
A Beneficial Numerical Approach to Solve Systems of Linear
Integro-Differential Equations

NEŞE İŞLER ACAR 1, AYŞEGÜL DAŞCIOĞLU 2

1 Department of Mathematics, Faculty of Arts and Science
Burdur Mehmet Akif Ersoy University

        Burdur,
           TURKEY

2 Department of Mathematics, Faculty of Science
Pamukkale University

        Denizli,
      TURKEY

Abstract: The system of linear Fredholm-Volterra integro-differential equations (FVIDEs) has been solved in
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examples have also been considered. It has been shown that the proposed method is faster and more effective
than the others when comparing the numerical results.
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1 Introduction
Systems of linear integro-differential equations
(IDEs) have a major role in the fields of natural
science, engineering, chemistry, physics, biology,
astronomy, potential theory, electrostatics, and
financial mathematics, etc. Many problems, such
as dynamic and genetic structures, risky businesses
(e.g. assurance companies), and neural networks
with time-varying delays, can be modelled by IDEs.
Therefore, numerical solutions of IDEs have become
a remarkable study both in the fields of mathematics
and physical science.

To date, many papers have been published related
to numerical methods for solutions of linear and
nonlinear IDEs systems. Studies on linear systems of
IDEs are collocation methods based on the Bernstein
operational matrix, [1], Bessel polynomials, [2],
[3], Euler polynomials, [4], Taylor polynomials,
[5], [6], Chebyshev polynomials, [7], and Fibonacci
polynomials, [8]. Apart from the collocation
methods, a numerical method based on rationalized
Haar functions, [9], has been presented to solve a
system of linear Fredholm IDEs. In addition, a
spectral method, [10], has been developed for the
solution of a linear Volterra IDE system. Moreover,
the Chebyshev collocation method has been used to
solve a system of second order IDEs modeling the

Markow-modulated jump-diffusion process, [11].

Considering the above promising studies
associated with collocation method, in this study
an alternative collocation method has been revealed
regarding to derivability property of the generalized
Bernstein polynomials to solve the system of linear
Fredholm-Volterra integro-differential equations
(FVIDEs). Basis of the developed method depends
on the definitions and the matrix relations of
Bernstein polynomials and their derivatives, [12],
[13], [14].

Definition 1.1: The generalized Bernstein basis
polynomials of N th degree are defined by

pr,N (x) = 1
(b−a)N

(
N
r

)
(x− a)r (b− x)N−r ; r = 0, 1, ..., N

on the interval [a, b]. For convenience, pr,N (x) = 0
is accepted for r < 0 and r > N . Besides, pr,N (a) =
pr,N (b) = 0 are verified for 0 < r < N, and
p0,N (b) = pN,N (a) = 0, p0,N (a) = pN,N (b) = 1.

Definition 1.2: Let y : [a, b] → R is
continuous function. Then the generalized Bernstein
polynomials of N th degree are defined by

BN (y;x) =

N∑
r=0

y

(
a+

(b− a) r

N

)
pr,N (x)
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on the interval [a, b] .
Theorem 1.1: There is a relation between the
generalized Bernstein basis polynomials matrix and
their derivatives in the form

p(k) (x)= p (x)dk; k = 0, 1, ...,m

such thatp (x) = [ p0,N (x) p1,N (x) . . . pN,N (x) ]
and the elements of matrix d =(drs); r, s =
0, 1, ..., N is as follows:

drs =
1

b− a


N − r ; s = r + 1
2r −N ; s = r
−r ; s = r − 1
0 ; otherwise

.

The rest of the paper is structured as follows:
In Section 2, the theory of the method has been
explained, and the solution algorithm has been given.
In Section 3, the application of the method to the
system of FVIDEs has been demonstrated on three
problems. Besides, the numerical results of the
proposed method have been compared with the other
methods. Some conclusions have been given in the
last section.

2 Description of the Method Based
on Bernstein Polynomials

Aprojectionmethod was given by [15], formth-order
linear FVIDE in the most general form. The main
idea of this method is applied and improved to
approximate the solution of the following FVIDEs
system:
m∑
k=0

qk (x) y
(k)

(x) = g (x) +
b∫
a
f (x, t) y (t) dt+

x∫
a
v (x, t) y (t) dt; a ≤ x, t ≤ b

(1)
under the mixed conditions∑m−1

k=0

[
Aky(k) (a) + Bky(k) (b) + Cky(k) (c)

]
= λ, a < c < b

(2)
by the generalized Bernstein polynomials as follows:

y
(k)
i (x) ∼= B

(k)
N (yi;x) =

∑N
r=0 y

(
a+ (b−a)r

N

)
p
(k)
r,N (x) ; i = 1, 2, ..., n.

(3)
Here qk (x) =

[
qkij (x)

]
, f (x, t) = [fij (x, t)],

v (x, t) = [vij (x, t)] are n × n matrices; g (x) =

[gi (x)] and y (x) = [yi (x)]
T are n × 1 matrices for

i, j = 1, ..., n. Ak =
[
αk
l

]
, Bk =

[
βk
l

]
, Ck=

[
γkl

]
arem× n matrices; and λ = [λl] ism× 1 matrix for
l = 1, ...,m.

Theorem 2.1: Let xs ∈ [a, b] be collocation
points. If system (1) has a generalized Bernstein

polynomial solution (3), linear FVIDEs system with
n unknowns and mixed conditions have following
matrix relations:[

m∑
k=0

QkPDk−F− V

]
Y = G, (4)

m−1∑
k=0

[
Akp (a) d

k
+ Bkp (b) d

k
+ Ckp (c)d

k
]
Y = λ.

(5)
Here p (x) is n×n (N + 1)matrix, dk is n (N + 1)×
n (N + 1) matrix and Y is n (N + 1) × 1 matrix,
Qk = diag [qk (xs)] , P = [p (xs)] , Dk =

[
dk

]
,

F = [F (xs)] and V = [V (xs)] are n (N + 1) ×
n (N + 1) matrices. G = [g (xs)] and Y =

[
Y
]
are

n (N + 1)× 1 matrices.
Proof. Since system (1) has a generalized Bernstein
polynomial solution (3), unknown functions and their
derivatives can be written as

y
(k)
i (x) ∼= p(k) (x)Yi = p (x)dkYi; i = 1, ..., n.

Here p (x) is 1 × (N + 1) matrix, d is (N + 1) ×
(N + 1) matrix defined in Theorem 1.1, and

Yi =
[
yi (a) yi

(
a+ b−a

N

)
. . . yi (b)

]T
; i = 1, ..., n

is (N + 1) × 1 matrix. Compactly, the unknow
functions and their derivatives can be restated by

y(k) (x) ∼= p (x) dkY; k = 0, 1, ...,m, (6)

where the elements of matrices are defined as follows:

y(k) (x) =


y
(k)
1 (x)

y
(k)
2 (x)

...
y
(k)
n (x)

 , p (x) =


p (x) 0 . . . 0
0 p (x) . . . 0
...

...
. . .

...
0 0 . . . p (x)


n×n

,

dk =


dk 0 . . . 0
0 dk . . . 0
...

...
. . .

...
0 0 . . . dk


n×n

, Y =


Y1

Y2

...
Yn

 .

Substituting relation (6) into Eq. (1) yields
m∑
k=0

qk (x) p (x) d
kY ∼= g (x) + F (x)Y+ V (x)Y.

(7)
Here, the explicit forms of the above matrices are as
follows:

qk (x) =


qk11 (x) qk12 (x) . . . qk1n (x)
qk21 (x) qk22 (x) . . . qk2n (x)

...
... . . . ...

qkn1 (x) qkn2 (x) . . . qknn (x)


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g (x) =


g1 (x)
g2 (x)

...
gn (x)

 ,

F (x) =



b∫
a
f11 (x, t) p (t) dt

b∫
a
f12 (x, t) p (t) dt . . .

b∫
a
f1n (x, t) p (t) dt

b∫
a
f21 (x, t) p (t) dt

b∫
a
f22 (x, t) p (t) dt . . .

b∫
a
f2n (x, t) p (t) dt

...
... . . . ...

b∫
a
fn1 (x, t) p (t) dt

b∫
a
fn2 (x, t) p (t) dt . . .

x∫
a
fnn (x, t) p (t) dt


,

V (x) =



x∫
a
v11 (x, t) p (t) dt

x∫
a
v12 (x, t)p (t) dt . . .

x∫
a
v1n (x, t)p (t) dt

x∫
a
v21 (x, t) p (t) dt

x∫
a
v22 (x, t) p (t) dt . . .

x∫
a
v2n (x, t)p (t) dt

...
... . . . ...

x∫
a
vn1 (x, t) p (t) dt

x∫
a
vn2 (x, t) p (t) dt . . .

x∫
a
vnn (x, t)p (t) dt


.

Since y(k)i (xs) = B
(k)
N (yi;xs); i = 1, ..., n is valid on

the collocation points xs ∈ [a, b] for s = 0, 1, ..., N ,
Equation (7) becomes
m∑
k=0

qk (xs) p (xs) d
kY− F (xs)Y−V (xs)Y =g (xs) .

This system of equations can also be
written compactly WY = G such that

W =
m∑
k=0

QkPDk−F− V, where

Qk=


qk (x0) 0 . . . 0

0 qk (x1) . . . 0
...

... . . . ...
0 0 . . . qk (xN )

 , P =


p (x0)
p (x1)

...
p (xN )

 , Dk =
[
dk

]
,

F =


F (x0)
F (x1)

...
F (xN )

 ,V =


V (x0)
V (x1)

...
V (xN )

 ,G=


g (x0)
g (x1)

...
g (xN )

 .

Similarly, substituting x = a, x = b, and x = c
into Eq. (6), given conditions is written in the form
UY = λ such that

U =

m−1∑
k=0

Akp (a)d
k
+Bkp (b) d

k
+Ckp (c) d

k
. (8)

Thus, the proof is completed.

The following steps are applied to solve the system of
FVIDEs (1) under the mixed conditions (2):

Step 1. First, the matrices Qk, P, D, F, V defined
in Theorem 2.1 are computed depending on the
collocation points, and then the fundamental matrix

relation belonging to (4) is obtained, it can be stated
as

WY = G or [W;G] . (9)

This matrix equation corresponds to an n (N + 1)
dimensional system of linear algebraic equations with
unknown coefficients matrix Y.

Step 2. By calculating the matrices in Eq. (8) at the
given points, the augmented matrix form of the mixed
conditions can be expressed as

[U;λ] . (10)

Step 3. There are two techniques available for
obtaining the solution of Eq. (9) under conditions
(10). Initially, the arrays of the row matrices (10) can
be added under the matrix (9). This gives the new
augmented rectangular matrix

[
W̃;G̃

]
, where W̃ is a

matrix of dimensions n(N + m + 1)-by-n(N + 1).
This can be called an addition technique. On the
other hand, the augmented square matrix

[
Ŵ;Ĝ

]
is

produced by replacing some of the rows of matrix
(9) with rows of matrix (10) by removing the first,
middle or last rows of matrix (9) and writing the
rows of matrix (10) in their place. This can also
be called displacement technique. The number of
collocation points, the given conditions and the order
of the equations all affect these strategies.

Step 4. If rank(W̃) = rank
[
W̃; G̃

]
= n (N + 1)

or rank(Ŵ) = rank
[
Ŵ; Ĝ

]
= n (N + 1), the

unknown coefficient matrixY is uniquely determined
by Y =

(
W̃

)−1
G̃ or Y =

(
Ŵ
)−1

Ĝ. This system
can be solved easily by the standard methods.

3 Illustrations of the Method
In this section, three numerical examples are provided
to support the suggested approach. The first example
demonstrates how simple it is to implement the
method. Moreover, the success of the method
is shown by the numerical results. Furthermore,
the numerical results of the proposed method have
been compared with those obtained using different
methods. Accordingly, the suggested method’s
outcomes demonstrated its importance, significant,
remarkable, and effective in solving the system
of FVIDEs. These numerical results have been
calculated using the MATLAB programme. The
absolute and maximum errors listed in the tables are
defined by:
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ei,N = |yi,N (x)− yi (x)| and ∥ei,N∥∞ = max
xs∈[a,b]

|ei,N (xs)| .

Here yi,N (x) is the Bernstein approximation and
yi (x) is the exact solution of the system.
Example 3.1: The second-order system of FIDEs
defined on −1 ≤ x, t ≤ 1 given in [5], is as follows:

−y
′′
1 + y

′
2 + xy1 + y2 = −x

4
+ 6x

2
+ 7x − 2

+

1∫
−1

[
ty1 (t) − t

3
y2 (t)

]
dt +

x∫
−1

xy2 (t) dt

xy
′′
1 − y

′′
2 + y1 − x

2
y2 = −3x

4 − x
3 − x

2
+ 3x − 14

+

1∫
−1

[(t + 2) y1 (t) − ty2 (t)] dt +

x∫
−1

ty1 (t) dt

y1 (0) = 2, y
′
1 (1) = 3, y2 (0) = 0, y

′
2 (−1) = −6.

Let us approach the solution of the system using
Bernstein polynomials for m = 2 and N = 2, and
then show step by step the application of the method
to this problem. Then, the collocation points are of
the form

x0 = −1, x1 = 0, x2 = 1.

According to the matrices provided in Section 2,
the matrices in Eq. (1) for this system are as follows:

q0 (x) =
[
x 1
1 −x2

]
, q1 (x) =

[
0 1
0 0

]
,

q2 (x) =
[
−1 0
x −1

]
, v (x, t) =

[
0 x
t 0

]
,

f (x, t) =
[

t −t3

t+ 2 −t

]
,

g (x) =
[

−x4 + 6x2 + 7x− 2
−3x4 − x3 − x2 + 3x− 14

]
,

y (x) =
[
y1 (x)
y2 (x)

]
, y′ (x) =

[
y′1 (x)
y′2 (x)

]
,

y′′ (x) =
[
y′′1 (x)
y′′2 (x)

]
, λ = [ 2 0 3 −6 ]

T
.

Then the fundamental matrix of the system can be
written as

(Q2PD2 +Q1PD+Q0P− V− F)Y = G.

Here the entries of this matrices are as follows:

Q2=


−1 0 0 0 0 0
−1 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 1 −1

 ,

Q1 =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 ,

Q0 =


−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 ,

P =


1 0 0 0 0 0
0 0 0 1 0 0

1/4 1/2 1/4 0 0 0
0 0 0 1/4 1/2 1/4
0 0 1 0 0 0
0 0 0 0 0 1

 ,

D =


−1 1 0 0 0 0

−1/2 0 1/2 0 0 0
0 −1 1 0 0 0
0 0 0 −1 1 0
0 0 0 −1/2 0 1/2
0 0 0 0 −1 1

 , G =


−4
−20
−2
−14
10
−16

 ,

V =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−17/48 −1/8 −1/48 0 0 0
0 0 0 2/3 2/3 2/3

−1/3 0 1/3 0 0 0

 ,

F =


−1/3 0 1/3 1/5 0 −1/5
1 4/3 5/3 1/3 0 −1/3

−1/3 0 1/3 1/5 0 −1/5
1 4/3 5/3 1/3 0 −1/3

−1/3 0 1/3 1/5 0 −1/5
1 4/3 5/3 1/3 0 −1/3

 .

Finally, by considering Equations (9) and (10), the
augmented matrix and conditions become

[W; G] =


−7/6 1 −5/6 −1/5 1 1/5 ; −4
−1/2 −1/3 −13/6 −11/6 1 −1/6 ; −20
−1/6 1 −5/6 −9/20 1/2 19/20 ; −2

−19/48 −17/24 −67/48 −5/6 1 −1/6 ; −14
−1/6 1 1/6 −13/15 −5/3 23/15 ; 10
−1/6 −7/3 −1/2 −5/6 1 −7/6 ; −16



and

[U;λ] =

 1/4 1/2 1/4 0 0 0 ; 2
0 0 0 1/4 1/2 1/4 ; 0
0 −1 1 0 0 0 ; 3
0 0 0 −1 1 0 ; −6

 .
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Utilizing the addition technique mentioned in Step 3,
the augmented matrix for this system occurs as

[
W̃;G̃

]
=



−7/6 1 −5/6 −1/5 1 1/5 ; −4
−1/2 −1/3 −13/6 −11/6 1 −1/6 ; −20
−1/6 1 −5/6 −9/20 1/2 19/20 ; −2

−19/48 −17/24 −67/48 −5/6 1 −1/6 ; −14
−1/6 1 1/6 −13/15 −5/3 23/15 ; 10
−1/6 −7/3 −1/2 −5/6 1 −7/6 ; −16
1/4 1/2 1/4 0 0 0 ; 2
0 0 0 1/4 1/2 1/4 ; 0
0 −1 1 0 0 0 ; 3
0 0 0 −1 1 0 ; −6


.

Solving this linear system gives the exact solution of
the problem as

y1 (x) = 3x+ 2 and y2 (x) = 3x2.

Although, [5], found exact solutions for N = 3 in
their study, we have found exact solutions forN = 2.
Thus, the proposed method is faster than the Taylor
collocation method. It also shows that the exact
solution can be found in cases where the solution is
polynomial if the value N is taken as the degree of
the polynomial.
Example 3.2: Let us consider a second-order system
of VIDEs, [1], [10] :

y
′′

1 (x) + 2xy′1 (x)− y1 (x)−
x∫

0

(y1 (t)− y2 (t)) dt

= 2 + x− ex + 2xex − cosx,

y
′′

2 (x) + y′2 (x)− 2xy2 (x)−
x∫

0

(y1 (t) + y2 (t)) dt

= 2 cosx− 3x− (1 + 2x) sinx− ex,

with the initial conditions

y1 (0) = 1, y′1 (0) = 1, y2 (0) = 1, y′2 (0) = 1,

and exact solutions y1 (x) = ex, y2 (x) = 1 + sinx.
By the proposed method, fundamental matrix

equation and its conditionals become(
PD2+Q1PD+Q0P− V

)
Y = G,[

p (0) + p (0) d
]
Y = λ.

In Table 1 and Table 2, the absolute errors are
compared with those of the other methods, [1], [10].
The numerical results of the proposed method have
been calculated using the displacement technique. In
our method, collocation points have been considered
as xs = s/N ; s = 0, 1, ..., N , and Newton-Cotes
points have been considered as xs = (2s−1)/(2(N+
1)); s = 1, 2, ..., 2N − 2 for Bernstein operational
matrix method. Although the tables indicate that the
results of the proposed method are close to the other
methods, the values of the proposed method are better

than the others as move away from the initial point.
Besides, the absolute errors of the proposed method
approach zero with increasing N values.

Table 1. The Comparison of the Absolute Errors for y1 (x) .

xs Proposed Method Bernstein Operational
Matrix Method [1]

Spectral Method [10]

N = 5 N = 10 N = 15 N = 5 N = 10 N = 5
0.0 0 0 0 8.9e− 016 8.9e− 016 0.0e− 009
0.1 2.5e− 007 6.7e− 014 2.2e− 015 6.7e− 007 1.5e− 013 1.0e− 009
0.2 1.2e− 006 1.7e− 013 4.8e− 015 1.4e− 006 2.9e− 013 9.1e− 008
0.3 2.1e− 006 2.6e− 013 4.1e− 015 1.8e− 006 4.3e− 013 1.1e− 006
0.4 2.5e− 006 3.5e− 013 6.8e− 015 2.4e− 006 5.6e− 013 6.0e− 006
0.5 3.1e− 006 4.4e− 013 8.1e− 015 3.0e− 006 7.0e− 013 2.3e− 005
0.6 4.3e− 006 5.2e− 013 9.2e− 015 3.3e− 006 8.3e− 013 7.0e− 005
0.7 4.9e− 006 6.1e− 013 1.1e− 014 4.3e− 006 9.5e− 013 1.8e− 004
0.8 2.1e− 006 6.6e− 013 1.2e− 014 1.2e− 005 1.1e− 012 4.1e− 004
0.9 3.5e− 005 1.7e− 012 1.3e− 014 4.2e− 005 4.4e− 013 8.5e− 004
1.0 1.3e− 004 2.8e− 011 1.3e− 013 1.3e− 004 3.1e− 011 1.6e− 003

Table 2. The Comparison of the Absolute Errors for y2 (x) .

xi Proposed Method Bernstein Operational
Matrix Method [1]

Spectral Method [10]

N = 5 N = 10 N = 15 N = 5 N = 10 N = 5
0.0 0 0 0 7.8e− 016 8.9e− 016 0.0e− 009
0.1 4.6e− 008 4.2e− 014 1.3e− 015 1.4e− 007 9.0e− 014 0.0e− 009
0.2 2.1e− 007 9.9e− 014 2.7e− 015 2.9e− 007 1.6e− 013 2.0e− 009
0.3 3.6e− 007 1.5e− 013 6.3e− 015 3.6e− 007 2.4e− 013 4.3e− 008
0.4 4.1e− 007 1.9e− 013 6.9e− 015 4.5e− 007 3.0e− 013 3.3e− 007
0.5 4.7e− 007 2.4e− 013 8.3e− 015 5.5e− 007 3.6e− 013 1.5e− 006
0.6 6.9e− 007 2.8e− 013 9.7e− 015 5.6e− 007 4.2e− 013 5.5e− 006
0.7 7.7e− 007 3.2e− 013 1.1e− 014 7.7e− 007 4.7e− 013 1.6e− 005
0.8 1.1e− 006 3.4e− 013 1.2e− 014 2.7e− 006 5.4e− 013 4.1e− 005
0.9 9.8e− 006 9.5e− 013 1.4e− 014 1.1e− 005 3.4e− 013 9.4e− 005
1.0 3.5e− 005 1.6e− 011 5.5e− 013 3.3e− 005 1.7e− 011 2.0e− 004

Example 3.3: Let us consider following system of
FIDEs given in 0 ≤ x ≤ 1:

y′′1 − xy′2 − y1 = (x− 2) sinx

+

1∫
0

(x cos t y1 (t)− x sin t y2 (t)) dt

y′′2 − 2xy′1 + y2 = −2x cosx

+

1∫
0

(sinx cos t y1 (t)− sinx sin t y2 (t)) dt

y1 (0) = 0, y′1 (0) = 1, y2 (0) = 1, y′2 (0) = 0.

Exact solution of this problem is y1 (x) = sinx,
y2 (x) = cosx.

Table 3. The Comparison of the Maximum Errors for y1 (x) .

N Proposed Method Bessel Collocation Method [2] Fibonacci Collocation Method [8]
3 4.4e− 003 5.0e− 003 5.3e− 003
7 9.9e− 008 5.0e− 007 5.0e− 007
9 1.9e− 010 4.0e− 009 4.0e− 009
10 1.6e− 011 2.7e− 010 2.7e− 010
11 2.3e− 013 2.5e− 011 2.5e− 011
12 1.9e− 014 1.2e− 012 1.1e− 012
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Table 4. The Comparison of the Maximum Errors for y2 (x) .

N Proposed Method Bessel Collocation Method, [2] Fibonacci Collocation Method, [8]
3 1.3e− 002 1.4e− 002 1.4e− 002
7 2.2e− 007 6.3e− 007 6.3e− 007
9 4.0e− 010 4.2e− 009 4.2e− 009
10 7.6e− 010 3.0e− 010 3.0e− 010
11 4.9e− 013 2.6e− 011 2.6e− 011
12 3.2e− 014 1.6e− 012 1.5e− 012

In Table 3 and Table 4, the maximum errors are
compared with those of the others, [2], [8]. For
all methods in the tables, the numerical results have
been calculated on the collocation points xs = s/N .
The tables indicate that the proposed method yields
better results than the others for increasing N values.
Moreover, the numerical results that computed by
replacing the last rows of the augmented matrix
with the conditions are more effective than the other
displacement and addition techniques. Thus, one
reason for the effective results is that the augmented
matrix has been obtained by using the replacement
technique.

4   Conclusions and Inferences
In this study, a collocation method is improved by

considering the fundamental properties of Bernstein
polynomials to solve a system of linear IDEs. The
proposed method transforms a system of linear
FVIDEs into a system of linear algebraic equations
due to the matrix forms of the Bernstein polynomials
and their derivatives. To demonstrate the applicability
and efficiency of the method, three examples are
considered. Example 3.1 illustrates how this method
is applied to the problem and shows that it is faster
than the Taylor collocation method. In Examples
3.2 and 3.3, the results of the errors are compared
with those of other methods, which are Bernstein
operational matrix, Spectral, Bessel, and Fibonacci
collocation methods. In both examples, better results
are obtained as the value of N increases, by using
the proposed method. Moreover, when the solution
is polynomial, the exact solution can be found if
N is chosen as the degree of the polynomial. The
use of the displacement technique to obtain the
augmented matrix proves advantageous for achieving
more effective results. Considering all aspects of
the study, the proposed method is a suitable and
rigorous numerical approach for solving various
linear systems, including differential, integral, and
integro-differential equations. Therefore, this method
could be applied to models like the Markow
modulated jump diffusion process, [11], in future
studies.
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