∗(k)Ra−1(k) 

 

- concerning the estimation, we get 

Pa(k|k) = [Ia − Ka(k)Ha(k)]Pa(k|k − 1) 

Pa(k|k) = Pa(k|k − 1) − Ka(k)Ha(k)Pa(k|k − 1) 

Pa(k|k) = Pa(k|k − 1) 

   −Pa(k|k − 1)Ha∗(k)[Ha(k)Pa(k|k − 1)Ha∗(k)
+ Ra(k)]−1Ha(k)Pa(k|k − 1) 

Pa(k|k) = [Pa−1(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k)]
−1

 

Pa−1(k|k) = Pa−1(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 

Sa(k|k) = Sa(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 

 

and 

 

xa(k|k) = [Ia − Ka(k)Ha(k)]xa(k|k − 1)
+ Ka(k)za(k) 

xa(k|k) = Pa(k|k)Pa−1(k|k − 1)xa(k|k − 1)
+ Ka(k)za(k) 

xa(k|k) = Sa−1(k|k)Sa(k|k − 1)xa(k|k − 1)
+ Ka(k)za(k) 

Sa(k|k)xa(k|k) = Sa(k|k − 1)xa(k|k − 1)
+ Sa(k|k)Ka(k)za(k) 

ya(k|k)
= ya(k|k − 1)

+ Sa(k|k)Sa−1(k|k)HaH
(k)Ra−1

(k)za(k) 

ya(k|k) = ya(k|k − 1) + HaH
(k)Ra−1

(k)za(k) 
 

- concerning the prediction, we get 

xa(k + 1|k) = Fa(k)xa(k|k) 

Pa(k + 1|k)ya(k + 1|k) = Fa(k)Pa(k|k)ya(k|k) 

Sa−1(k + 1|k)ya(k + 1|k)

= Fa(k)Sa−1(k|k)ya(k|k) 

ya(k + 1|k) = Sa(k + 1|k)Fa(k)Sa−1(k|k)ya(k|k) 
 

Thus, the augmented complex Information filter 

and is summarized as follows: 

 

Augmented Complex Information Filter (ACIF) 

initial conditions 

ya(0|−1) = Pa−1(0|−1)xa(0|−1) = P0
a−1

x0
a 

Sa(0|−1) = Pa−1(0|−1) = P0
a−1

 

iterations k = 0,1, … 

ya(k|k) = ya(k|k − 1) + Ha∗(k)Ra−1(k)za(k) 

Sa(k|k) = Sa(k|k − 1) + Ha∗(k)Ra−1(k)Ha(k) 

Pa(k|k) = Sa−1(k|k)         

xa(k|k) = Pa(k|k)ya(k|k) 

Ka(k) = Pa(k|k)Ha∗(k)Ra−1(k) 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 

Sa(k + 1|k) = Pa−1(k + 1|k) 

ya(k + 1|k) = Sa(k + 1|k)Fa(k)Pa(k|k)ya(k|k) 

xa(k + 1|k) = Pa(k|k)ya(k + 1|k) 

 

In the special case of time-invariant models, 

where the augmented model parameters 

Fa(k), Ha(k), Qa(k), Ra(k) are constant matrices, 

the Time Invariant Augmented Complex 

Information Filter is derived. Note that in this case 

the matrices Ra−1, Ha∗Ra−1, Ha∗Ra−1Ha are 

calculated off-line. 

 

 

5  Computational Requirements 
It is shown that ACKF and ACIF are algebraically 

equivalent filters. Then it becomes clear that the two 
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filters calculate the same state estimations and state 

predictions. Moreover, it is obvious that the two 

filters are iterative algorithms. As a result, the 

comparison of the filters’ computational time, is 

equivalent to the comparison of their per iteration 

calculation burden (CB); the calculation burden of 

the off-line calculations is not taken into account. 

 

Table 1. ACKF per iteration calculation burden 
Augmented Complex Kalman Filter (ACKF) 

Matrix Operation Calculation Burden 

Ha(k)Pa(k|k − 1) 32n2m − 12nm 

Ha(k)Pa(k|k − 1)Ha∗(k) 32nm2 − 6m2 + m 

Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k) 2m2 + m 

[Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 
1

6
(208m3 − 96m2 + 8m) 

Ka(k) = Pa(k|k − 1)Ha∗(k) 
[Ha(k)Pa(k|k − 1)Ha∗(k) + Ra(k)]−1 

32nm2 − 12nm 

Ha(k)xa(k|k − 1) 16nm − 2m 

Ha(k)xa(k|k − 1) − za(k) 2m 

Ka(k)[Ha(k)xa(k|k − 1) − za(k)] 16nm − 2n 

xa(k|k) = xa(k|k − 1) 

+Ka(k)[Ha(k)xa(k|k − 1) − za(k)] 
2n 

Ka(k)Ha(k)Pa(k|k − 1) 32n2m − 6n2 + n 

Pa(k|k) = Pa(k|k − 1) 

−Ka(k)Ha(k)Pa(k|k − 1) 
2n2 + n 

xa(k + 1|k) = Fa(k)xa(k|k) 16n2 − 2n 

Fa(k)Pa(k|k) 32n3 − 12n2 

Fa(k)Pa(k|k)Fa∗(k) 32n3 − 6n2 + n 

Pa(k + 1|k) = Qa(k) + Fa(k)Pa(k|k)Fa∗(k) 2n2 + n 

 

Note that in the time-invariant case, the 

calculation burden remains the same as in the time-

varying case. 

 

Table 2. ACIF per iteration calculation burden 
Augmented Complex Information Kalman Filter (ACIF) 

Matrix Operation Calculation Burden 

Ra−1(k) 
1

6
(208m3 − 96m2 + 8m) 

Ha∗(k)Ra−1(k) 32nm2 − 12nm 

Ha∗(k)Ra−1(k)Ha(k) 32n2m − 6n2 + n 

Ha∗(k)Ra−1(k)za(k) 16nm − 2n 

ya(k|k) = ya(k|k − 1) 

+Ha∗(k)Ra−1(k)za(k) 
2n 

Sa(k|k) = Sa(k|k − 1) 

+Ha∗(k)Ra−1(k)Ha(k) 
2n2 + n 

Pa(k|k) = Sa−1(k|k) 
1

6
(208n3 − 96n2 + 8n) 

xa(k|k) = Pa(k|k)ya(k|k) 16n2 − 6n 

Ka(k) = Pa(k|k)Ha∗(k)Ra−1(k) 32n2m − 12nm 

Fa(k)Pa(k|k) 32n3 − 12n2 

Fa(k)Pa(k|k)Fa∗(k) 32n3 − 6n2 + n 

Pa(k + 1|k) = Qa(k) 

+Fa(k)Pa(k|k)Fa∗(k) 
2n2 + n 

Sa(k + 1|k) = Pa−1(k + 1|k) 
1

6
(208n3 − 96n2 + 8n) 

Fa(k)Pa(k|k)ya(k|k) 16n2 − 2n 

ya(k + 1|k) = Sa(k + 1|k) 

Fa(k)Pa(k|k)ya(k|k) 
16n2 − 6n 

xa(k + 1|k) = Pa(k|k)ya(k + 1|k) 16n2 − 6n 

 

It is evident that the calculation burdens of the 

two complex filters involve complex matrix 

operations, the calculation burdens of which are 

given in the Appendix. 

The per iteration calculation burdens of the 

augmented complex Kalman filter and the complex 

Information filter are analytically calculated in 

Table 1 and Table 2, respectively. 

 

Note that in the time-invariant case, the matrices 

Ra−1
, Ha∗

Ra−1
, Ha∗

Ra−1
Ha are calculated off-line. 

 

The per iteration calculation burdens of the 

augmented complex Kalman filter and the complex 

Information filter are and summarized in Table 3.  

 

Table 3. ACKF and ACIF calculation burdens 

Model Filter 
Per Iteration  

Calculation Burden 

time  

varying 

Kalman  

CBACKFtv = 64n3 − 4n2 + 2n 

+64n2m + 8nm + 64nm2 

+
1

6
(208m3 − 120m2 + 20m) 

Information 

CBACIFtv =
1

6
(800n3 + 72n2 − 80n) 

+64n2m − 8nm + 32nm2 

+
1

6
(208m3 − 96m2 + 8m) 

time  

invariant 

Kalman  

CBACKFti = 64n3 − 4n2 + 2n 

+64n2m + 8nm + 64nm2 

+
1

6
(208m3 − 120m2 + 20m) 

Information 
CBACIFti =

1

6
(800n3 + 108n2 − 86n) 

+32n2m + 4nm 

 

 

6  Selection of the Faster Filter 
In this section, a method is derived to select the 

faster complex filter. From Table 3, it is obvious 

that the calculation burdens of the two complex 

filters depend on the state vector dimension n and 

the measurement vector dimension m. Hence, the 

selection of the faster complex filter depends on the 

relation between the known dimensions n and m.  

In the general time-varying models case, we get: 
CBACKFtv − CBACIFtv

= (32n − 4)m2 + (16n + 2)m

+
1

6
(−416n3 − 96n2 + 92n) 

 

Figure 1 presents the areas where the complex 

Information filter or the complex Kalman filter is 

faster; subject to the model dimensions. The 

obtained Rule of Thumb for time-varying models 

has as follows:  

 

The ACIF is faster than ACKF, when 𝑚/𝑛 > 1.5 
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Fig. 1: The faster filter – time-varying model 

 

In the special time-invariant models case, we get: 
CBACKFti − CBACIFti

=
1

6
208m3 + (64n − 20)m2

+
1

6
(192n2 + 24n + 20)m

+
1

6
(−416n3 − 132n2 + 98n) 

 

Figure 2 presents the areas where the complex 

Information filter or the complex Kalman filter is 

faster; subject to the model dimensions. The 

obtained Rule of Thumb for time-invariant models 

has as follows:  

 

The ACIF is faster than ACKF, when 𝑚/𝑛 > 0.75 
 

 
Fig. 2: The faster filter – time-invariant model 

 

It becomes obvious that the knowledge of the 

model dimensions is sufficient in order to determine 

which filter is faster. 

 

 

7  Conclusions 
The augmented complex Kalman filter and the 

complex Information filter are equivalent with 

respect to a) the derivation of the state estimations 

and predictions and the corresponding error 

covariances, b) their stability, since the stability of 

the Kalman filter is classically ensured by the 

controllability and the observability of linear time-

varying models.  

In this paper, a comparison study between the 

(discrete time) augmented complex Kalman filter 

and complex Information filter was obtained. The 

computational requirements of both these complex 

filters were derived. It was established that the 

computational burdens of the filters are functions of 

the state dimension n and the measurement 

dimension m. A method was derived and described 

to select, before the implementation of the filters, 

the faster complex filter. The basic result is: 

- in the general case of time-varying models, 

the complex Information filter is faster than the 

complex Kalman filter when m > 1.5𝑛, 

- in the special case of time-invariant models, 

the complex Information filter is faster than 

the complex Kalman filter when m > 0.75𝑛. 
The impact of this result on Kalman filtering 

combined with AI techniques to determine the 

fastest filter, can be to reduce processing time in 

complex signal processing applications. 
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APPENDIX 
 

Calculation Burdens of Complex Matrix 

Operations 

In the following, r, r1, r2 are real numbers and 

c, c1, c2 are complex numbers. 

The calculation burdens (CB) of real and 

complex scalar operations are summarized in Table 

4 and Table 5, respectively. 

 

Table 4. Real scalar operations 

code 

real  

scalar 

operation 

real  

scalar 

adds 

real  

scalar 

mults 

real  

scalar 

divs 

CB 

R1 r1 + r2 = r 1 0 0 1 

R2 r1 ∙ r2 = r 0 1 0 1 

R3 r1/r2 = r 0 0 1 1 

 

Table 5. Complex scalar operations 

code 

complex  

scalar 

operation 

real  

scalar 

adds 

real  

scalar 

mults 

real  

scalar 

divs 

CB 

C1 c1 + c2 = c 2 0 0 2 

C2 c1 ∙ c2 = c 2 4 0 6 

C3 c1 + c2 = r 1 0 0 1 

C4 r + c1 = c 1 0 0 1 

C5 r ∙ c1 = c 0 2 0 2 

C6 c1 ∙ c2 = r 1 2 0 3 

C7 c ∙ c̅ = r 1 2 0 3 

C8 c1/r = c 0 0 2 2 

C9 c1/c2 = c 3 6 2 11 

 
In the following, x, x1, x2 are complex vectors; 

C, C1, C2 are general complex matrices; H, H1, H2 

are complex Hermitian matrices; S, S1, S2 are 

complex symmetric matrices; I is the identity matrix 

of dimension n; xa, x1a, x2a are augmented complex 

vectors of the form [
x
x̅

]; Aa, A1a, A2a are augmented 

complex matrices of the form [
C1 C2
C2̅̅̅̅ C1̅̅̅̅ ]; 

As
a, A1s

a, A2s
a are special augmented complex matrix 

of the form [
H S
S̅ H̅

], Ia is the identity matrix of 

dimension 2n. 

The calculation burdens (CB) of complex 

matrices addition and complex augmented matrices 

addition operations are summarized in Table 6 and 

Table 7, respectively. 

 

 

 

 

 

 

 

 

 

Table 6. Complex matrices addition 

code 

Complex  

Matrices  

Addition 

oper CB total CB 

A1 x1 + x2 = x C1 n 2n 

 (n × 1) + (n × 1)    

A2 x1 + x2 = x C1 m 2m 

 (m × 1) + (m × 1)    

A3 I + C1 = C R1 n n 

 (n × n) + (n × n)    

A4 C1 + C2 = C C1 nm 2nm 
 (n × m) + (n × m)    

A5 C1 + C2 = C C1 nm 2nm 
 (n × m) + (n × m)    

A6 C1 + C2 = C C1 n2 2n2 
 (n × n) + (n × n)    

A7 C1 + C2 = H C1 
n2 − n

2
 n2 

 (n × n) + (n × n) C3 n  

A8 C1 + C2 = H C1 
m2 − m

2
 m2 

 (m × m) + (m × m) C3 m  

A9 H1 + H2 = H R1 n n2 

 (n × n) + (n × n) C1 
n2 − n

2
  

A10 H1 + H2 = H R1 m m2 

 (m × m) + (m × m) C1 
m2 − m

2
  

A11 S1 + S2 = S C1 
n2 + n

2
 n2 + n 

 (n × n) + (n × n)    

A12 S1 + S2 = S C1 
m2 + m

2
 m2 + m 

 (m × m) + (m × m)    

A13 C1 + C2 = S C1 
n2 + n

2
 n2 + n 

 (m × m) + (m × m)    

 
Table 7. Complex augmented matrices addition 

code 

Complex 
Augmented  

Matrices  

Addition 

oper CB total CB 

A14 x1a + x2a = xa A1 2n 2n 
 (2n × 1) + (2n × 1)    

A15 x1a + x2a = xa A2 2m 2m 
 (2m × 1) + (2m × 1)    

A16 Ia + A1a = Aa A3 n n 
 (2n × 2n) + (2n × 2n)    

A17 A1s
a + A2s

a = As
a A9 n2 2n2 + n 

 (2n × 2n) + (2n × 2n) A11 n2 + n  

A18 A1s
a + A2s

a = As
a A10 m2 2m2 + m 

 (2m × 2m) + (2m × 2m) A12 m2 + m  

 

The calculation burdens (CB) of complex 

matrices multiplication and complex augmented 

matrices multiplication operations are summarized 

in Table 8 and Table 9, respectively. 
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Table 8. Complex matrices multiplication 

code 

Complex  

Matrices 

Multiplication 

oper CB total CB 

M1 C1 ∙ x1 = x C1 n(n − 1) 8n2 − 2n 

 (n × n) ∙ (n × 1) C2 n2  

M2 S ∙ x1 = x C1 n(n − 1) 8n2 − 2n 

 (n × n) ∙ (n × 1) C2 n2  

M3 C1 ∙ x1 = x C1 n(m − 1) 8nm − 2n 

 (n × m) ∙ (m × 1) C2 nm  

M4 C1 ∙ x1 = x C1 m(n − 1) 8nm − 2m 

 (m × n) ∙ (n × 1) C2 nm  

M5 H ∙ x1 = x C1 n(n − 1) 8n2 − 6n 

 (n × n) ∙ (n × 1) C2 n(n − 1)  

  C5 n  

M6 C1 ∙ C2 = C C1 n2(n − 1) 8n3 − 2n2 

 (n × n) ∙ (n × n) C2 n3  

M7 C1 ∙ C2 = C C1 nm(n − 1) 8n2m − 2nm 

 (n × n) ∙ (n × m) C2 n2m  

M8 C1 ∙ C2 = C C1 n2(m − 1) 8n2m − 2n2 

 (n × m) ∙ (m × n) C2 n2m  

M9 C1 ∙ C2 = C C1 nm(m − 1) 8nm2 − 2nm 

 (n × m) ∙ (m × m) C2 nm2  

M10 C1 ∙ C2 = C C1 nm(n − 1) 8n2m − 2nm 

 (m × n) ∙ (n × n) C2 n2m  

M11 C1 ∙ C2 = C C1 m2(n − 1) 8nm2 − 2m2 

 (m × n) ∙ (n × m) C2 nm2  

M12 C1 ∙ H = C C1 nm(n − 1) 8n2m − 6nm 

 (m × n) ∙ (n × n) C2 nm(n − 1)  

  C5 nm  

M13 H ∙ C1 = C C1 nm(n − 1) 8n2m − 6nm 

 (n × n) ∙ (n × m) C2 nm(n − 1)  

  C5 nm  

M14 C1 ∙ H = C C1 nm(m − 1) 8nm2 − 6nm 

 (n × m) ∙ (m × m) C2 nm(m − 1)  

  C5 nm  

M15 C1 ∙ H = C C1 n2(n − 1) 8n3 − 6n2 

 (n × n) ∙ (n × n) C2 n2(n − 1)  

  C5 n2  

M16 C1 ∙ C2 = H R1 m(n − 1) 4nm2 − m2 

 (m × n) ∙ (n × m) C1 (
m2 − m

2
) (n − 1)  

  C2 (
m2 − m

2
) n  

  C6 nm  

M17 C1 ∙ C2 = H R1 n(m − 1) 4n2m − n2 

 (n × m) ∙ (m × n) C1 (
n2 − n

2
) (m − 1)  

  C2 (
n2 − n

2
) m  

  C6 nm  

M18 C1 ∙ C2 = H R1 n(n − 1) 4n3 − n2 

 (n × n) ∙ (n × n) C1 (
n2 − n

2
) (n − 1)  

  C2 (
n2 − n

2
) n  

  C6 n2  

M19 C1 ∙ H1 = H C1 (
n2 + n

2
) (n − 1) 4n3 + n2 − 3n 

 (n × n) ∙ (n × n) C2 (
n2 + n

2
) (n − 1)  

  C5 
n2 + n

2
  

M20 C1 ∙ C2 = S C1 (
n2 + n

2
) (m − 1) 

4n2m + 4nm 

−n2 − n 

 (n × m) ∙ (m × n) C2 (
n2 + n

2
) m  

M21 S ∙ H = C C1 n2(n − 1) 8n3 − 6n2 

 (n × n) ∙ (n × n) C2 n2(n − 1)  

  C5 n2  

M22 H ∙ C = S C1 (
n2 + n

2
) (n − 1) 4n3 + n2 − 3n 

 (n × n) ∙ (n × n) C2 (
n2 + n

2
) (n − 1)  

  C5 (
n2 + n

2
)  

M23 C1 ∙ S = C C1 nm(n − 1) 8n2m − 2nm 

 (m × n) ∙ (n × n) C2 n2m  

M24 S ∙ C1 = C C1 nm(n − 1) 8n2m − 2nm 

 (n × n) ∙ (n × m) C2 n2m  

M25 C1 ∙ S = C C1 n2(n − 1) 8n3 − 2n2 

 (n × n) ∙ (n × n) C2 n3  

M26 C1 ∙ S = C C1 nm(m − 1) 8nm2 − 2nm 

 (n × m) ∙ (m × m) C2 nm2  

 

Table 9. Complex augmented matrices 

multiplication 

code 

Complex  

Augmented 

Matrices 

Multiplication 

oper 

(times) 
CB total CB 

M27 Aa ∙ x1a = xa M1(2) 16n2 − 4n 16n2 − 2n 

 (2n × 2n) ∙ (2n × 1) A1(1) 2n  

M28 Aa ∙ x1a = xa M3(2) 16nm − 4n 16nm − 2n 

 (2n × 2m) ∙ (2m × 1) A1(1) 2n  

M29 Aa ∙ x1a = xa M4(2) 16nm − 4m 16nm − 2m 

 (2m × 2n) ∙ (2n × 1) A2(1) 2m  

M30 As
a ∙ x1a = xa M5(1) 8n2 − 6n 16n2 − 6n 

 (2n × 2n) ∙ (2n × 1) M2(1) 8n2 − 2n  

  A1(1) 2n  

M31 A1a ∙ A2a = Aa M6(4) 32n3 − 8n2 32n3 − 4n2 

 (2n × 2n) ∙ (2n × 2n) A6(2) 4n2  

M32 A1a ∙ A2a = Aa M8(4) 32n2m − 8n2 32n2m − 4n2 

 (2n × 2m) ∙ (2m × 2n) A6(2) 4n2  

M33 A1a ∙ As
a = Aa M12(2) 16n2m − 12nm 32n2m − 12nm 

 (2m × 2n) ∙ (2n × 2n) M23(2) 16n2m − 4nm  

  A5(2) 4nm  

M34 As
a ∙ A1a = Aa M13(2) 16n2m − 12nm 32n2m − 12nm 

 (2n × 2n) ∙ (2n × 2m) M24(2) 16n2m − 4nm  
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  A4(2) 4nm  

M35 A1a ∙ As
a = Aa M15(2) 16n3 − 12n2 32n3 − 12n2 

 (2n × 2n) ∙ (2n × 2n) M25(2) 16n3 − 4n2  

  A6(2) 4n2  

M36 A1a ∙ A2a = As
a  M6(4) 32n3 − 8n2 32n3 − 6n2 + n 

 (2n × 2n) ∙ (2n × 2n) A7(1) n2  

  A13(1) n2 + n  

M37 A1a ∙ A2a = As
a  M11(4) 32nm2 − 8m2 32nm2 − 6m2 + m 

 (2m × 2n) ∙ (2n × 2m) A10(1) m2  

  A12(1) m2 + m  

M38 A1a ∙ A2a = As
a  M8(4) 32n2m − 8n2 32n2m − 6n2 + n 

 (2n × 2m) ∙ (2m × 2n) A9(1) n2  

  A11(1) n2 + n  

M39 A1a ∙ As
a = Aa M14(2) 16nm2 − 12nm 32nm2 − 12nm 

 (2n × 2m) ∙ (2m × 2m) M26(2) 16nm2 − 4nm  

  A4(2) 4nm  

M40 A1a ∙ A1s
a = As

a  M15(2) 16n3 − 12n2 32n3 − 14n2 + n 

 (2n × 2n) ∙ (2n × 2n) M25(2) 16n3 − 4n2  

  A7(1) n2  

  A13(1) n2 + n  

 

The following recursive algorithm is used for the 

complex Hermitian matrix inversion: 

 

M = [
A b

bH d
] , M = MH, A = AH 

Dimensions:  

M nxn, A (n − 1)x(n − 1), 
 b (n − 1)x1, bH 1x(n − 1), d 1x1 

M−1 = [
A−1 + s (

1

s
A−1b) (

1

s
bHA−1) −

1

s
A−1b

−
1

s
bHA−1

1

s

] 

 s = d − bHA−1b 
 

The calculation burden (CB) of the recursive 

algorithm for the complex Hermitian matrix 

inversion is summarized in Table 10. 
 

Table 10. Complex Hermitian matrix inversion 

recursive algorithm 
Matrix operation oper times total CB 

A−1 
(NxN) 

  T(N) 

A−1b 
(NxN) ∙ (Nx1) 

C1 (N − 1)N 8N2 − 2N 

 C2 N2  

bHA−1 = (A−1b)H 

(1xN) ∙ (NxN) 
   

bH(A−1b) 

Real 

(1xN) ∙ (Nx1) 

C3 N − 1 4N − 1 

 C6 N  

s = d − bHA−1b 

real 

(1x1) + (1x1) 

R1 1 1 

1

s
 

Real 

R3 1 1 

(1x1)/(1x1) 
1

s
(A−1b) 

−
1

s
(A−1b) 

(1x1) ∙ (Nx1) 

C5 N 2N 

1

s
(bHA−1) = [

1

s
(A−1b)]

H

 

−
1

s
(bHA−1) = − [

1

s
(A−1b)]

H

 

(1x1) ∙ (1xN) 

   

(
1

s
A−1b) (

1

s
bHA−1) 

Hermitian 

(Nx1) ∙ (1xN) 

C2 
N2 − N

2
 3N2 

 C6 N  

s (
1

s
A−1b) (

1

s
bHA−1) 

Hermitian 

(1x1) ∙ (NxN) 

C5 
N2 + N

2
 N2 + N 

A−1 + s (
1

s
A−1b) (

1

s
bTA−1) 

Hermitian 

(NxN) + (NxN) 

R1 N N2 

A−1 + s (
1

s
A−1b) (

1

s
bTA−1) 

Hermitian 

(NxN) + (NxN) 

C1 
N2 − N

2
 N2 

   13N2 + 5N + 1 

 

Here N = n − 1 

 

Then 

T(n) = T(n − 1) + f(n) 
with 

f(n) = 13(n − 1)2 + 5(n − 1) + 1
= 13n2 − 21n + 9 

f(1) = 1 
So 

T(n) = T(n − 1) + 13n2 − 21n + 9 

T(1) = 1 
 

Thus 

T(1) = 1 

T(2) = T(1) + f(2) 

T(3) = T(2) + f(3) = T(1) + f(2) + f(3) 

… 

T(n) = T(1) + f(2) + f(3) + ⋯ + f(n) 
 

Hence, the calculation burden (CB) of the 

recursive algorithm for the nxn complex Hermitian 

matrix inversion is: 

T(n) = {T(1) − f(1)}
+ {f(1) + f(2) + f(3) + ⋯ + f(n)}

= 13 ∑ i2

n

i=1

− 21 ∑ i

n

i=1

+ 9 ∑ 1

n

i=1

= 13
n(n + 1)(2n + 1)

6

− 21
n(n + 1)

2
+ 9n

=
26n3 − 24n2 + 4n

6
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The calculation burdens (CB) of complex 

Hermitian matrices inversion operations are 

summarized in Table 11. 
 

Table 11. Complex Hermitian matrices inversion 

code 

Complex 

Hermitian 
Matrix 

Inversion 

method CB 

I1 
H−1 

(n × n) 

recursive  

algorithm 
1

6
(26n3 − 24n2 + 4n) 

I2 
H−1 

(m × m) 

recursive  
algorithm 

1

6
(26m3 − 24m2 + 4m) 

I3 
H−1 

(2n × 2n) 

computation  

for I1 with 2n 
1

6
(208n3 − 96n2 + 8n) 

I4 
H−1 

(2m × 2m) 

computation  
for I2 with 2m 

1

6
(208m3 − 96m2 + 8m) 
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