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Abstract: - The aim of this article is to investigate the accuracy of vector measurement-based attitude 
determination methods for a nanosatellite. Measurements from the horizon sensor and magnetometer are 
therefore modeled on the body frame. The triaxial Attitude Determination (TRIAD) technique is a widely used 
and effective method to determine the attitude of a nanosatellite. In this study, the TRIAD method is used with 
three different approaches to obtain the smallest orientation error of a nanosatellite equipped with 
magnetometers and horizon sensors. Analysis of covariance is conducted to evaluate the validity and reliability 
of the attitude determination process. Three modifications of the TRIAD algorithm were tested for accuracy 
and the most accurate was determined. The analysis provides information on the sources of error and 
uncertainty associated with the measurement and estimation process. This information is used to improve 
system performance and the accuracy of attitude outputs. 
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1 Introduction 
Attitude determination is the process of determining 
the orientation of a nanosatellite in relation to a 
reference coordinate frame. Attitude determination 
is critical to a nanosatellite's effective operation and 
mission success. Knowing a nanosatellite's attitude 
allows its instruments to aim in the appropriate 
direction, communicate with the ground station, and 
execute the required activities. 

A nanosatellite's attitude can be determined 
using a variety of technologies, including star 
trackers, horizon sensors, sun sensors, 
magnetometers, and gyros, [1], [2], [3], [4], [5], [6], 
[7]. These sensors measure the direction and 
strength of the magnetic field, the position of the 
stars, the direction to the Earth, the Sun's direction, 
and the nanosatellite's angular velocity. The data 
from these sensors is then processed by algorithms 
to estimate the nanosatellite's attitude in real-time. 

Satellite attitude can be determined by using at 
least two vectors measured by the attitude sensors 
(Sun sensor, Earth horizon sensor, magnetometer, 
etc.) in the satellite body frame and the models 
describing the corresponding directions (to the Sun, 
nadir, and magnetic field) in the reference frame, 
[2]. 

The first published approach to determining the 
orientation of satellites is an algebraic method 
proposed in 1964, [8]. [9], also presents a method 
called TRIAD, which stands for Three-Axis 
Attitude Determination. Finding the transformation 
matrix between the satellite body coordinate system 
and the reference frame is the goal of the TRIAD 
algorithm. 

Satellite attitude determination using the 
TRIAD algorithm has been considered in many 
researches, and various algorithms have been 
proposed to improve the estimation accuracy, [10], 
[11], [12], [13]. 

Optimized TRIAD which is studied in works 
[10], [11], and [12], combines the two 
transformation matrices held in two different 
TRIAD systems which two different direction 
vectors act as anchors one by one.        

In this study, TRIAD optimization is performed 
using three different approaches to obtain the 
smallest attitude error of a nanosatellite that has 
magnetometers and horizon sensors as onboard 
attitude sensors. The accuracy of these three 
modifications of the TRIAD algorithm was 
compared and the optimized algorithm with the 
highest accuracy was determined. 
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2 Attitude Motion Model of the 

 Nanosatellite 
The nanosatellite's rotational motion is 
mathematically described in terms of Euler angles 
and angular velocities, and the problem is solved 
iteratively using the initial values of these 
parameters. Below is a mathematical representation 
of the rotational motion of a nanosatellite around its 
center of mass.  
     Expressions for Euler angles 
 

𝜓(i+1) = 𝜓(i) + Δt(−wx(i)𝑡𝑎𝑛(𝜃(i)) ∗ cos(𝜓(i))

+ wy(i) sin(𝜓(i)) ∗ tan(𝜃(i)) + w𝑧(i)) 
(1) 

 
𝜃(i+1) = 𝜃(i) + Δt (wx(i)sin⁡(𝜓(i)) + wy(i)cos⁡(𝜓(i))) (2) 

 

𝜙(i+1) = 𝜙(i) + Δt (wx(i) cos(𝜓(i)) −
wy(i) sin(𝜓(i))

cos(𝜃(i))
) 

 

(3) 

     Expressions for angular velocities 
 

𝜔𝑥(𝑖+1) = 𝜔𝑥(𝑖) +
𝛥𝑡

𝐽𝑥
(𝜔𝑧(𝑖)𝜔𝑦(𝑖) +𝑁𝑇) (𝐽𝑦 − 𝐽𝑧) 

(4) 

 

𝜔𝑦(𝑖+1) = 𝜔𝑦(𝑖) +
Δ𝑡

𝐽𝑦
(𝜔𝑥(𝑖)𝜔𝑧(𝑖) + 𝑁𝑇) (𝐽𝑧 − 𝐽𝑥) 

(5) 

 

𝜔𝑧(𝑖+1) = 𝜔𝑧(𝑖) +
Δ𝑡

𝐽𝑧
(𝜔𝑥(𝑖)𝜔𝑦(𝑖) + 𝑁𝑇) (𝐽𝑥 − 𝐽𝑦) (6) 

 
 

In the equations (1)-(6) 𝜙 is the roll angle, 𝜃 is 
the pitch angle, 𝜓 is the yaw angle, 𝑤𝑥 , 𝑤𝑦, and 𝑤𝑧 
are the angular velocities, 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧 are the 
moments of inertias of the nanosatellite, 𝑤orbit  is the 
angular orbit velocity of the nanosatellite, 𝑁𝑇 is the 
disturbance torque acting on the nanosatellite, Δ𝑡 is 
the sample time and the 𝑁 is the iteration number. 
 
 
3 Mathematical Modeling of 

 Reference Direction Sensors 
The focus of this section is characterizing the 
horizon and magnetic field sensors which are used 
in the TRIAD algorithm as reference direction 
vectors for the simulation environment. 
 
3.1 Mathematical Model of Earth Magnetic 

Field 
This section is to investigate how the Earth's 
magnetic field vector, one of the reference vectors 
used in the TRIAD approach, behaves when the 
orbital position of the nanosatellite varies. The 
magnetic field vector varies significantly with the 

orbital parameters as the nanosatellite travels along 
its path as described in [14]. The magnetic field 
tensor vector that affects satellites can be proven 
analytically as a function of time if those parameters 
are known as follows, 

𝐻1(𝑡) =
𝑀𝑒

𝑟0
3 [cos⁡(𝜔0𝑡)(cos⁡(𝜀)sin⁡(𝑖)

− sin⁡(𝜀)cos⁡(𝑖)cos⁡(𝜔𝑒𝑡))

− sin⁡(𝜔0𝑡)sin⁡(𝜀)sin⁡(𝜔𝑒𝑡)] 

 
(7) 

 
𝐻2(𝑡) = −

𝑀𝑒

𝑟0
3
[cos⁡(𝜀)cos⁡(𝑖) + sin⁡(𝜀)sin⁡(𝑖)cos⁡(𝜔𝑒𝑡)] (8) 

 
𝐻3(𝑡) = ⁡

2𝑀𝑒

𝑟0
3 [sin⁡(𝜔0𝑡)(cos⁡(𝜀)sin⁡(𝑖)

− sin⁡(𝜀)cos⁡(𝑖)cos⁡(𝜔𝑒𝑡))

− 2sin⁡(𝜔0𝑡)sin⁡(𝜀)sin⁡(𝜔𝑒𝑡)] 

 
(9) 

 
In the equations (7)-(9) 𝑀𝑒⁡is the magnetic 

dipole moment of the Earth, 𝜇 is the Earth 
Gravitational constant, 𝑖⁡is the orbit inclination, 𝜔𝑒 
is the spin rate of the Earth, 𝜀 is the magnetic dipole 
tilt, 𝑟0 is the distance between the center of mass of 
the nanosatellite and the Earth, 𝜔0 is the angular 
velocity of the orbit with respect to the inertial 
frame, found as 𝜔0 = (𝜇/𝑟0

3)1/2. To find the 
direction of the magnetic field vector, we can track 
its direction cosines, which are computed as 

𝐻0 = [

𝐻𝑥0

𝐻𝑦0

𝐻𝑧0

] =
1

√𝐻𝑥
2 + 𝐻𝑦

2 + 𝐻𝑧
2

[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] 
 

(10) 

 
where 𝐻0 is the direction cosine vector of the 
magnetic field in the orbital coordinate system. The 
direction cosine vector measurement can be 
obtained in the body frame as follows 

𝐻𝐵(𝑘) = 𝐴(𝑘)𝐻𝑜(𝑘) + 𝜂𝐻 (11) 
 

Here 𝜂𝐻 is the zero mean Gaussian white noise 
of the magnetometer and 𝐴(𝑘) is the direction 
cosine matrix in terms of Euler angles which is 
given below in equation (12),  
𝐴 = [

𝑐(𝜃)𝑐(𝜓) 𝑐(𝜃)𝑠(𝜓) −𝑠(𝜃)
−𝑐(𝜑)𝑠(𝜓) + 𝑠(𝜑)𝑠(𝜃)𝑐(𝜓) 𝑐(𝜑)𝑐(𝜓) + 𝑠(𝜑)𝑠(𝜃)𝑠(𝜓) 𝑠(𝜑)𝑐(𝜃)
𝑠(𝜑)𝑠(𝜓) + 𝑐(𝜑)𝑠(𝜃)𝑐(𝜓) −𝑠(𝜑)𝑐(𝜓) + 𝑐(𝜑)𝑠(𝜃)𝑠(𝜓) 𝑐(𝜑)𝑐(𝜃)

] 
(12) 
 

 
where c  and s define trigonometric functions as the 
cosine and the sine of the angle respectively. 
 
3.2  Mathematical Model of Nadir Direction 
The nadir direction, denotes the vector pointing 
directly towards the center of the celestial body 
being orbited, typically Earth for satellites in low 
Earth orbit. 

Model is a vector looking to nadir direction in 
orbit reference system with equation (13) as, 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL 
DOI: 10.37394/23203.2024.19.26 Orhan Kirci, Chingiz Hajiyev

E-ISSN: 2224-2856 241 Volume 19, 2024



𝑁𝑜(𝑘) = (
0
0
1
) (13) 

 
Vector in the orbital frame can be converted to body 
frame as follows, 

𝑁𝐵(𝑘) = 𝐴(𝑘)𝑁𝑜(𝑘) + 𝜂𝑁 (14) 
 
where 𝐴(𝑘) is the direction cosine matrix, 𝜂𝑁 is the 
zero mean Gaussian white noise of the horizon 
sensor. 
 
 
4  TRIAD Algorithm 
TRIAD is an attitude determination algorithm that 
uses a vector-based approach to estimate the 
satellite's attitude based on measurements from two 
sets of known vectors. The name “TRIAD” can be 
considered either as the word “triad” or as an 
acronym for Triaxial Attitude Determination, [2]. 
TRIAD, the earliest published algorithm for satellite 
attitude determination from two vector 
measurements, has been widely used in both 
ground-based and onboard attitude determination.  
 
4.1   Classic TRIAD 
TRIAD uses two unparallel unit vectors to construct 
a new coordinate. The attitude matrix was calculated 
by the algebraic method as stated in [8]. The 
equation is given as, 

r1 = v1
r2 = (v1 × v2)/|v1 × v2|

r3 = (v1 × r2)/|v1 × r2|
⁡ 

 
(15) 

 
The equation includes two vectors, v1 and v2, 

which are magnetic field and nadir direction vectors 
in the orbital frame. 

s1 = w1

s2 = (w1 × w2)/|w1 ×w2|

s3 = (w1 × s2)/|w1 × s2|
 

 
(16) 

 
and w1 and w2 are the magnetic field and horizon 
sensor measurements in the body frame. 

𝑀o = [r1⁡r2⁡r3] (17) 
 
After orthogonalizing the reference vectors, the 

base vectors of the orbital frame matrix 𝑀𝑜 are 
represented by r1, r2, and r3 

⁡𝑀𝑏 = [s1⁡s2⁡s3] (18) 
 

The base vectors of body frame matrix, 𝑀𝑏, are 
represented by s1, s2, and s3. Then the attitude 
matrix is obtained in the equation (19) 

𝐴 = 𝑀𝑏 ∗ 𝑀𝑜′ (19) 
 
For the application of TRIAD algorithm, two-

unit vectors in two different reference frames is 
needed. 𝐻0 is the Earth magnetic field vector in the 
orbital frame, 𝐻𝐵 is the magnetometer measurement 
vector in the body frame, No is the nadir direction 
vector in the orbital frame and N𝐵 is the nadir sensor 
measurement vector in the body frame. 

After the application of the classic TRIAD, in 
equation (12) a rotation matrix can be obtained in 
the 3-2-1 Euler-angle sequence. It is observed that 
attitude matrix is weighted twice by the first vector, 
indicating that the first vector is the major vector 
and plays a critical role in determining the attitude 
accurately. If the noise associated with the major 
vector is higher than that of the secondary vector, 
the classic TRIAD algorithm may not provide the 
optimized solution. This issue is addressed by the 
proposed algorithm in this study. The error 
covariance for TRIAD was presented in [9] as; 

𝑃⁡TRIAD = 𝜎1
2𝐼 +

1

|𝑤̂1 + 𝑤̂2|
2
[𝜎1

2(𝑤̂1 ∙ 𝑤̂2)(𝑤̂1𝑤̂2
𝑇

+ 𝑤̂2𝑤̂1
𝑇) + (𝜎2

2 − 𝜎1
2)𝑤̂1𝑤̂1

𝑇] 

(20) 

 
The attitude covariance matrix is denoted by 

𝑃TRIAD , and 𝐼 represents the identity matrix. The 
variances of two vector sensors are denoted by  𝜎12 
and  𝜎22. Equation (20) shows that if  𝜎12⁡is greater 
than  𝜎22, the error covariance matrix is larger than 
the case when  𝜎12 is less than  𝜎22. 

 
4.2   Optimized TRIAD 
Different types of optimized TRIAD is proposed in 
this section and there is a comparison study between 
these algorithms in the simulation section. There are 
several variations of the optimized TRIAD 
algorithm, which aim to improve the accuracy and 
computational efficiency of the original algorithm.  
The optimized TRIAD algorithm is a mixture of two 
TRIAD algorithms, namely TRIAD-I and TRIAD-
II. The former generates matrix A1, while the latter 
generates matrix A2. The approach involves creating 
two sets of vector triads using four vector 
measurements, two in the orbital reference frame (v1 
and v2) and two in the body reference frame (w1 and 
w2). To implement the optimized TRIAD algorithm, 
one must compute the matrices ri in the body 
coordinate and the corresponding column matrices 
si in the orbital frame. For the TRIAD-I algorithm, a 
specific definition is assigned 

r1 =
v1
|v1|

⁡⁡r2 =
(r1 × v2)

|r1 × v2|
⁡⁡r3 = r1 × r2 (21) 

 
𝑠1 =

𝑤1

|𝑤1|
⁡⁡𝑠2 =

(𝑠1 × 𝑤2)

|𝑠1 × 𝑤2|
⁡⁡s3 = 𝑠1 × 𝑠2 (22) 

 
The expression for matrix A1 is given by; 
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𝐴1 = r1 ⋅ s1
T + r2 ⋅ s2

T + r3 ⋅ s3
T (23) 

 
The definition for the TRIAD-II algorithm is as 
follows; 

r5 =
v2
|v2|

⁡⁡r2 =
(r1 × v2)

|r1 × v2|
⁡⁡r4 = r5 × r2 (24) 

 
𝑠5 =

𝑤2

|𝑤2|
⁡⁡𝑠2 =

(𝑠1 × 𝑤2)

|𝑠1 × 𝑤2|
⁡⁡s4 = 𝑠5 × 𝑠2 (25) 

 
The expression for matrix A2 is given by, 

𝐴2 = r5 ⋅ s5
T + r2 ⋅ s2

T + r4 ⋅ s4
T (26) 

  
4.2.1  Optimized TRIAD - 1 

The computation of the optimized attitude matrix Â 
follows as; 

Â′ =
𝜎1
2

𝜎1
2 + 𝜎2

2 A1 +
𝜎2
2

𝜎1
2 + 𝜎2

2 A2 
(27) 
 

 
Finally, the attitude matrix of the optimized TRIAD 
can be written according to studies in [10] 

⁡A𝑜𝑝𝑡1 ⁡= 0.5 [Â′ + ((Â′)−1)
T
] (28) 

 
Matrix, Aopt1, performs an optimized solution 

for the Classic TRIAD algorithm. The error 
covariance of the optimized TRIAD is given in the 
equation (29) as stated in [12], 

𝑃Opt -TRIAD = 𝜎𝑜𝑝𝑡
2 𝐼

+
1

|𝑤̂1 + 𝑤̂2|
2
[𝜎𝑜𝑝𝑡

2 (𝑤̂1

∙ 𝑤̂2)(𝑤̂1𝑤̂2⁡
𝑇 + 𝑤̂2𝑤̂1⁡

𝑇)] 

(29) 

 
where 

𝜎𝑜𝑝𝑡
2 =⁡(

1

𝜎1
2 +

1

𝜎2
2)

−1

 
(30) 

  
4.2.2   Optimized TRIAD - 2 

The second method is based on the sensor fusion 
technique presented in [4]. The second method uses 
covariance matrix of the TRIAD-1 and TRIAD-2 
rather than using covariance of the reference 
direction vectors 

𝑥̂ =
𝜎𝑐𝑜𝑣1
2 𝑥𝐴2

+ 𝜎𝑐𝑜𝑣2
2 𝑥𝐴1

𝜎𝑐𝑜𝑣1
2 + 𝜎𝑐𝑜𝑣2

2  
 (31) 

 
where 𝑥 is the angle that is optimized, 𝜎𝑐𝑜𝑣12  is the 
angle error variance when TRIAD-1 algorithm is 
used, 𝜎𝑐𝑜𝑣2

2  is the angle error variance when 
TRIAD-2 algorithm is used, 𝑥𝐴1is the angle that is 
found by the TRIAD-1 algorithm and 𝑥𝐴2is the 
angle that is found by the TRIAD-2 algorithm.  

The error variance of the optimized angle 𝑥 can 
be written as in equation (32), 
 

𝐷𝑥 =
𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣2

2

𝜎𝑐𝑜𝑣1
2 + 𝜎𝑐𝑜𝑣2

2  (32) 
 

 

4.2.3   Method 3 

The third method is based on the sensor fusion 
technique when three type TRIAD method outputs 
are processing as mentioned in [4]. The third 
method uses TRIAD-1 and TRIAD-2 and also 
optimized TRIAD which is calculated in the method 
1. Each angle is calculated by the equation (33) as 
follows; 

𝑥̂ =
𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣2

2 𝑥𝐴𝑜𝑝𝑡
+ 𝜎𝑐𝑜𝑣1

2 𝜎𝑐𝑜𝑣3
2 𝑥𝐴2

+ 𝜎𝑐𝑜𝑣2
2 𝜎𝑐𝑜𝑣3

2 𝑥𝐴1

𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣2

2 + 𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣3

2 + 𝜎𝑐𝑜𝑣2
2 𝜎𝑐𝑜𝑣3

2  
(33) 

 
where 𝑥 is the angle that is optimized, 𝜎𝑐𝑜𝑣32  is the 
angle error variance when the optimized TRIAD-1 
method is used. 
The error variance of the optimized angle 𝑥 can be 
determined as in equation (34), 

𝐷𝑥 =
𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣2

2 𝜎𝑐𝑜𝑣3
2

𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣2

2 + 𝜎𝑐𝑜𝑣1
2 𝜎𝑐𝑜𝑣3

2 + 𝜎𝑐𝑜𝑣2
2 𝜎𝑐𝑜𝑣3

2  
(34) 

 
where 𝐷𝑥 is the angle error variance.  
 
 
5 Simulation Results of TRIAD 

 Algorithm 
To visualize the data, MATLAB is utilized. The 
required programming algorithm is created using a 
mathematical model of the nanosatellite's rotating 
motion (1)-(6).  

Simulations are performed in order to estimate 
attitude of a nanosatellite using the classic TRIAD 
algorithm and optimization of TRIAD with different 
modifications. 

Algorithm is run for 54000 iterations with time 
step of 0.1 seconds. Standard deviations of error for 
the magnetometer and horizon sensor are taken as 
0.08 and 0.06 respectively.  

In Figure 1, when the angle between the 
reference directions is close to parallel, which 
means that the angle is close to 0 or 180 degrees, the 
TRIAD errors increase (Figure 2). Also, as the pitch 
angle is close to ±90 degree TRIAD error increases 
as in simulation results of classic TRIAD in Figure 
2.  
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Fig. 1: Angle between the reference directions; and 
Euler Angles 
 

 
Fig. 2: Error in Euler angles when using Classic 
TRIAD  
 

In the Classic TRIAD (TRIAD-1) algorithm 
magnetic field vector is used as an anchor. As 
shown in Figure 2, estimation errors are generally 
low but pitch angle affects the results badly when 
the angles is close to ±90 degrees at 1500th second. 
Also, at 4200th second, the angle between the 
reference directions gets close to parallel which is 
another reason to get higher estimation errors.  

All the TRIAD algorithms are simulated and 
their error in Euler angles and the error variances 

are shown in Figure 3 and Figure 4 respectively. 
TRIAD-1 which is also named Classic TRIAD, uses 
a magnetic field vector as its dominant part, 
TRIAD-2 uses horizon vector as its main vector and 
all three optimization methods use both TRIAD-1 
and TRIAD-2 to obtain the optimized result. Based 
on the simulation results, Optimized-3, which is an 
optimized TRIAD algorithm, generally gives the 
best result in both Euler angle errors and error 
variances of the TRIAD algorithms. 

 

 
Fig. 3: Comparison of TRIAD algorithms' errors in 
Euler angles 
 

 
Fig. 4: Comparison of error variances of TRIAD 
algorithms 
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A closer look at 1 to 60 seconds is shown in 
Figure 5 and Figure 6. From time to time as 
illustrated in Figure 5, the lowest error of Euler 
angles cannot be obtained by just one algorithm, this 
is because of the changing performance or accuracy 
of the direction sensors which is also simulated. 
Since optimization has lots of dependences such as 
pitch angle’s degree, the parallelism of the two 
sensors, and changing performance of the sensor; it 
is not suitable to define a definite optimized 
algorithm. TRIAD error variances with time for the 
first 60 seconds are given in Figure 6. 

 

 
Fig. 5: Error in Euler angles for the first 60 seconds 
 

 
Fig. 6: TRIAD error variances with time for the first 
60 seconds 

6  Conclusion 
In this study, the TRIAD algorithm is optimized 
using three distinct ways to get the lowest error for 
the attitude of a nanosatellite equipped with 
magnetometers and horizon sensors. The accuracy 
of these three TRIAD algorithm modifications is 
compared, and a high-accuracy optimized algorithm 
is identified. 

In the optimization section, it is desired to 
obtain a better result that has lower error compared 
to both TRIAD-1 and TRIAD-2 algorithms. The 
results of the simulation indicated that a single 
algorithm is unable to yield the lowest error of Euler 
angles due to the changing accuracy or performance 
of the sensor measurements. It is not appropriate to 
define a specific optimized algorithm because 
optimization involves many dependencies, such as 
the degree of pitch angle, the parallelism of the two 
reference directions, and changing sensor 
performance. However, as this study has 
demonstrated, it is possible to obtain an optimized 
algorithm, which is identified as method 3, to have 
fewer attitude errors and error variances. The 
simulation results show that the pitch angle of ±90 
degrees and the parallelism of the two reference 
direction vectors result in higher errors, as expected.  
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