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Abstract: - Query processing using the Uncertain Data Stream (UDS) can be complex in many technological 
scenarios due to inconsistencies, unclear information, and interpretation latency. As a result of both the sheer 
amount of data generated and the rate of change, traditional processing methods are in dire need of an upgrade. 
UDS consists of a finite set of states known as possible worlds (PW), and enhancing data organization can lead 
to more accurate extraction of user preferences. The number of possible world instances in UDS grows 
exponentially, making achieving Top-k query processing quickly a significant challenge. Different methods are 
available to handle Top-k queries in various types of UDS, and their key concerns include reducing duplicate 
scans of the entire dataset, enhancing uncertainty computation, and focusing on processing the latest tuple item 
entry. It appears that there have been limited studies conducted on the issue of UDS using the Sliding Window 
Model (SWM). The current approach for handling continuous queries on UDS within the SWM has proven to be 
ineffective, resulting in complex trade-offs between maximizing probability and generating high-scoring result 
sets. The challenge is to find the correct result list that satisfies a Top-k query predicate with scoring and 
probability. This study proposes a framework for processing Top-k queries for UDS using the sliding window 
model to improve efficiency. The study also discusses an improved optimization method for reducing 
computational redundancy in the context of the sliding window model and Top-k query processing. Overall, 
this research will significantly contribute to the Top-k computational query processing field. 
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1   Introduction 
Conventional query processing methods utilizing in-
memory algorithms need help to handle the extensive 
data stream volumes. Therefore, creating efficient 
techniques for processing Top-k queries and 
integrating a reliable Data Stream Management 
System (DSMS) to facilitate query processing from 
various data sources is crucial. The transition from a 
centralized to a distributed data environment is 
critical in ranked retrieval, [1]. A user-defined 
scoring function and a specific query generate k-
tuple items with the highest scores, [2]. This method 
is highly important in a range of emerging 
applications. These include object tracking, RFID 
technology, sensor networks, information extraction, 
and data integration, [3]. Probability distributions are 
frequently used to describe situations with 
uncertainty in data values rather than predictability, 
[4]. 

 Processing UDS can be quite challenging due to 
a few factors, including the real-time generation of 
tuple items, the lack of control over their arrival 
order, the unlimited scale of data streams, and the 
discarding of processed data stream objects, [5]. 
Overestimating the required window size could 
cause unexpected and undesired tuple item returns, 
[6]. UDS is considered uncertain when it contains an 
uncertain object model, a possible world semantic 
model, or both. Several studies have been conducted 
to create models that describe UDS in semantics. 
These models can represent relationships in the form 
of sequences of events [7], including semi-structured 
data models [8], [9], stream data models [10], 
relational data models [11], [12], and 
multidimensional data models [12], among others. 
The main focus of UDS research is possible 
instances in the world, which are represented by 
possible worlds, [13], [14]. The Sliding Window 
Model (SWM) represents all possible world settings 
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by generating tuples in combinations. Within this 
model, multiple potential worlds can be generated at 
a specific timestamp, which leads to a significant 
increase in the number of tuples as the size of the 
sliding window expands, [15].  

 Processing continuous Top-k queries over a 
SWM is a complex problem when dealing with 
uncertain data streams, [16], [17], [18]. To maintain 
an up-to-date SWM, it is crucial to continuously 
process sliding window queries and alert users of any 
changes in query results, [19]. Therefore, this study 
focuses on exploring the best combination of tuple 
items that satisfy the scoring requirements, 
probabilities, or both for the Top-k query. 

After this introduction, the paper is organized as 
follows. Section 2 reviews related work that serves 
as a basis for identifying gaps in the research. 
Section 3 highlights the study's contribution, 
followed by Section 4 presents a preliminary 
problem statement for better understanding. The 
methodology is detailed in Section 5, including 
algorithms and examples. Section 6 presents the 
results of the experiment. Finally, in Section 7, we 
will provide concluding remarks for this study. 

 
 

2   Related Work 
This study delves into the essential principles of 
continuous query preferences in a centralized 
environment. It focuses on various types of 
continuous queries such as top-k, skyline, and top-k 
dominating that DSMS executes with stream inputs 
limited by sliding windows. In the literature, many 
techniques have been proposed based on top-k 
queries, [20], [21], [22], [23], [24], [25], [26], [27], 
[28] that researchers have explored in various areas. 
These areas include both centralized environments 
with SWM [29], [30], [31], [31], [32], [33], [34], 
Dominant Relationship Analysis (DRA) [35], 
without SWM [36], [37], [38], UFIM with 
UFIMTopK [39], and Top-k query over an 
Incomplete Data Stream (Topk-iDS) [40], [41], [42], 
[43] approach. The complexity arises from the need 
to aggregate scores of candidate items and their 
probabilities in UDS, [43].    
 
2.1  Top-k Queries 
To define various top-k ranking query semantics, 
different parameters can be adapted, such as UTopk 

[44], PT-k [44], PTk-S [44], eScore Rank [44], 
Global Topk [44], UTR [44], PTD [45], among 
others. UTopk focuses on probabilistic threshold 
top-k queries. It utilizes user-provided probability 
thresholds to filter and rank data items. PT-k 
analyzes large datasets with significant uncertainty, 

making it easier to derive top-k results based on 
user-defined scores. Significant findings were made 
regarding top-k best probability queries. This study 
emphasizes the selection of probabilistic tuples with 
the highest top-k scores and probabilities. The 
algorithm for selecting the top-k best probabilities 
demonstrates superior speed and efficiency 
compared to the Probability Threshold Technique 
(PT-k). In study proposed by DRA, it minimizes the 
number of tuple elements needed for query 
processing. By adopting this approach, they were 
able to decrease the number of tuple items that 
require processing and limit the generation of 
potential world instances. 

 
2.2  Sliding Window Model (SWM) 
In response to continuous and uncertain user 
requests, this study delves into the topic of UDS and 
proposes methods for computing top-k on tuple 
items. A variety of tuple item combinations are 
generated by the SWM, which characterizes the 
probable world context, [46]. Tuple items can be 
generated in the SWM using a timestamp and 
several possible worlds. However, the number of 
tuple elements grows exponentially with the size of 
the sliding window frame. It takes a lot of time and 
energy to handle incoming and outgoing tuple 
elements in rapid streams effectively. Handling 
queries consisting of the most probable top-k tuple 
query sets is the most difficult attempt to handle, 
[46]. The method uses probabilities and scores to 
select the top k tuples within each sliding window, 
regardless of the number of tuple items.   

 
2.3  Tuple-Level Uncertainty (TLU) 
In 2018, a novel method was introduced for 
addressing preference queries. They developed two 
algorithms, UFIM and UFIMTopK, to efficiently 
detect frequent item sets from uncertain data streams 
based on thresholds and ranks. To facilitate efficient 
top-k queries, the SAP method employs a 
partitioning mechanism. Finding and keeping a 
selected set of tuple items in the window frame is 
essential for getting answers when the window 
changes. To decrease the re-scanning interval even 
further, one could reduce the re-scanning frequency 
in the sliding window, mainly when high-scoring 
tuple items are located within the window frame. 
Topk-iDS algorithm that can determine the top-k 
tuple items with the highest-ranking scores from an 
incomplete data stream. Their algorithm uses a 
sliding window framework that combines count-
based and time-based SWM to monitor the highest-k 
tuple elements. To address issues like insufficient 
information and uncertainty, their work suggests 
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using cost modeling that can involve creating 
dynamic data summaries and pruning techniques to 
effectively reduce the search space for Topk-iDS. 

 
2.4  Comparative Analysis 
Table 1 provides a comparative analysis of various 
methodologies in continuous Top-k query 
processing over uncertain data streams. It highlights 
the key features, advantages, and limitations of each 
approach. 
 

Table 1. An Analysis and Comparison of 
Algorithms 

Method 
Exac

t-k 

Contai

nment 

Unique 

Ranking  

Stabilit

y 

Invari

ance 

Faithf

ulness 

Global 

Topk  
Wea

k Fail Satisfied Satisfie
d 

Satisfie
d Fail 

U-Topk  Fail Fail Satisfied Satisfie
d 

Satisfie
d Fail 

K-best 

ranking 
with PT-k 

Wea
k Weak Satisfied Satisfie

d 
Satisfie

d Weak 

UFIM 

and 
UFIMTo

pK  

Wea
k 

Satisfie
d Satisfied Weak Satisfie

d Weak 

DRA with 

Pk-Topk  
Wea

k 
Satisfie

d Satisfied Satisfie
d Weak Fail 

Topk-iDS Wea
k 

Satisfie
d Satisfied Satisfie

d 
Satisfie

d Weak 

Proposed 
SWMTop
-kDelta 

Satis
fied 

Satisfie
d Satisfied Satisfie

d 
Satisfie

d 
Satisfie

d 

 
Most academics have concentrated on top-k 

query processing for specific data types and their 
modifications, but when UDS is involved, processing 
with the sliding window model approach is not 
enabled. This study utilized the following categories 
to structure the prior research: (i) Operates on the 
concept that probability and top-k score methods are 
frequently employed to characterize UDS tuple 
items. (ii) Processing streaming data poses numerous 
challenges, and this study seeks to address issues 
arising from UDS by creating alternative scenarios. 
Representing UDS using a possible world model can 
be a challenging task. 

 
 

3   Contributions 
This study employs a SWM to investigate and 
compute the top-k query on uncertain data streams. 
To achieve the intended contribution, it is vital to 
thoroughly analyze various considerations before 
implementing the proposed framework: 
 The UDS model requires further examination and 

analysis of its categories. 
 The proposed SWM needs to be evaluated for its 

efficacy in handling continuous queries.  

 To obtain the appropriate Top-k results based on 
scoring and probability, query processing is 
utilized.  

 There's a need for optimization to decrease the 
computation time and complexity of Top-k 
results efficiently. 
 To improve the computational efficiency of 

managing tuple item scores and probabilities, 
examining the critical components of a suitable top-k 
query method for uncertain data streams is essential. 
Our proposed approach provides a systematic 
process for achieving high scores and maximum 
probabilities across all possible world situations. 
This study introduces a new problem in processing 
continuous queries that aim to find the top-k tuple 
items with various fundamental characteristics. It is 
crucial to optimize strategies for top-k over SWM 
processing, considering the contributions highlighted 
before. An empirical study was conducted on both 
real-world and synthetic datasets to validate the 
effectiveness of these techniques. 

Therefore, this paper is crucial in top-k query 
processing as it provides comprehensive knowledge, 
ensuring efficient and accurate access to information 
and leading to overall user satisfaction. With the 
exponential growth of data, effective query 
processing becomes even more critical. By 
improving the retrieval process, managing complex 
queries, optimizing resources, enhancing user 
experience, supporting advanced features, and 
ensuring data integration, query processing plays a 
significant role in the success and effectiveness of 
information retrieval systems. As data volumes 
grow, robust top-k query processing mechanisms 
will only increase, making it a critical area of focus 
for researchers and practitioners. 

 
 

4  Preliminary and Problem Statement 
 
4.1  Preliminary 
[47], analyzed three models for managing uncertain 
data: fuzzy, evidence-oriented, and probabilistic 
methods. Our study utilizes the completed model to 
depict the specific example and the Uncertain Data 
Model (UDM) derived from Definition 1. This 
model will be called the Sliding Uncertain Data 
Model (SUDM). The model is characterized by its 
inclusion of Uncertainty (ALU) and Tuple Level 
Uncertainty (TLU).  
Definition 1 (Uncertain Data Stream, UDS): A 
subscript denotes the point in time at which the tuple 
item arrives. A tuple item si is a point with actual 
values in d dimensions that are not overly specific. 
A suitable vector S[q] = {sq-L+1, ... sq-1, sq} for a 
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subsequence of stream S defined as S = {s1, s2, ..., 
si...} and the Top-k query seeks for a record vector 
of size L. The starting point for indexing a tuple on 
the uncertain data stream and subsequent application 
of the sliding window model is denoted by N, and it 
is given a series of tuples si, where 0 < i < n.  

Table 2 presents a sample of UDS that contains 
10 tuple items. Each item has 3 attributes, which 
include a probability value. In this work, we adopt 
the baseline sliding window semantics, it is defined 
as follows: 
 
Table 2. Example of an Uncertain Data Stream Set 

Timestamp 

(secs) 
tid 

Tuple 

Item 
Score Probability 

5 t1 R1 80 0.3 
10 t2 R2 65 0.4 
10 t3 R3 45 0.5 
15 t4 R4 30 1 
20 t5 R5 50 0.8 
20 t6 R6 25 0.2 
25 t7 R7 40 0.5 
26 t8 R8 55 0.6 
26 t9 R9 78 0.4 
30 t10 R10 90 0.8 

 

Definition 2 (Sliding Window Model Semantics): 
For a given S = {s1, s2, ..., si...}, a windowed stream 
operator operates on incoming tuples using the 
sliding window, SW(S, Win), where Win represents 
the window size of |SW|. Due to the existential 
uncertainty of specific tuples in S, the borders of the 
SWM may also appear uncertain. Subsequently, the 
most recent objects generated will become invalid 
after |SW| time instances. The set of UDS tuple items 
within the current sliding window at time t is 
represented as SW [t-|SW|+1, t]. This is indicated by 
Prob(|SW(S, win)|= win) < 1. This approach follows 
delta's proposed sliding window semantics 
(attribute, delta) and the uncertainty-independent 
model for possible world semantics.  

It is necessary to group tuple items and adjust 
the synopsis based on density probability with a 
running timestamp. Candidates are retrieved using a 
selection technique outlined below: 
Definition 3 (Group Membership, GM): The tuple 
items within a window are arranged into groups 
based on their attribute values in the grouping list L 
= {Ai, Aj, ..., An}, similar to the function of the 
corresponding operation in extended relational 
algebra (such as COUNT, SUM, MAX, or AVG).  

Once the group membership strategy is 
implemented and all tuple items are correctly 
projected, the partitioning process on SWM can be 
defined as follows: 
Definition 4 (Sliding Window Partition, SWPa): 
Top-k Segmental Set Queue and Buffer (TSQB) 
notation is now activated in the partition window of 

the slicing panes, where SWPa = {SWPa=v| v ϵ {t.a | t 
is a tuple in SWPa}} is located. The proposed 
partition-by-delta attribute [SW(S) t time - SW(S, win) t 

time2 >0; where delta >= query time allocated] is used 
to specify the timestamps that trigger the sliding 
process. The equation is defined as SWPa=v = {ti

a=v | I 
[0…|SWPa=v|)}. The most recent tuple item in the 

SWPa=v subwindow is represented by t0
a=v, while the 

oldest is by tl
a=v. Table 3 demonstrates the 

progression of the sliding window from t = 1 to t = 
10. 
 

Table 3. The results of the Bucket Instance, BTk 
(with sliding window partition) 

Timestamp 

(secs) 

Initial 

Bucket, Bk 

SW Bucket Top-k, BTk 

5 B2 = {R1} 1 BT1 = {R1} 
10 B2 = {R2, 

R3} 
1 BT1 = {R2, R3} 

15 B2 = {R4} 1 & 
2 

BT1 = {R4} BT2 = {R4, 
R5} 

20 B1 = {R5}; B2 

= {R6}; 
1 & 

2 
BT1 = {R5, R6}   BT2= 

{R5, R6} *{R1, R2, R3} 
expired   *{R6} pruned 

25 B2 = {R7}; 2 BT2 = {R7} 
26 B1 = {R8}; B2 

= {R9}; 
2 BT2 = {R8, R9} 

30 B1 = {R10}; 2 BT2 = {R10} 
 
To identify the top-k potential candidates, the 

system needs to determine the top-k ranked scores 
and the aggregated probability distribution among 
various UDS within the segmentation window 
frame. In this work, we adopt the Delta-based 
sliding window and with Definitions 2 and 4, 
SWPTop-kDelta can be defined as: 
Definition 5 (Sliding Window Model Top-k Delta, 

SWMTop-kDelta): Given a UDS, a ranking function 
 can identify the top-k tuple vectors based on a 

designated threshold. This threshold generates the 
score Probmax(hsi) and probability Probtoplatest(n) 
across the SWM Delta-based mechanism. The 
scheme continuously monitors the potential 
candidates P(s[q]i)  Wt, which have the highest 

rankings with probability ProbSWMTop-kDelta , 

exceeding a combined threshold of Scorethresh and 
Probthresh, in the following manner: 
 

ProbSWMTop-kDelta( )= 
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 > Scorethresh and 

Probthresh 
 
The SWPTop-kDelta method is an extension of 

the segmentation window approach used by the 
TSBQ algorithm (as defined in Definition 4). The 
algorithm lists the top-k potential candidates during 
the initial phase. For instance, SWPa(si) can be 
created by P(s[R1-3]), P(s[R4-6]), and P(s[R7-10]). 
The SWPTop-kDelta method uses the top-k vectors 
and a bucket set that includes specific possible 
world rules to compute the final top-k result list. 
Hence, to obtain results affected by the probability 
distribution p(w), a deterministic SWMTop-kDelta 
query is run on all possible worlds. The 
segmentation window SWPa(si) achieves the 
necessary hs before recognizing each tuple item in 
the sequence. To compute the probability of event 
PW (W1) = {R1, R2, R4, R5} occurring, we need to 
multiply the individual probabilities of each event. 
To determine the highest probability of a tuple item, 
we need to apply the extended generation rules of 
possible world semantics to each potential candidate 
within SW. The SWMTop-kDelta algorithm 
computes the probabilities of the top-2 and top-3 
tuple items. The process proceeds as follows: 
Definition 6 (Possible World, p(w)): The possible 
world rules in UDS can be restated as a group of 
tuples represented by W, defined as {w1, w2, ...., wn}. 
PW → [0,1] represents a probability distribution 
where , p(wi) > 0. The probability 

of existence of W is calculated as p(wi) = 
 =  The expression  

 represents the set of all possible worlds 

where the sliding window SW(S, Win) is applicable, 
assuming that all tuples are independent of one 
another: 

Prob(W1) = p1*p2*p4*p5 = 0.096 
Prob(W2) = p1*p2*p4*p6 = 0.024 

[  = ; 

] 

In the context of UDS that contains semantic 
possible worlds, there are 2n possible worlds in the 
SW(S), where S is a set of n tuple items. For a 
positive integer k and a possible world p(w), k is a 
set of k tuples with the highest scores in w, called 
the top-k tuple of w, denoted as Hk (w). T* is the 

solution to an ongoing top-k query processing on 
UDS is denoted as: 

T* = arg    

UDS has two sorting indices that should be 
considered: the query result's score and probability. 
The phenomenon is referred to as the transitivity of 
supremacy and is defined as follows: 

Definition 7 (Threshold Score Ranking): When 
dealing with a top-k query ,, where where P, f, 

and k are all greater than 0, a complete top-k vector 
contains the highest aggregated probability. This 
vector's total score is equivalent to Scorethresh, the 
designated threshold score. Instead of the standard 
ranking order, the top-k vector is utilized as an 
alternative, serving as the select function Score. The 
function Prob. Score(t) represents a score ranking 
function. 
Definition 8 (Threshold Probability Ranking): The 
threshold probability, Probthresh, is the sum of 
probabilities for the top-k vectors with the highest 
total scores. Let S denote the possible world space 
Ω, where k is a positive integer. Prob(t) is a 
probability function, and Top-k(W) is a collection of 
k tuple items generated from the possible world W 
based on the scoring function Score(t). It can 
proceed by comparing tuple item ti to tj, when 
Score(ti) > Score(tj) and Pro(ti) > Pro(tj), denoted 
by ti  tj. 

Concerning the threshold assumptions and 
definitions mentioned above, the k-vectors with the 
most significant values can be defined in a particular 
way: 
Definition 9 (Discovering the k-vectors with the 

highest values): When dealing with an uncertain 
top-k query, one can consider a top-k vector rule 
(vi). First, a set of k-tuple items is selected based on 
their ranking according to the notations of q(hsi), 
Probmax(hsi), and Probtoplatest(n). The maximum 
values of these items are described as follows: 
1. For each iteration i, the criteria for hsi belonging 

to X are considered. The expression q(hsi) 
represents the chance that a v-tuple of q(hsi) is 
absent. This can be summarized as [q(hsi) = 1 - 

 p(tj)], where p(tj) is the probability of 

the original tuple item tj occurring in the possible 
world.  

2. The original tuple item in set hsi with the highest 
probability is represented as Probmax(hsi). The 
aggregated top-k vector with the highest 
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probability (which becomes a full top-k vector) 
is denoted as Probtoplatest(n).  

Definition 10 (Optimization using Clearing, OC): 
The task entails effectively executing the OC 
probclear( l) operation on a v-tuple l, with an OC-

probability denoted as Prob(l) (0 ≤ Prob(l) ≤ 1). The 
purpose is to ensure that OC probclear( l) can 

achieve a successful performance with a probability 
of Prob(l). If probclear( l) is successful, l is 

substituted with a v-tuple that consists of a single 
tuple τl. If the attempt to clear the probability (τl) is 
unsuccessful, τl will stay unchanged.  
 
4.2  Problem Statement 
Processing Top-k queries over uncertain data 
streams has emerged as a promising approach to 
developing an intuitive information system. Data's 
underlying and unavoidable uncertainty is typically 
attributed to unexpected and unreliable signal 
readings, sensor update delays, or insufficient 
expertise. Uncertainty data mainly refers to factors 
such as indeterminacy, unreliability, 
unpredictability, randomness, inconsistency, 
variability, incompleteness, unknown bounding, and 
irregularity. Our current research focuses on the 
challenges and uncertainties surrounding top-k 
query processing in Real-Time Traffic Management 
applications. These issues are particularly prominent 
and require careful examination. 

Following the above research problem, we have 
identified three challenges that need to be addressed 
in this thesis, focusing on analyzing and computing 
Top-k on uncertain data streams. Limitation 1:  An 
efficient implementation of a sliding window 
approach is needed to handle Top-k queries on 
uncertain data streams. If the sliding window model 
is not employed correctly, candidate tuple items 
within the window frame may cause significant 
overlapping computing costs. Therefore, it is 
essential to ensure that the sliding window approach 
is used effectively. Limitation 2: An efficient 
algorithm is needed to improve the retrieval of the 
top-k query results from uncertain data streams, 
particularly when computing the top-k score and 
probabilities expected to have significant 
computational expenses for generating the set of 
possible worlds. Limitation 3: The number of 
possible world instances grows exponentially, 
affecting top-k continuous query processing time to 
be high. 

 

5   Proposed Top-k Query Processing 

Framework 
To achieve the primary goal, we offer a framework 
called the SWMTop-kDelta. This framework has 
three stages: In the first stage, we will use the 
necessary SWM representation to convert a set of 
tuple elements into a window fragment. Phase II is 
essential in determining the optimal processing time 
utilizing the suggested algorithm. This aspect 
focuses on the complexity of top-k computation, 
which is directly influenced by factors such as 
continuous queries, score value, probability, 
timestamp interval (delta-attribute), and possible 
world rules. Phase III builds upon the information 
obtained in Phases I and II. It implements 
optimization techniques to prevent unnecessary top-
k computations when determining and computing 
possible world vector rules. 
 
5.1  Phase I 
It addresses the challenge by introducing a 
condition, expressed as [ SW(S) t time - SW(S,win) t time2 

>0; where delta >= query time ]. The framework 
design of Phase I is depicted in Figure 1. The study 
presents the development of a method for 
enhancement by utilizing the delta attribute with a 
constant timestamp as a slide value. 
 

 
Fig. 1: SWMTop-kDelta Flow for Utilizing SWM 
Over the Initial UDS – Phase I 

 
As illustrated in Table 4 and Figure 2, the 

computations on registers R6, R5, R4, R3, R2, and 
R1 are entered into the sliding window frame based 
on the Delta-based sliding condition mentioned 
above, with SW=1. The computation for the 
expression SW=2 will be performed on registers 
R10, R9, R8, R7, R5, and R4. However, registers 
R3, R2, and R1 will be excluded as a later tuple item 
will push them. The candidate R6 was eliminated 
due to its lowest score among all candidates, making 
it ineligible for the top spot.  
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Table 4. Example of tuple items from UDS 
Timest

amp 

(secs) 

5 10 10 15 20 20 25 26 26 30 

Tuple 

items 
R1 R2 R3 R4 R5 R5 R7 R8 R9 R1

0 
score 80 65 45 30 50 50 40 55 78 90 
prob 0.3 0.4 0.5 1 0.8 0.8 0.5 0.6 0.4 0.8 
SW 1 1 1 1|2 1|2 1|2 2 2 2 2 
index 1 2 3 4 5 5 7 8 9 10 
  

 
   

 
 

    

 
Fig. 2: SWM (Delta-based - tuple insertion & exit) 
 

The algorithm described in Figure 3 is based on 
or-set probability distribution, scoring, and tuple-
level confidence values. In the process, each bucket 
Bk will store the following information and a 
timestamp: (i) The bucket number with a probability 
level greater than 5.0 will be retained on the bucket 
list; (ii) The bucket number with the highest score 
but a probability level less than 5.0 will also be kept 
on the bucket list; (iii) If a bucket contains items 
expiring quickly, it will be removed if the sliding 
window period is exceeded. This is because it falls 
below the confidence level boundaries and has a 
low-rank score. 

The GML section serves two primary purposes. 
Firstly, it presents the grouping of tuple items with 
indexes, Ij (1 ≤ j ≤ s), over UDS. Secondly, the list of 
attributes of the GML synopsis should include all 
tuple items S[q] from UDS being considered for the 
Top-k candidate list before the period expires. In the 
selection process, Bk is used to efficiently retrieve all 
tuple items (x) from the repository Bucket Top-k, 
BTk SW and assign their corresponding values to 
each segmentation group. This feature enables the 
efficient computation of UDS attributes, where ti ϵ 
SW [t-|SW|+1, t]. To maintain data tracking for each 
k, an index structure called Ij will be created over SW 
for characteristics. This will enable us to scan the 
group bucket Bk only once. The solution presented 
here eliminates the expense of refuse collection 
caused by empty buckets, as BTk is always 
guaranteed to possess a value. Figure 3 depicts the 
procedure described. This scanning process results in 
the creation of two sets, namely I BT1 {R1  dj , R2 
 dj, …., R6  dj} and I BT2 {R4 dj , R7  dj, 

…., R10  dj}. It is important to note that the access 
order is insignificant in this context. 

 
Input: Bucket of Instance, B = {B1, B2, ..., Bi…}   
Output: Bucket Top-k, BTk = {BT1, BT2, ..., BTi…}   
1. Begin 

2. t = 0; Initial parameters 

3.    While UDS is active do 

4.         t++; 

5.         Read a new data tuple (x, Bi), map to 
index, d;  
6.         If (d is mapping to membership density 
group in Bi) then  
             Create SW of d, and insert into BTk; 
7.         Else Update  
                 BTk   according to check 
expired/removed x   
                 SW from membership group in Bi   
8.     End While 
9. End 

Fig. 3: The Algorithm to Output Bucket of Top-k, 
BTk 

 
To reduce the processing complexity of 

developing rules for all possible worlds to almost a 
minimum, it is necessary to further segment the 
sliding window between tuple items from each 
bucket. The Top-k Segmental Set Queue and Buffer 
(TSQB) is constructed over BTk tuple items. Since all 
bucket sets are used by the SWMTop-kDelta method, 
only the oldest bucket set, BTk, is required to retrieve 
the top-k query results. When many sliding windows 
overlap, it increases computational complexity and 
takes longer to process data. 

 
Theorem 1: When the TSQB algorithm and the 
preceding algorithms are executed, each tuple item 
P(s[q]) ∈ UDS will be identified as one of the Top-k 
potential candidates. This will occur every time the 
sliding window is moved in each composition, which 
is determined by the discretization function. 
Proof 1: To minimize the processing complexity 
associated with creating rules for all possible worlds, 
it is essential to further divide the sliding window 
between tuple items within each bucket. Our 
proposed SWMTop-kDelta approach utilizes all 
bucket sets, but only the oldest bucket set, BTk, is 
necessary for retrieving the top-k query results. The 
Top-k Segmental Set Queue and Buffer (TSQB) 
method is built on BTk tuple components, as seen in 
Figure 4 and Figure 5. 
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1. Indexing 
2. Tuple Items 
3. Panes Breakdown, p1 
4. Segmentation, p2 (p1 = Sliding – p2) 

5. Periodic Top-k 
(potential candidates) 
6. Segmental Buffer 
7. Discretization 
Function, fdisc 

Fig. 4: An Overview of TSQB 
 
Input: Bucket Top-k, BTk = {BT1, BT2, ..., BTi…} 
Output: Top-k Segmental Sets Queue, Top-k Ψ and Buffer, SB(Sl1) = 

{SB(Sl1), …, SB(Sln)…} 
1. Begin   Tuple set si = ø; segmental set queue, Ψ = ∅; let B be a buffer 
with size kH;  
2. t = 0; Initial parameters from si 

3.    For (each arriving tuple t from BTk ) 
4.         Group-by tuple t with tid; //partition with summation tid is    
           generated; 
5.         insert t into si;  
6.         Begin 
7.         If (successfully create a segmental sets SWPa(si) for si) 
8.             append SWPa(si) to Ψ; 
9.             remove tuples in si older than t′′ (including t′′), where  
               t′′ is the oldest tuple in SWPa(si);  
10.        For (each segmental sets SWPa(si) ∈ Ψ from new to old)   
11.            Execute Final SWMTop-kDelta Algorithm;  
12.           If (t become highest ranked tuple in SWPa(si)) 
13.               Update SWPa(si) 
14.                insert t into SB;  
15.               If (SB is full);  
16.                   find the smallest i such that SBi  // Admits a           
                      segmental set;  
17.                   starting from i, build SWPa on SB; 
18.                   update the existing SWPa; 
19.                   SB = ∅; 
20.               If (SWPa(si) is affected)    
21.                   update SWPa(si); 
22.           Else 

23.               break; 
24.       If (the expiring tuple ∈ SWPa(si)) 
25.           remove SWPa(si) from Ψ; //remove Expired segmental         
              sets queue in  
26.           SWPa(si) := first segmental sets queue in Ψ; 
27.           compute the array r on the new SWPa(si) 
28.       End 
29.End 
Fig. 5: The TSQB algorithm 
 

The acquisition and utilization of TSQB 
properties are necessary for the subsequent stages of 
the SWMTop-kDelta algorithm's execution. The Top-
k potential candidates are obtained from the BTk 
bucket by performing the following operations: 

1. Property 1 (Breakdown): The number of 
subwindows in |SWPa| is represented by SWPa 
and a sub-window linked to the value of the 
partition-by attribute v is expressed as SWPa=v. 

2. Property 2 (Hybrid Method): The technique of 
segmental slicing is an orthogonal approach that 
can be employed with the buffer set to enable an 
implicit class of windows, which is a superclass 
of periodic windows, while still maintaining the 
continuous appearance of the SWM. 

3. Property 3 (Buffering): The first component, 
contains the current top-k potential candidates 
set, which satisfies the condition PrSWMTop-kDelta 
(S[q]) > α); Secondly, data buffering synopsis 
built on SWPa, where SB(Sln) represents the set 
of tuple items that are not currently top-k 
potential candidates where 0 < PrSWMTop-kDelta 
(S[q]) ≤ α holds at delta attribute). 

 
Table 5 clearly shows the total TSBQ results for 

segmentation and merging multiple overlapping SW. 
An example of this is the SWPa(si) which is 
established by P(s[R1-3]), P(s[R4-6]), P(s[R7-10]), 
P(s[R11-13]), P(s[R14-16]), and P(s[R17-19]). 
During a basic evaluation segmentation, it is 
observed that P(s[R4-6]) includes BT1 = {R4, R5, 
R6} and BT2 = {R4, R5, R6}. As a result, it is 
necessary to invoke this function twice, once for 
SW=1 and once for SW=2. Increased window overlap 
results in a decrease in the number of operations 
required for each window merging process.  

 
Table 5. The results of the SWPa(si) 

Potential 

Candidates 

SW Bucket Top-k, BTk Segmental 

Buffer, SBk 

P(s[R1-3]) 1 BT1 = {R1, R2, R3} SB1 = {R1, R2, 
R3, R4, R5, R6} 
*{R6} pruned 

P(s[R4-6]) 1&2 BT1 = {R4, R5, R6} 
BT2 = {R4, R5, R6} 

P(s[R7-10]) 2&3 BT2 = {R7, R8, R9, R10} SB2 = {R7, R8, 
R9, R10} 

P(s[R11-13]) 3 BT3 = {R11, R12, R13} SB3 = {R11, 
R12, R13, R14, 
R15, R16} 
*{R13} pruned 

P(s[R14-16]) 3&4 BT3 = {R14, R15, R16} 
BT4 = {R14, R15, R16} 

P(s[R17-19]) 4 BT4 = {R17, R18, R19} SB4 = {R17, 
R18, R19} 
*{R19} pruned 

 
5.2  Phase II  
Phase II will first clarify the explanation and actions 
in obtaining the top-k potential candidates. This 
phase proposed three key elements, and each case 
was specifically designed to address a different score 
and probability scenario in SWM. The proposed 
framework can be implemented by following the 
procedures depicted in Figure 6. The utilization of 
Tuple-level Uncertainty (TLU) to generate possible 
world semantics, reveals that the UDS encompasses 
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a total of 12 possible worlds (illustrated in Table 6 
based from Table 2). The feasibility of providing 
answers to top-k queries relies on probability-based 
considerations. 
 

 
Fig. 6: The Proposed SWMTop-kDelta Framework 
for Utilizing SWM Over the Initial UDS – Phase II 
 
Table 6.  Evaluation of query Q: σscore≥40 (UDS) and 
within initial 20 seconds, which returns tuple items 

whose score (speed) is >= 40 
possible 

world p(w) 
probability of W possible 

answer answer probability 

{t1, t2, t4, t5} p1*p2*p4*p5 = 0.096 A1 = {t1, 
t2, t5} 
 

P1 = 0.096+0.024 
     = 0.12 {t1, t2, t4, t6} p1*p2*p4*p6 = 0.024 

{t1, t3, t4, t5} p1*p3*p4*p5 = 0.12 A2 = {t1, 
t3, t5}  

P2 = 0.12+0.03 
     = 0.15   {t1, t3, t4, t6} p1*p3*p4*p6 = 0.03 

{t1, t4, t5} p1*(1-p2-p3)*p4*p5 
= 0.024 A3 = {t1, 

t5} 
 

P3 = 0.024+0.006 
     = 0.03 {t1, t4, t6} p1*(1-p2-p3)*p4*p6 

= 0.006 
{t2, t4, t5} (1-p1)*(p2)*p4*p5 = 

0.224 A4 = {t2, 

t5} 
 

P4 = 0.224+0.056 
=0.28 {t2, t4, t6} (1-p1)*(p2)*p4*p6 = 

0.056 
{t3, t4, t5} (1-p1)*(p3)*p4*p5 = 

0.28 A5 = {t3, 

t5} 
 

P5 = 0.28+0.07 
= 0.35 {t3, t4, t6} (1-p1)*(p3)*p4*p6 = 

0.07 
{t4, t5} (1-p1) *(1-p2-

p3)*p4*p5 = 0.056 A6 = {t5} 
 

P6 = 0.056+0.014 
0.07 {t4, t6} (1-p1) *(1-p2-

p3)*p4*p6 = 0.014 
 
Theorem 2: If the stopping condition Probtoplatest(n) is 
met, it is possible to identify the top-k vector with 
the highest combined probability of being the top-k 
answer for a v-relation of X. 

Probtoplatest(n)  ≥   

{ Probmax(hsi), q(hsi) } 
 

Proof 2: To obtain the top-k result list with the 
highest aggregated probability full vector (FV), it is 
necessary to realign the top-k potential candidates 
for generating the k-ReduceSet for UDS. This is 
accomplished by using a data structure known as 
ReducePSW where it captures and records the q(hsi) 
tuple items for each member of the segmental sets 
SWPa(si) in UDS. The k-ReduceSet can be obtained 
by scanning the UDS once within a sliding window 
segment. The time and space complexity of the 
process is O(|UDS|2). Using examples from Table 7 
and Table 8, the summary of the k-ReduceSet can be 
explained as follows:  

i. P(s[R1-3]): 1-ReduceSet = {t1}; 2-ReduceSet = 
{t1, t2}; k- ReduceSet = {t1, t2, t3} where k ≥ 3; 

ii. P(s[R4-6]): 1-ReduceSet = {t5}; 2-ReduceSet = 
{t4, t5}; k- ReduceSet = {t4, t5, t6}; where k ≥ 3. 

 
Table 7. The New Vector of Combination Tuple  

Items in vi 

Potential 

Candidates 

Bucket Top-k, 

BTk 

Pair Combination of 

(Score(vi), Prob(vi)) Tuples 

in vi 

P(s[R1-3]) BT1 = {t1, t2, t3} v1 = (80, 0.3); v2 = (65, 
0.28); v3 = (45, 0.07); 

P(s[R4-6]) BT2 = {t4, t5, t6} v4 = (30, 0.014); v5 = (50, 
0.336); v6 = (25, 0); 

 

Table 8. The process of generating k-ReduceSet 

Position 
Initiali

ze 

Retrie

ve 

{t1} 

Retrie

ve 

{t2} 

Retrie

ve 

{t3} 

ReducePSW [t1] Ø Ø Ø Ø 

ReducePSW [t2] Ø Ø {t1} {t1} 

ReducePSW [t3] Ø Ø Ø {t1, t2} 

Position Initiali

ze 

Retrie

ve 

{t4} 

Retrie

ve 

{t5} 

Retrie

ve 

{t6} 

ReducePSW [t4] Ø {t5} Ø {t5} 

ReducePSW [t5] Ø Ø Ø Ø 

ReducePSW [t6] Ø Ø Ø {t4, t5} 

 
Theorem 3: The top-k result list comprises tuple 
items with the highest ranked score and aggregated 
probability combination of two top-k vectors, vi and 
vj. These combinations are represented by (Score(vi), 
Prob(vi)) and (Score(vj), Prob(vj)), respectively. 
Assuming that vi outperforms vj, denoted as vi > vj, 
the algorithm ensures the logical chain of conditions 
as described below: 

i. Score(vi) > Score(vj) where Prob(vi) == Prob(vj) 
ii. Score(vi) == Score(vj) where Prob(vi) > Prob(vj) 

iii. Score(vi) > Score(vj) where Prob(vi) > Prob(vj) 
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Proof 3: This algorithm is represented by 
{(Score(v1), Prob(v1), …, (Score(vn), Prob(vn))}, 
which combines the top-k ranked scores and 
aggregated probabilities for a set of n likely top-k 
vector rules {vi, ..., vn}. Therefore, to establish the 
supremacy of vi as the top-k vector rule p(w), it is 
essential to demonstrate that there is no other vector 
vj  {v1, ..., vn}, where vj ≠ vi, that surpasses vi in 
supremacy. The proposed SWMTop-kDelta 
algorithm approach is depicted in Figure 7. This 
approach builds upon the prior description in Phase I 
and demonstrates superior performance compared to 
the Naive algorithm method.  

The operation commences by executing the 
proposed window segmentation for every incoming 
tuple item t from BTk as the sliding window 
progresses with the initial state of v-tuple items T. If 
Prob(hs) < 1, the v-tuple is unlikely to occur, and 
none of the elements in hs will perform. To compute 
possible permutations of world rules for the variables 
Score(v'') and Prob(v''), you need to add the list of 
array hs to v. This completes the cycle of generating 
new vector rules for v''. Moreover, Prob(v) X (1 - 
Prob(hs)), where (1 - Prob(hs)), where (1 - 
Prob(hs)) represents an ideal set of virtual tuple 
items possessed by hs.  

 
Input: v-tuples T (Onsite tuples of Table 8) 
Output: Top-k vectors rules of p(w) has the supreme ranked 
score 
1. Begin   Tuple set of Score(v0) = 0; Prob(v0) = 1;  
2. NFV = {v0} //not full vector set (length < k); 
3. NFV' = {∅}; 
4. FV = {∅} // full vector set (length = k); 
5.    Computation Theorem 2 // means hs performs 
6.    While NFV  {∅} 
7.      For (each arriving v-tuple hs from BTk) do 
8.        For each tuple t in v-tuple hs do  
9.            For each not full vector v in NFV do 
10.          Append t to v to get a new vector v'  
11.          Compute Score(v') and Prob(v') for Top-2  
             and Top-3 
12.               Score(v') = Score(v) + Score(t) 
13.               Prob(v'’) = Prob(v) + Prob(t) 
14.      Computation Theorem 3 // Make sure that v’’  

                 is a redundant vector 
15.          If (v') is not being redundant 
16.              If (v') is not full vector rules then 
17.              Add v' to NFV’ 
18.          Else 
19.          Add v' to FV 
20.      End if 

21.     Else     
22.      Computation ReducePSW (v') 
23.      Computation Pruning Strategies (v' from (t))  
24.         End if 

25.      End for 

26.  End for 

27.  If Prob(hs) < 1 
28.       Append hs to v to acquire new vector rules of  
            v''   // means that none of t Є hs performs 

29.          Compute Score(v'') and Prob(v'') for Top-2  
               and Top-3 
30.                  Score(v'') = Score(v) + Score(t) 
31.                  Prob(v''’) = Prob(v) x (1 - Prob(hs)) 
32.          Computation Theorem 3 // Make sure that  
               v’’ is a redundant vector 
33.          If (v'') is not a redundant vector 
34.              If (v’') is not full vector rules then 
35.              Add v'' to NFV’ 
36.          Else 
37.          Add v'' to FV 
38.       End if 

39.      Else 

40.          Computation ReducePSW (v')  
41.          Computation Pruning Strategies (v' from  
               (t)) 
42.       End if 

43.  End if 

44.  NFV = NFV' 
45.  NFV' = {∅} 
46.       End for 
47.  End While 
48.  Computation Theorem 4 // Where supreme ranked score of 
each vj Є FV will return vector rules of having the highest 
ranked score 

Fig. 7: The main algorithm of the framework for  
 
SWMTop-kDelta query answering – Phase II 

Upon arrival, the probability method determines 
whether an object should be included in the top-k 
candidate objects for a given query, as indicated in 
Table 9. The segmentation window SWPa(si) 

achieves the necessary hs before recognizing each 
tuple item in the sequence.  To compute the 
probability of event PW (W1) = {R1, R2, R4, R5} 
occurring, we need to multiply the individual 
probabilities of each event. The probabilities for R5 
and R6 must sum up to 1, and the total number of 
possible worlds can be calculated by multiplying the 
values of each factor: 2 x 3 x 1 x 2 = 12.  

To determine the highest probability of a tuple 
item, we need to apply the extended generation rules 
of possible world semantics to each potential 
candidate within sliding windows. The sum of the 
probabilities of R5 occurring among the top-3 can be 
obtained by summing 0.12+0.024+0.224+0.28+ 
0.056=0.704, as illustrated in Table 10. The query, 
which includes a top-2 clause with a condition where 
SW=1, yields R5 and R2 as the current results from 
SWPa(s1) and SWPa(s2) occurrences. The SWMTop-

kDelta algorithm computes the probabilities of the 
top-2 and top-3 tuple items. The top-2 probability for 
R5 represents the number of possible worlds in 
which R5 is ranked within the top 3 among the 
possibilities of W3, W5, W7, W9, and W11. The 
cumulative probabilities of R5 and R2 are presented 
in the third column of Table 11, which is indicated 
by bold font.  
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Table 9. The Computation Probability of PW 
(SW=1) using v-Tuple, T Onsite approach 

PW Calculation 

Prob. 
Prob. Top-2 Top-3 

W1= R1, R2, 
R4, R5 

0.3 X 0.4 X 1 X 
0.8 

0.096 R1, R2 R1, R2, 
R5 

W2= R1, R2, 
R4, R6 

0.3 X 0.4 X 1 X 
0.2 

0.024 R1, R2 R1, R2, 
R4 

W3= R1, R3, 
R4, R5 

0.3 X 0.5 X 1 X 
0.8 

0.12 R1, R5 R1, R5, 
R3 

W4= R1, R3, 
R4, R6 

0.3 X 0.5 X 1 X 
0.2 

0.03 R1, R3 R1, R3, 
R4 

W5= R1, R4, 
R5 

0.3 X (1-0.4-
0.5) X 1 X 0.8 

0.024 R1, R5 R1, R4, 
R5 

W6= R1, R4, 
R6 

0.3 X (1-0.4-
0.5) X 1 X 0.2 

0.006 R1, R4 R1, R4, 
R6 

W7= R2, R4, 
R5 

(1-0.3) X 0.4 X 
1 X 0.8 

0.224 R2, R5 R2, R4, 
R5 

W8= R2, R4, 
R6 

(1-0.3) X 0.4 X 
1 X 0.2 

0.056 R2, R4 R2, R4, 
R6 

W9= R3, R4, 
R5 

(1-0.3) X 0.5 X 
1 X 0.8 

0.28 R5, R3 R5, R3, 
R4 

W10= R3, R4, 
R6 

(1-0.3) X 0.5 X 
1 X 0.2 

0.07 R3, R4 R3, R4, 
R6 

W11= R4, R5 (1-0.3) X (1-
0.4-0.5) X 1 X 

0.8 

0.056 R5, R4 R5, R4 

W12= R4, R6 (1-0.3) X (1-
0.4-0.5) X 1 X 

0.2 

0.014 R4, R6 R4, R6 

 
Table 10. SW=1 consist tuple item for Top-2 and 

Top-3 probability 
ID Top-2 Prob. 

Calculation 
Top-2 

Prob 
Top-3 Prob. 

Calculation 
Top-3 

Prob 
R1 0.096+0.024+0.12

+0.03+0.024+0.00
6 

0.3 0.096+0.024+0.12
+0.03+0.024+0.00

6 

0.3 

R2 0.096+0.024+0.22
4+0.056 

0.4 0.096+0.024+0.22
4+0.056+ 

0.4 

R3 0.03+0.28+0.07 0.38 0.12+0.03+0.28+0
.07 

0.5 

R4 0.006+0.056+0.07
+0.056+0.014 

0.202 0.024+0.03+0.024
+0.006+0.224+0.0
56+0.28+0.07+0.0

56+0.014 

0.784 

R5 0.12+0.024+0.224
+0.28+0.056 

0.704 0.096+0.12+0.024
+0.224+0.28+0.05

6 

0.8 

R6 0.014 0.014 0.006+0.056+0.07
+0.014 

0.173 

 
Table 11. Top-2 and Top-3 Result List based on 

Probability 
Top-2 

Prob 

Top-3 

Prob 

R5 R5 

R2 R4 

 R3 

 
5.3  Phase III 
The focus of this phase is to  propose SWM 
operations to enhance the efficiency of top-k query 
processing. The framework comprises two key 
elements: 

i. Clearing the possible world; 

ii. Implementing pruning strategies on an SWM 
and top-k potential candidates to compute 
sort-rank tuple items. 

Thus, implementing PWC as an additional 
mechanism on a large scale can effectively reduce 
the time complexity from exponential to polynomial. 
Specifically, this reduction is achieved by 
considering the size of each segmental UDS. Two 
cases need to be considered as deliberated in Table 
12 and Figure 8. 

 
Table 12. The two Cases of an probclear( l) 

optimization with explanation 
UDS 

state 
Before 

probclear( l) 
After 

probclear( l) 
Explanation 

Case 1 
z1  
z2 
z3 

(9 
possible 
world 
vector 
rules for 

1, 2, 3) 
 
 

 

 

 

 
1, 2, ..., [x 

 

 

 

 

1, 2, ..., [x] 

probclear( l) 
is performed 
for Ul times, 
the 
uncertainty of 

l with the 
number of 
times 
performed for 
Ml 

X = { 1, 2}, 
so it can be 
Z1 = ( 1, 
{t1}, {t2}); 
z2 = ( 2, {t3}, 
{t4}, {t5}, 
{t6}); and z3 
= ( 3, {t7}). 
Let  ∈ z1 
× z2.  

If ti ∈ 1 and 
probclear( l) 
is successful, 
the 
probability 
Let (l) = 
{ti} is similar 
to ei 

n. Result: 
( 1, {t3}), 
({t1}, {t4}, 
{t6}), and ( 1, 

2). {t5} is 
cleared from 

2. 

To derive the 
optimization 
solution for 
the clearing 
problem, it is 
necessary to 
determine the 
best possible 
world vector 
rules for 
probclear( l). 

Case 2: 
9 
possible 
world 
vector 
rules for 

1, 2, 3 

1 to be 
cleared 
equals to  

 
where 

top-k 
probability 
of each v-
tuple. 
Therefore, 
the v-tuple 
is more 
likely to be 
cleaned. 

Let costl 
represent the 
computational 
effort 
required to 
execute the 
probclear( l) 
function once. 
Let "O" 
denote the 
allocated 
memory, 
specifically 
for removing 
unnecessary 
vector rules. 

Operation is 
based on the 
anticipated 
optimization 
query 
processing 
improvement 
level and the 
associated 
cost. 

 
The achievement of this task involves the 

execution of probclear( l) between the output of the 
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clearing algorithm, depicted in Figure 9, which is 
implemented based on the two cases that were 
previously deliberated. 

 

 
Fig. 8: Clearing operation based on Case 1 is 
performed successfully 
 

Input: Top-k Segmental Sets Queue, Top-km Ψ 

Output: Zn = { 1, 2, ..., [X] } 
1. Begin 

2.    For (each data tuple X consisting ti ∈ 1 from Top-k 
Ψ) 
3.    Let LZl = ( 1, {t1}, {t2}, …, {tn}), the clearing data 
tuples of ti  

         ∈ 1  
4.       For (each data tuple X consisting ti ∈ 1)   
5.       Begin 
6.        If (successfully create 1 sets of probclear( l) for 
ti)  
7.             Remove < LZl with low probability> tuples 
with  
               low probability in LZl but remain single tuple 
item,  
               Ul times 
8.             Append ti to v to get a new vector v'  

                (means probclear( l) 
9.        Else  
10       If ( 1 >= Zcostl ) then only when O has 
high  
         memory 
11.           Insert tuples with high probability in Z and 
remain  
              array tuple of ti that belong to Top-k Ψ 
12.           Append ti to v to get any remaining vector v' 

within  
              adjacent window 
13.      End  
14.    End    
14.   Bucket of Zn = probclear({ 1, 2, ..., [X]}) 
15. End 

Fig. 9: The Clearing Algorithm with PWC Indicator 
 
Table 13 shows a sample of the improved 

Bucket of Zn. The bucket consists of a sliding 

window that moves every 5 seconds. Each 
movement of the window demonstrates how the 
Clearing algorithm transforms tuple items, resulting 
in the tuples ( 1, {t3}), ({t1}, {t4}, {t6}), and ( 1, 2). 
{t5} is cleared from 2. 

 
Table 13. Function probclear( l) of assigned a higher 

rank if its score and probability surpass 0.4 
id 

C Task (slide for 5 secs) 
Cleared 

(yes|no) 
Marginal Prob. 

t1 If 35 secs, t1 score > t2 and 
prob >= 0.4 

no y(0.5)  n(0.5) 

t2 If 35 secs, t2 score > t1 and 
prob >= 0.4 

no y(0.4)  n(0.6) 

t3 If 40 secs, t3 score > t4 and 
prob >= 0.4 

no y(0.5)  n(0.5) 

t4 If 40 secs, t4 score > t3 and 
prob >= 0.4 

no y(0.5)  n(0.5) 

t5 If 44 secs, t5 score > t6 and 
prob >= 0.4 

yes 0 

t6 If 44 secs, t6 score > t5 and 
prob >= 0.4 

no y(0.7)  n(0.3) 

t7 If 50 secs, t7 score > tn+1 
and prob >= 0.4 

no y(1)  n(0) 

 
The concept of pruning tuple items within a 

sliding window can be explained through different 
methods of identifying the top-k (top-2 and top-3) 
potential candidates. In this example, the elements 
indexed as 1-2 depend on their SWPa(si), and each 
index is associated with two segmentation frames. 
When evaluating a sliding window that moves every 
5 seconds, the earliest element (R1) will be removed 
when the succeeding elements (R7, R8, R9, and 
R10) enter. However, when SW=1, the window will 
still have the other elements. Let's assume that {R6} 
is one of the elements in the sliding window 
currently being evaluated for pruning. To determine 
whether at least two elements within the window are 
more recent and greater than {R6}, we need to 
compare {R6} with each window component. 
According to the given condition, it is clear that 
{R6} will not be selected as one of the top two 
options in the current scenario where SW=1.  
 To perform sliding window frame pruning, it is 
essential to establish and clarify Theorems 5 and 6:  
Theorem 4: Figure 10 illustrates if there are at least 
RankF elements in the sequence of an array {e(m+1), 
e(m+2), ..., e(N)} that are all greater than e(m), then 
e(m) is not eligible to be included in the RankF set 
for future incoming tuple items of the current 
SWPa(si) window frame. However, it is still possible 
to incorporate it within the complete sliding window 
frame, which represents the total duration before the 
window recommences sliding. 

Proof 4: To satisfy e(m) within the sliding 
window, it needs to ensure that there are at least 
RankF elements in the sequence {e(m+1), e(m+2), 
..., e(N)} that are greater than e(m). Additionally, we 
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require the sequence {e(m+1), e(m+2), ..., e(N)} and 
RankF + 1. Assuming that the level e(m) appears 
before any other element in the sequence, except for 
a certain number of (m-1) arbitrary elements, we can 
determine this by comparing the timestamp attributes 
for the exit policy. In this scenario, the iterations of 
the sliding window that contain e(m) will include the 
sequence e(m+1), e(m+2),..., e(N)} in the order they 
appear. It's important to note that the number of 
iterations cannot be fewer than the sequence 
{e(m+1), e(m+2),..., e(N)} in the order of time. 
Therefore, in subsequent iterations of the sliding 
window frame, the element e(m) will consistently be 
excluded as a RankF element. 

 

 
Fig. 10: The Initial sliding window frame with 
elements before SWPa(si) pruning 
 
Theorem 5: Figure 11 illustrates for each subsequent 
instance of the SWPa(si), element e(m) should not 
possess a RankF if there are at least (N − RankF +1) 
elements in the sequence e(m+1), e(m+2),..., e(N) 
that are smaller than or equal to e(m) but have the 
possibility of being among the top k candidates in 
the entire sliding window frame, which represents 
the time required before the window resumes sliding. 

Proof 5: To determine the variable timestamp for 
elements on RankF in the sliding window, we can 
use the sliding window semantics of delta (attribute, 
delta). RankF of e(m) refers to the position of e(m) in 
the sliding window that contains e(m), e(m+1), 
e(m+2),..., e(N) and other (m−1) elements can be 
limited to a range of 1 to (N − (N − RankF +1)) = 
RankF − 1. This is because there is a minimum of (N 
− RankF +1) elements in the sequence e(m+1), 
e(m+2),..., e(N)  that are less than or equal to e(m). In 
any subsequent occurrence of the sliding window 
containing e(m), the sequence e(m+1), e(m+2),..., 
e(N) will also be present. This is because e(m) comes 
before all the elements in the series (m+1), 
e(m+2),..., e(N). Therefore, e(m) is not a part of 
RankF and cannot be included. 

Again, this study suggests an efficient 
optimization method to process only the latest tuple, 
prevent multiple scans of data sets, and enhance 
memory usage. This significant contribution will be 
further discussed in the following chapter dedicated 
to experimentation and discussion. Table 14 provides 

the symbols used in this section and concise 
descriptions. 

 

 
Fig. 11: The Initial sliding window frame with 
elements after SWPa(si) pruning 

 
Table 14. Symbols used in this section and their 

explanations 
Symbol Description 

UDS Uncertain Data Stream 
ti Uncertain tuple item / Tuple at timestamp i 

from UDSi 
s Subsequence of stream from UDSi 

SW Sliding Window Model 
W Window Size of |SW| 

Score(t) Score function of tuple item 
Prob(t) Probability function of tuple item 
SWtop-

k(t, S) 

Probabilities cumulative of all possible 
worlds 

p(w) Possible world model rules where w is a 
collection 

GM Group membership 
Bk Bucket of Instance / tuple 

BTk Bucket of potential candidates to be Top-k 
SWPa Sliding window panes where partition-by 

attribute 
Fdisc : T Discretization function on Si 
P(s[q]) Top-k Potential Candidates 
SB(Sln) Segmentation buffer 

Top-k Ψ Top-k segmental sets queue 
d Indexes 

 
 
6   Result and Discussion 
An extensive experiment was conducted to evaluate 
the performance and efficacy of the SWMTop-kDelta 
framework. The algorithms and baseline approaches 
that have been compared are as follows: 

i.  The Top-k Incomplete Data Stream (Topk-

iDS) technique, is a recent approach that 
utilizes a Count-based SWM to handle top-k 
queries in a possible world scenario. 

ii.  The Dominant Relationship Analysis (DRA) 
approach, determines the tuple items that are 
most likely to be the top-k results in query 
processing by minimizing the quantity of 
data. This technique does not rely on SWM. 

iii.  The summaries for directly adapting the 
current Count-based and Time-based sliding 
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windows prioritize recent data to generate a 
list of top-k potential candidates. 

Two baseline algorithms can be used as 
reference points for comparing the framework: 
i. The Count-based SWM determines the window's 

size based on the number of events it contains 
without a predetermined time duration for its 
validity. This method maintains the specified 
number of rows within the window frame. If a 
certain number of new points, denoted as n, are 
added, then the same number of the oldest 
points, also n in number, are removed. 

ii.  The Time-based SWM uses the constant number 
of active points. A point's termination time is 
independent of the reaching or termination of 
other points. Tuple items that have exceeded the 
specified duration will be eliminated from the 
window frame, regardless of whether new rows 
were received. 
In addition, the DRA algorithm conducted 

comparisons across three (3) types of Top-k query 
processing (including U-Topk, U-kRanks, and Pk-

Topk), and these entries could serve as enhanced or 
optimized solutions without relying on SWM. The 
DRA method is evaluated based on the number of 
possible world instances and their corresponding 
scores and probabilities. The Topk-iDS algorithm 
specifically deals with top-k queries on an 
incomplete and uncertain data stream. The data 
structure used for this purpose was top-k dual layers 
(TDL). 

In the first phase, Phase I, we utilize the initial 
data to derive a group set of tuple items. The final 
top-k result list is generated by Phase II of the 
SWMTop-kDelta by comparing its result lists, R (R'), 
with the set of Top-k result lists produced by the 
previous methods, Rp (Rp') where these variables 
seem to represent the same SWMTop-kDelta result 
list. The experiment is conducted in five repetitions, 
and the resulting average value is recorded. The 
performance metrics utilized in our experiments are 
the expected SWM Top-k query result answer and 
processing time. 

The measurements are evaluated for multiple 
parameter configurations, which include the size of 
the data set (K), the parameter (k), the window size 
(S), the probability threshold (d), and the K-Pruning 
(r). The sizes of the available datasets, including the 
synthetic data set, range from 5K (Chicago Trip 

Taxi) to over 200K (AirBeijing). The dimensions of 
the Chicago Trip Taxi and AirBeijing data sets are 5 
and 9, respectively, while the dimension of the 
AirBeijing data set is 6. The value of this parameter 
is modified in multiple experiments, as outlined in 
Table 15. 

Table 15. The parameter settings of the synthetic and 
real data sets 

 
 
An evaluation was conducted on efficiency and 

scalability, focusing on the number of comparisons 
made between possible worlds and the processing 
time required. The top-k on a UDS is influenced by 
two parameters and compares the settings for the two 
measures. Phase I generates the initial set of 
candidate lists and collects other required 
information. The Phase II component is triggered 
based on the type of data modification to minimize 
overlapping computation and apply an insertion/exit 
policy to the relevant tuple candidates. Thus, Phase 
III builds upon the information that was obtained in 
Phases I and II by implementing optimization 
techniques to prevent unnecessary top-k 
computations when determining and computing 
possible world vector rules until the potential 
candidates expired from the window frame. We 
assume that lower checkpoint values on Green graft 
are better than higher ones when creating the 
collection of successful top-k final lists. 

 
6.1  Effect of Data size 
The results are present in Figures 12(a - c). As the 
number of tuple items in a data set increases, the 
number of possible world comparisons required to 
determine the validity of the data set also increases. 
When the size of data sets reaches 20K or more, it 
becomes evident that the SWMTop-kDelta algorithm 
outperforms the Topk-iDS, DRA, and baseline 
Count-based/Time-based SWM algorithm. The goal 
is to minimize redundant computation by 
implementing SWMTop-kDelta segments with an 
eviction policy delta. This approach aims to prevent 
the generation of unnecessary possible world rules. 
Using synthetic data, the SWMTop-kDelta method 
effectively decreases the number of potential world 
comparisons by 35% compared to the Topk-iDS 
approach. The subsequent step involves a decrease 
of 60% compared to Time-based SWM and a more 
than 95% reduction compared to Count-based SWM 
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and DRA algorithms. Possible world number 
comparisons involve comparing the items of a tuple 
that will be included in the future Top-k list of 
occurrences in a SWM.  

As the volume of the data set increases, the 
processing time for the mentioned algorithm will 
also increase. Our proposed SWMTop-kDelta 
algorithm was able to cut down on the number of 
possible worlds generated and based on these graft, it 
is clear that it has demonstrated superior 
performance by reducing overlapping computation 
segments using an eviction policy delta and avoiding 
generating unnecessary possible world rules. 
However, the main goal is to resolve the ambiguity 
caused by the uncertain data stream. Therefore, as 
the data set volume grows, our proposed algorithm 
maintains consistent performance, regardless of the 
data set size. Assuming the candidate's tuple has 
reached the first sliding window, the combined 
possible world is subjected to number comparisons 
with the same top-k tuple items. The number of 
possible worlds required was significantly reduced 
by implementing the following steps in SWMTop-

kDelta. The analysis of the numbers indicates that 
SWMTop-kDelta consistently maintains its 
performance across data sets of varying sizes. 
 
 

 
(a) Synthetic 

 

 
(b) Chicago Trip Taxi 

 

(c) AirBeijing 

Fig. 12 (a - c): The results of possible world number 
comparisons with varying data set size 
 

Figures 13 (a – c) present the reduction in the 
number of possible worlds leads to a decrease in the 
time required for query processing. Both the DRA 
and the baseline count-based SWM algorithm exhibit 
inadequate efficiency when comparing possible 
world numbers and processing time. The Topk-iDS 
algorithm is considered to be the closest performance 
rival to SWMTop-kDelta. The results demonstrate the 
percentage improvement of SWMTop-kDelta 
compared to the Topk-iDS, Time-based SWM, 
Count-based SWM, and DRA algorithms, as shown 
in Table 16. 
 

 
(a) Synthetic 

 

 
(b) Chicago Trip Taxi 
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(c) AirBeijing 

Fig. 13 (a - c): The results of processing time with 
varying data set size 

 
Table 16. Percentage improvement of SWMTop-

kDelta in terms of Data Set Size 
Algorithms 

compared 

Dataset 

(independent) 

Number of 

possible world 

comparisons 

Processing 

time 

Topk-iDS 

Synthetic 61.68% 56.74% 
Chicago Trip 

Taxi 61.50% 51.76% 

AirBeijing 62.23% 33.76% 

DRA 

Synthetic 89.34% 96.26% 
Chicago Trip 

Taxi 89.35% 95.05% 

AirBeijing 89.06% 74.73% 

Count-based 

Synthetic 90.86% 97.07% 
Chicago Trip 

Taxi 90.85% 96.20% 

AirBeijing 90.52% 81.22% 

Time-based 

Synthetic 72.22% 80.51% 
Chicago Trip 

Taxi 71.86% 77.45% 

AirBeijing 71.33% 58.70% 
 
6.2  Effect of Number of Parameter (k) 

The objective is to evaluate the performance 
of SWMTop-kDelta in handling Top-k continuous 
queries over uncertain data streams with varying 
parameter values (k). We vary the parameter (k) 
values as 2, 4, 6, 8, and 10. In addition, instead of 
using the usual three score distributions d € 

u, n, e (uniform, normal, and exponential), only the 
uniform distribution d € u was chosen. The 
dimensions for the synthetic, Chicago Trip Taxi, 
and AirBeijing data sets are fixed at 5, 6, 6, and 9, 
respectively. Figures 14 (a - c) display the number of 
possible world comparisons that have been 
accomplished. . The results of the algorithms suggest 
that as the number of parameter (k) values increases, 
the number of conducted possible world 
comparisons also increases. This second comparison 
measurement is about the effect of Number 
Parameter k, where our proposed algorithm 
outperformed others regarding possible world 

number comparison because it remains a consistent 
performance and robust scalability, even where the 
number of parameter (k) values changes until it 
reaches 10 value. 

 

 
(a) Synthetic 

 

 
(b) Chicago Trip Taxi 

 

 
(c) AirBeijing 

Fig. 14 (a - c): The results of possible world number 
comparisons with varying numbers of parameter (k) 
values 
 

In terms of processing time, our algorithm 
outperformed others when the number of parameter 
(k) values increased through delta segmentation in 
the eviction policy. This is because the parameter k, 
which affects the top-10 values, takes longer to 
compute, resulting in more potential candidates 
being chosen. The processing time achieved with 
SWMTop-kDelta consistent performance across 
different parameter (k) values than Topk-iDS, DRA, 
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and the baseline count-based/time-based SWM 
algorithms. Figures 15 (a - c) exhibit comparable 
patterns from figures before, as a result of the 
reduction in the number of potential world 
comparisons, leading to a decrease in processing 
time. However, SWMTop-kDelta consistently 
achieves shorter processing times than other 
algorithms, such as Topk-iDS, DRA, and baseline 
count-based/time-based SWM algorithms.  
 

 
(a) Synthetic 

 
(b) Chicago Trip Taxi 

 
(c) AirBeijing 

Fig. 15 (a - c): The results of processing time with 
varying number of parameter (k) values 
 

This is due to its use of tuple item comparison 
with pruning, which reduces the need to compute 
potential candidate lists from the specified sliding 
window. This approach is more efficient than 
comparing tuple items across the entire data set. The 

results of all algorithms demonstrate this 
relationship. As shown in Table 17, SWMTop-kDelta 
outperforms Topk-iDS, time-based SWM, count-
based SWM, and DRA algorithms regarding an 
improvement percentage of over 30 % for both the 
number of possible world and processing time 
comparison.  
 

Table 17. Percentage improvement of SWMTop-
kDelta in terms of Number of Parameter (k) 

Algorithms 

compared 

Dataset 

(independent) 

Number of 

possible world 

comparisons 

Processing 

time 

Topk-iDS 

Synthetic 31.93% 41.47% 
Chicago Trip 

Taxi 33.68% 24.07% 

AirBeijing 28.77% 29.23% 

DRA 

Synthetic 59.61% 65.78% 
Chicago Trip 

Taxi 57.29% 43.81% 

AirBeijing 56.08% 40.08% 

Count-based 

Synthetic 48.59% 61.33% 
Chicago Trip 

Taxi 46.38% 47.29% 

AirBeijing 44.83% 45.08% 

Time-based 

Synthetic 44.86% 57.95% 
Chicago Trip 

Taxi 31.93% 41.47% 

AirBeijing 33.68% 24.07% 
 
6.3 Effect of Window Size (W) and 

 Segmentation 
This study examines the impact of varying the 
window size (W) during segmentation on the 
effectiveness of SWMTop-kDelta. It can be inferred 
that the computation of window sizes can be reduced 
when more window segments are created. The 
eviction of a tuple item in this scenario is determined 
by the attribute delta, with a value of 10 seconds. 
This attribute enables a sliding window mechanism. 
To maintain the delta invariant, it is essential to 
calculate the combination of score and probability 
before UDS timestamp. The range of window sizes 
(W) is from 10 to 104.  

By utilizing a dataset size of 20K and 
implementing a sliding window that covers a range 
of 10 segments to >= 2,000 segmentation units, 
significant improvements can be observed in the 
performance of SWMTop-kDelta. At this iteration, a 
higher amount of pruning is applied to the intra-
window segmentation comparisons, while a lower 
amount of pruning is applied to the inter-window 
segmentation comparisons. It makes sense to assume 
that having fewer window sizes would result in more 
computational work when done in large quantities. 
This is because it would be necessary to construct a 
more significant number of window segments, which 
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can restrict the computational possibilities within 
smaller segments. 
  
 

 
Number of Possible World 

 

 
Processing Time 

(a) Synthetic 
 

 
Number of Possible World 

 

 
Processing Time 
(b) Chicago Trip Taxi 

 

 
Number of Possible World 

P
rocessing Time 
(c) AirBeijing 

Fig. 16 (a - c): The results of the number of possible 
world comparisons and processing time with varying 
numbers of Window Size (W) and Segmentation 
 

Table 18. Percentage improvement of SWMTop-
kDelta in terms of Window Size (W) and 

Segmentation 
Algorithms 

compared 

Dataset 

(independent) 

Number of 

possible world 

comparisons 

Processing 

time 

Topk-iDS 

Synthetic 46.45% 40.58% 
Chicago Trip 

Taxi 38.76% 25.41% 

AirBeijing 33.75% 17.13% 

DRA 

Synthetic 92.08% 95.83% 
Chicago Trip 

Taxi 89.77% 91.32% 

AirBeijing 87.22% 88.54% 

Count-based 

Synthetic 95.08% 96.96% 
Chicago Trip 

Taxi 93.51% 93.49% 

AirBeijing 91.99% 90.24 

Time-based 

Synthetic 80.63% 87.08% 
Chicago Trip 

Taxi 75.17% 76.86% 

AirBeijing 70.22% 74.44% 
 

More pruning is done on greater intra-window 
segmentation and less on more extensive inter-
window segmentation comparisons at this iteration. 
Whenever we increase the number of window 
segmentations while decreasing the window size, the 
performance remains intact and even improves 
slightly. Based on the analysis of Figure 16 (a-c) and 
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the data provided in Table 18, it can be concluded 
that SWMTop-kDelta outperforms Topk-iDS, Time-
based SWM, Count-based SWM, and DRA algorithms 
regarding improvement percentage. 
 
6.4  Effect of Probability Threshold (d) 
The performance of top-k algorithms in handling 
continuous queries over UDS is greatly influenced 
by the frequency of changes to the probability 
threshold (d) and the state of the sliding window. 
The process includes adjusting the probability 
threshold (d) values to compute the number of 
possible world comparisons and processing time. 
The probability threshold rate (d) is set at 90% of the 
probability attribute from each dataset. The number 
of probability thresholds (d) varies in the following 
manner: the initial probability is set at 0.3, 0.4, 0.6, 
0.7, and finally reaches 0.8. The presented numbers 
provide proof of the consistent performance of 
SWMTop-kDelta as shown in Figures 17 (a - c).  
 Possible world comparisons rise as the 
probability thresholds (d) decrease to 0.5 and below. 
The comparison of processing time is significantly 
impacted by the frequency of changes to the 
probability threshold and the status of the sliding 
window, as shown by the results of the previous 
algorithms. The SWMTop-kDelta algorithm has 
shown superior performance compared to Topk-iDS, 
DRA, and baseline count-based/time-based SWM 
algorithms. Despite its slight increase, SWMTop-

kDelta outperforms these algorithms by eliminating 
unnecessary Top-k scores and probabilities 
computations. 

Figures 18 (a-c) illustrate the strong performance 
of SWMTop-kDelta in reducing the distributions of 
minimal probability threshold (d) values within the 
sliding window. This reduction impacts the k 
possible answers while having minimal effect on the 
performance of SWMTop-kDelta. The processing 
time can be improved by reducing the number of 
possible world comparisons. The task involves 
calculating the precise probabilities that surpass the 
score threshold to generate potential candidate lists. 
This approach requires significantly less effort than 
comparing individual tuple items from the entire 
dataset against all possible world generation rules. 

The SWMTop-kDelta algorithm outperforms the 
Topk-iDS, Time-based SWM, Count-based SWM, 
and DRA methods in terms of improvement 
percentage, as demonstrated in Table 19. Based on 
percentage improvement, SWMTopk-Delta reduces 
unnecessary computations by focusing on fewer 
possible world vector rules and optimizing sorting 
for remaining tuples using a sliding window 

approach based on a combination score and 
probability function. 
 

 
(a) Synthetic 

(b) Chicago Trip Taxi 

 
(c) AirBeijing 

Fig. 17 (a - c): The results of the number of possible 
world comparisons with varying numbers of 
probability thresholds (d) 
 

 
(a) Synthetic 
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(b) Chicago Trip Taxi 

(c) AirBeijing 
Fig. 18 (a - c): The results of processing time with 
varying numbers of probability thresholds (d) 
 

Table 19. Percentage improvement of SWMTop-
kDelta in terms of Probability Threshold (d) 

Algorithms 

compared 

Dataset 

(independent) 

Number of 

possible world 

comparisons 

Processing 

time 

Topk-iDS 

Synthetic 56.82% 68.08% 
Chicago Trip 

Taxi 54.51 36.48% 

AirBeijing 49.99% 30.62% 

DRA 

Synthetic 88.23% 96.58% 
Chicago Trip 

Taxi 87.22% 88.17% 

AirBeijing 85.33% 76.46% 

Count-based 

Synthetic 90.54% 97.62% 
Chicago Trip 

Taxi 89.70% 90.59% 

AirBeijing 88.33% 83.22% 

Time-based 

Synthetic 70.68% 88.22% 
Chicago Trip 

Taxi 68.58% 64.59% 

AirBeijing 65.18% 46.81% 
 
6.5  Effect of Number of Queries 
We examined the impact of the execution query 
number on the performance of SWMTop-kDelta. The 
construction of highly correlated probabilistic 
streams, both physically and temporally, is directly 
proportional to the number of continuous queries 
performed. The queries are executed on data sets that 
initiate every 10 seconds and continue until they are 

complete. The parameter settings we employ are as 
follows: the probability threshold rate is configured 
to be 20% or higher, and the data sets for synthetic, 
Chicago Trip Taxi, and AirBeijing are each set to 
5K. Figures 19 (a) demonstrate that the growth of all 
algorithms is linear as the number of single static 
queries u increases. When the number of queries 
reaches 20 seconds, there is a slight improvement in 
the performance of SWMTop-kDelta, Topk-iDS, and 
Time-based SWM. SWMTop-kDelta algorithm 
outperformed previous algorithm regarding the 
number of possible worlds and processing time. This 
is because the more continuous queries are 
performed, the more probabilistic streams highly 
correlated physically and temporally are constructed. 
Initially, it shows consistent performance with a 
steady increase as the number of queries grows. 
However, when the number of queries hits 20, the 
performance of SWMTop-kDelta surpasses the 
others. 

Figure 19 (b) exhibits patterns comparable to 
Figure 19 (a), as the processing time demonstrates a 
slight increase at 20 seconds. This occurrence is 
because the number of possible worlds generated 
depends on the tuple items maintained throughout 
the continuous query time frame. Reducing query 
execution time directly leads to a decrease in 
processing time. The number of possible worlds 
generated for percentage improvement depends on 
the tuple items maintained during the continuous 
query time frame. If the query execution time is 
reduced, the processing time will also be reduced.  
Based on the findings presented in Table 20, it can 
be observed that the SWMTop-kDelta algorithm 
outperforms the Topk-iDS, the Time-based SWM, the 
Count-based SWM, and the DRA algorithm.  
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(a) Synthetic 
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(b) Chicago Trip Taxi 
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(c) AirBeijing 
Fig. 19: The results of the number of possible world 
comparisons and processing time with varying 
numbers of queries execution 

 
Table 20. Percentage improvement of SWMTop-

kDelta in terms of Number of Queries 
Algorithms 

compared 

Dataset 

(independent) 

Number of 

possible world 

comparisons 

Processing 

time 

Topk-iDS 

Synthetic 53.67% 49.03% 
Chicago Trip 

Taxi 44.52% 15.39% 

AirBeijing 33.75% 16.36% 

DRA 

Synthetic 82.22% 95.55% 
Chicago Trip 

Taxi 76.06% 81.33% 

AirBeijing 67.46% 72.58% 

Count-based 

Synthetic 90.10% 97.42% 
Chicago Trip 

Taxi 86.36% 87.97% 

AirBeijing 81.16% 80.55% 

Time-based 

Synthetic 49.50% 78.41% 
Chicago Trip 

Taxi 52.31% 47.74% 

AirBeijing 44.41% 42.70% 
 
 

7   Conclusion and Future Work 
Top-k queries are commonly employed in various 
critical applications to support data analysis and 
decision-making processes. This study presents the 
concept of tuple items probability theory and 
explores its application in creating anticipated rules 
for potential scenarios using a method involving 
SWM. We have already discussed the limitations of 
current approaches in dealing with UDS and 
semantic possibilities, and we will evaluate them 
alongside our proposed methods. The main goal of 
top-k queries is to provide users with relevant tuple 
items based on their preferences.  

The research aims to propose an efficient top-k 
computation framework that can process continuous 
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queries on uncertain data streams over a SWM. We 
propose a solution, named SWMTop-kDelta 
framework, which consists of three main phases, 
namely: Phase I - aims to transform a collection of 
tuple items into a window fragment using the 
required SWM representation whenever the record 
vector tuple's necessary fragmentation is inserted, 
processed, and discarded, Phase II - executing an 
essential aspect of establishing the most efficient 
processing time using the proposed algorithm, which 
involves the complexity of top-k computation, which 
has a direct relationship starting with the continuous 
queries, score value, probability, timestamp interval 
(delta-attribute), and the possible world rules, which 
is exponentially correlated to the size of the data set, 
and Phase III -  builds upon the information that was 
obtained in Phases I and II by implementing 
optimization techniques to prevent unnecessary top-k 
computations when determining and computing 
possible world vector rules until the potential 
candidates expired from the window frame. For each 
phase mentioned, a framework is proposed and 
designed. 

Several evaluations have been conducted to 
evaluate the performance and efficiency of our 
proposed SWMTop-kDelta on uncertain data streams. 
The experiments employ performance metrics, such 
as comparisons of possible world numbers and 
processing time, across different parameter settings. 
These settings include data set size, number of 
parameters (k), window size (W) and segmentation, 
probability threshold (d), and number of queries. The 
study thoroughly investigated different scenarios, 
utilizing both synthetic and real data, to showcase 
the efficiency and performance of the proposed 
SWMTop-kDelta algorithm. Additionally, it 
surpasses the baseline SWM algorithm in terms of 
percentage improvement. The reported results are an 
improvement exhibited by SWMTop-kDelta, as 
evidenced in Table 16, Table 17, Table 18, Table 19 
and Table 20, concerning the number of possible 
world comparisons. The analysis reveals a 
significant reduction of more than 61% in the 
generation of possible world rules. Consequently, 
there is an average improvement in processing time 
efficiency exceeding 55% across all the performance 
metrics. The research conducted in this study aims to 
reduce costs and enhance the efficiency of decision-
making processes by enabling faster and more 
effective results. To demonstrate the effectiveness 
and significance of these studies, based on 
experimental results in contributing to the existing 
body of knowledge of query processing, we propose 
several vital suggestions: 

 

Enhanced Real-Time Data Processing: Our 
proposed SWMTop-kDelta approach enables 
efficient handling of real-time data streams by 
avoiding frequent full recomputations. Through 
efficiency improvements, it allows for incremental 
updates, reducing computational overhead and 
improving response times compared to traditional 
top-k query processing methods. Efficiently 
processing high-velocity data streams is crucial for 
modern applications, as it allows for scalability and 
improved performance. 
 
Handling Uncertainty: Demonstrating the effective 
handling of uncertainty when processing top-k 
queries through a combination of score and 
probability value computation. This will improve 
understanding of managing and disseminating 
uncertain data effectively, providing models and 
techniques that can be applied to other uncertain data 
processing tasks. 
Algorithmic Innovations: In our research, we have 
developed and tested the SWMTop-kDelta algorithm, 
showcasing its effectiveness and making a valuable 
contribution to algorithm design. Our algorithm 
efficiently handles top-k queries within the context 
of SWM on uncertain data streams, outperforming 
previous research efforts. 
 Three (3) essential future research areas have 
been identified as suggestions for other researchers 
to pursue. 

i. Crowdsourcing - In the context of the current 
diverse, complicated, and complex data 
management landscape, improving the 
efficiency and effectiveness of crowdsourcing 
data is of utmost importance. The presented 
approach offers a novel opportunity to 
incorporate human intelligence in addressing 
top-k queries. 

ii. Distributed Data Streams – In the context of 
the current diverse, complicated, and complex 
landscape of data management, it is of utmost 
importance to improve the efficiency and 
effectiveness of crowdsourcing data. The 
presented approach offers a novel opportunity 
to incorporate human intelligence in 
addressing top-k queries.   

iii. Advanced uncertain data stream analysis in 

Cloud Environment – The scenario presents 
a significant amount of data that is both 
extensive and intriguing. This is related to the 
availability of numerous regions for 
exploration and discovery, made possible by 
transmitting a large volume of data over the 
cloud environment. The investigation of 
processing large uncertain data streams and 
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incomplete and dynamic data on the cloud to 
derive an advantageous top-k result list for 
users is a noteworthy subject. 

 

To ensure the reproducibility of future research 
studies, it is essential to provide other researchers 
with the specific details necessary to replicate our 
study. These details are as follows: 
Presenting a comprehensive methodology 

explanation: SWM presents detailed explanations of 
algorithms and data structures. The Top-kDelta 
framework thoroughly explains top-k query 
processing models, encompassing delta-based SWM 
evaluations and score-probabilities values methods. 
Open data and algorithm: We will ensure that all 
datasets used and source code can be shared on the 
repository website upon request, enabling other 
researchers to replicate our experiments. 
Comprehensive comments and documentation 
accompany the code to facilitate comprehension and 
utilization. 
Parameter Settings: The parameter settings include 
factors such as the size of the data set, the number of 
parameters (k), the window size (W) and 
segmentation, the probability threshold (d), and the 
number of queries. These settings are crucial for 
accurately reproducing our experimental conditions. 
The number of possible world comparisons and 
processing time are also considered dependent 
factors. By providing detailed information about 
these settings, we enable others to recreate our 
experiments precisely. 
Statistical Analysis: Thoroughly demonstrate the 
statistical analyses used to validate our outcome 
results, such as significance assessments and 
confidence intervals. This ensures the reliability and 
reproducibility of research findings, which can 
benefit future research aiming to achieve similar or 
improved results. 
 Adhering to these practices guarantees that our 
research on top-k query processing for uncertain data 
streams is transparent, replicable, and verifiable by 
the broader research community. 
 
 
Declaration of Generative AI and AI-assisted 

Technologies in the Writing Process 

During the preparation of this work the authors used 
ChatGPT in order to acquire some information about 
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