
Pole Assignment for Symmetric Quadratic Dynamical Systems: An
Algorithmic Method

Abstract: In this article an algorithmic method is proposed for the solution of the pole assignment problem which
is associated with a symmetric quadratic dynamical system, when it is completely controllable. The problem is
shown to be equivalent to two subproblems, one linear and the other multi-linear. Solutions of the linear problem
must be decomposable vectors, i.e. they must lie in an appropriate Grassmann variety. The proposed method
computes a reduced set of quadratic Plucker relations, with only three terms each, which describe completely
the specific Grassmann variety. Using these relations one can solve the multi-linear problem and consequently
calculate the feedback matrices which give a solution to the pole assignment problem. An illustrative example
of the proposed algorithmic procedure is given. The main advantage of our approach is that the complete set of
feedback solutions is obtained, over which further optimisation can be carried out, if desired. This is important
for problems with structural constraints (e.g. decentralization) or norm-constraints on the feedback gain-matrix.
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1 Introduction

The fundamental criterion of controllability is useful
in deciding whether a symmetric quadratic system is
state-controllable. This condition is intimately linked
to state-feedback control which allows the designer
to modify the behavior of the closed-loop dynamics
in order to relocate troublesome eigenvalues in
the complex plane, thus avoiding long transients,
resonance phenomena and potential instability under
model uncertainty. The paper provides a systematic
approach for designing state-feedback controllers of
symmetric quadratic dynamical systems, by decom-
posing the problem into two separate sub-problems,
one linear and the other multi-linear, [1], [2], [3], [4].
To avoid excessive computational complexity, care
has been taken to reduce algorithmic redundancy,
via the computation of a reduced set of quadratic
Plucker relations. The paper describes the two design
steps of the approach which are illustrated with a
numerical example. A background on aspects of
algebraic geometry, on which many of the results
are based, is also provided. The main advantage
of our method is that it can be used to parametrize
the complete set of state-feedback solutions in the
multivariable case which is useful when additional
optimization constraints are imposed, e.g. structural
constraints in the form of decentralization patterns, or
norm-constraints on the state-feedback matrix which

may address robust-stability issues under model
uncertainty. A further advantage of the proposed
method is that it can be extended in a relatively
straightforward manner to wider classes of models,
e.g. higher-order matrix models or implicit (descrip-
tor) systems described by a set of differential and
algebraic equations, [5], [6], [7], [8]. Several results
obtained in these two directions will be reported in
future publications.

2 Problem definition and

Methodology
The equation of motion for a matrix second-order sys-
tem, e.g. a structural system with viscus damping and
without externally applying forces is expressed as fol-
lows:

Mq′′(t) +Dq′(t) +Kq(t) = 0 (1)

Here,M ,D,K are the n×nmass, damping and stiff-
ness matrices respectively. Also, q(t) is the displace-
ment vector, q′(t) the velocity vector and q′′(t) the ac-
celeration vector. In most applications M , D and K
are symmetric matrices. Furthermore, M is typically
positive definite and D, K are positive semi-definite
or positive definite.

Separation of variables q(t) = eλtc where c is
a constant vector gives us the quadratic eigenvalue
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problem:

P (λj)cj = 0, j = 1, 2, . . . , 2n

in which P (λ) denotes the quadratic matrix pencil:
P (λ) = λ2M + λD + K. The eigenvalues and
eigenvectors of the pencil govern the free response
of the system. The model can be used to identify
poorly damped oscillations and resonance phenom-
ena, which wemay be able to avoid by the appropriate
selection of the matrix parameters.

When an actuating forceF (t) is applied, themodel
described by the above equations becomes:

Mq′′(t) +Dq′(t) +Kq(t) = F (t) (2)

Often the force can be selected by the designer, in
which case

F (t) = Bu(t) (3)

where u(t) is them× 1 control input vector and B is
the n×m input matrix.

One of the major concerns for the control engineer
is to ensure stability of the control system. Thus, the
behaviour of the system is usually modified by ap-
plying state-feedback control to relocate the trouble-
some eigenvalues in the complex plane. In the single-
input case, under the assumption of controllability, the
problem has a unique solution. This is no longer the
case in the multivariable case, in which typically an
infinite set of state-feedback matrices can be used to
assign the closed-loop eigenvalues at specified loca-
tions. Existing algorithms [9], [10], [11] do not in
general parameterize completely the solution set, or
give an implicit parametrization which is difficult to
apply in practice. In contrast, our approach gives a
complete solution to the problem, although intermedi-
ate steps of the algorithm may be computationally de-
manding, especially for high-dimensional problems,
if certain redundant relations are not removed. The
analysis in the present work involves quadratic sym-
metric models, which arise naturally in mechanical
vibration and electrical circuit systems, however the
techniques can be extended with minor modifications
to matrix higher order systems and implicit (descrip-
tor) systems. Deriving parametric solutions to a par-
ticular design objectives is important in order to select
specific solutions which optimize additional objec-
tives or constraints. In the present context, in addition
to placing the eigenvalues of the closed-loop system
to specific locations, a designer may need to consider
further issues, such as sparsity in the state-feedback
matrix corresponding to specific decentralization ob-
jectives, minimizing the norm of the state-feedback
matrix to improve the sensitivity properties of the de-
sign, or more general problems of eigen-structure as-
signment. If the system is (open-loop) unstable, we

aim, as a minimum requirement, to stabilize it. If the
system is (open-loop) stable, it is desirable tomaintain
some degree of relative stability and robust-stability
margins, i.e. ensure that stability is maintained un-
der realistic uncertainty conditions. In general, the
notion of stabilization is connected to the problem of
relocation of troublesome eigenvalues of the system
in equation (2), also called pole placement. In the-
ory, eigenvalue relocation to arbitrary locations of the
complex plane can always be achieved if the system is
state-controllable, although in practice this is limited
by constraints on the amplitude or energy of the con-
trol signal, system bandwidth constraints, and robust
stability issues. For the model described in equations
(2) and (3), for any choice of a conjugate-symmetric
set of poles, suitable real m × n matrices F1 and F2

can be found such that under the state-feedback con-
trol law:

u(t) = −F1q(t)− F2q
′(t) (4)

the corresponding closed-loop system described by
the equation

Mq′′(t)+(D+BF2)q
′(t)+(K+BF1)q(t) = 0 (5)

has the chosen set of poles. Equivalently, suppose that
the required closed-loop polynomial is:

f(s) = a0 + a1s+ . . .+ a2n−1s
2n−1 + s2n (6)

This can be written more compactly in the form

f(s) = et2n(s)ã (7)

where

et2n(s) = [1 s . . . s2n] and ãT = [a0 a1 . . . a2n−1 1]

We wish to compute the matrices F1 and F2 such that
the characteristic polynomial

ϕ̃(s) = det(s2M + s(D+BF2)+ (K+BF1)) (8)

of the quadratic pencil

Pc := s2M + s(D +B F2) + (K +B F1) (9)

associated with the closed-loop system (5) is equal to:

ϕ̃(s) = (detM)f(s) (10)

Define:

Q(s) := [s2M + sD +K | sB | B] (11)

and

V =

[
In
F2

F1

]
(12)
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Then we can rewrite equation (9) as:

Pc(s) = Q(s)V (13)

Using compound matrices and applying the Binet-
Cauchy theorem we can write,

ϕ̃(s) = det(Pc(s)) ≡ Cn(Pc(s)) (14)

= Cn(Q(s)V ) = Cn(Q(s))Cn(V ) (15)

We now define:

P := P (M,D,K,B) ∈ R(2n+1)×` (16)

Since Cn(Q(s)) := et2n(s)P , the columns of P are
the coefficient vectors of the elements of Cn(Q(s)),
which are polynomials of maximum degree 2n and

g := Cn(V ) = Cn

([
In
F2

F1

])
∈ R` (17)

where ` :=
(
n+2m

n

)
. Combining equations (6), (10)

and (15) we get

et2n(s)Pg = et2n(s)(detM)ã := et2n(s)a

which in turn implies that:

Pg = a (18)

3 Techniques from algebraic

geometry and algorithmic solution
In this section we construct the quadratic Plucker rela-
tions of the problem which are algebraically indepen-
dent. In order to achieve this, a criterion based on the
correspondence between vectors of the Grassmann
variety and the lexicographical ordering is applied.
Let us assume that Ω(m,n) is the Grassmann Vari-

ety of the projective space P k(F) with k =
(
n
m

)
− 1

whose dimension is given by the equation

dimΩ(m,n) = m(n−m) (19)

It can be proved, [12], that the total number of Plucker
relations which define the Grassmann Variety is:(

n

m− 1

)(
n

m+ 1

)
(20)

However these are dependent, in the sense that some
of these relations are linear combinations of the oth-
ers. Hence, if all these relations are used as equality
constraints in the remaining part of the algorithm, this
would raise the complexity of the solution unneces-
sarily. The minimum number of independent equa-
tions neq that describe a variety, of dimension equal
to dimV , is

neq = dimP − dimV (21)

and so

neq =

(
n

m

)
− 1−m(n−m) (22)

In this section, we propose an algorithm which re-
duces the full set of equations that describes the
Grassmann variety to an exact minimal set of inde-
pendent equations whose number is given in equa-
tion (22). To give an illustration of the reduction in
complexity that this entails, note that, for example if
m = 2 andn = 4, the full number of Plucker relations
according to the equation (20) is 16. This is reduced
to only 1 equation which consists the reduced set (see
(22)).In case where m = 3 and n = 5 the total num-
ber of Plucker relations according to equation (20) is
50 equations while the reduced set from the equation
(22) has only 3 , i.e. in this case 47 of the total num-
ber of equations are redundant. It should be clear that
the reduction in complexity is highly significant and
grows with the dimensionality of the problem, [12].

Before stating the Theorems on which the algo-
rithm is based, we introduce the following notation
and definitions, [12], [13], [14]. Let the binomial co-
efficient be

k :=

(
n

m

)
, n,m ∈ N, n ≥ m

Denote the set of the first n natural numbers as:

Tn := {κ ∈ N∗ : 1 ≤ κ ≤ n}

with N∗ the set of naturals (excluding zero). Let

Tn
m := {(a1, . . . , am) : aj ∈ Tn , 1 ≤ j ≤ m}

be the set of sequences of lengthm with elements aj ,
1 ≤ j ≤ m, not necessarily distinct. Also, let

T̃n
m := {(a1, . . . , am) ∈ T n

m : aκ 6= aλ, if κ 6= λ}

be the set of sequences, where the elements of each
sequence are distinct. Denote by Dn

m all m-tuples <

a1, a2, . . . , am > such that (a1, . . . , am) ∈ T̃n
m and

aκ < aλ if κ < λ. We can order the elements of the
set Dn

m as follows:

< a1, a2, . . . , am > ≺ < j1, j2, . . . , jm >

if and only if there exists κ ∈ Tn such that aκ < jκ
and aλ = jλ for every λ < κ. The above relation is a
total ordering called lexicographical ordering. Using
the lexicographical ordering, we can now characterize
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the k elements of Dn
m by

a0 = < 1, 2, . . . ,m− 1,m >

a1 = < 1, 2, . . . ,m− 1,m+ 1 >

...

ak−1 = < n−m+ 1, . . . , n− 1, n >

Note that a0 ≺ a1 ≺ . . . ≺ ak−1. Next, we define the
map

δ : T̃n
m → N × Dn

m

such that:

(a1, a2, . . . , am)
δ−→ (λ,< a′1, a

′
2, . . . , a

′
m >)

where λ is the number of permutations needed to or-
der the elements of (a1, a2, . . . , am) in normal order-
ing < a′1, a

′
2, . . . , a

′
m >.

If [x0, x1, . . . , xk−1]
T ∈ Pk−1(R), we define the

following maps: First,

φ : Dn
m → [x0, x1, . . . , xk−1]

T

by aκ
φ−→ xκ, 0 ≤ κ ≤ k−1, where it is clear from the

above definition of φ that φ−1(xκ) = aκ. Secondly
we define:

φ̃ : N ×Dn
m → R

by

(λ, aκ)
φ̃−→ (−1)λφ(aκ) = (−1)xκ

Finally, if we denote β := (a1, a2, . . . , am) ∈ T n
m , we

define the map
g : Tn

m → R
by

g(β) =

{
(φ̃ ◦ δ)(β), if β ∈ T̃n

m

0, if β ∈ Tn
m − T̃n

m

We can now construct the Plucker relations: For every
group ofm− 1 indices

< t1, t2, . . . , tm−1 > ∈ T̃n
m−1

and from every group ofm+ 1 indices

< p1, p2, . . . , pm+1 > ∈ T̃n
m+1

we define for κ = 1, . . . ,m+ 1,

βκ := (t1, t2, . . . , tm−1, pκ)

and

γκ := (p1, p2, . . . , pκ−1, pκ+1, . . . , pm+1),

for κ = 1, . . . ,m + 1 and the corresponding Plucker
relation is as follows

m+1∑
κ=1

(−1)κg(β)g(γκ) = 0

Next we state the following theorems which extract
from the whole set of quadratic Plucker relations a
reduced set of relations which have simple form and
describe completely the Grassmann variety of the
corresponding projective space.

Theorem 1: Assume that

x = [x0, x1, . . . , xk−1]
t ∈ Ω(m,n)

and

φ−1(xκ) =< a1, a2, . . . , am > ∈ Dn
m

with a2 < n−m+1. Then, there exists a three-term
Plucker relation

σ(xκ, xκ1, xκ2, xκ3, xκ4, xκ5) = 0

where κ < κi, i = 1, 2, . . . , 5.

Theorem 2: Assume that x =
[x0, x1, . . . , xk−1]

t ∈ Ω(m,n). The full num-
ber of the coordinates xκ having the property
φ−1(xκ) =< a1, a2, . . . , am > with a2 < n−m+1
is

r :=

(
n

m

)
− (n−m)m− 1

Corollary 1: For every x = [x0, x1, . . . , xk−1]
t ∈

Ω(m,n), there exists a set S of three-term quadratic
Plucker relations, of the form

σi(xκi, xλi, xµi, xνi, xξi, xρi) = 0

where 1 ≤ i ≤ r with

κi ≤ min(λi, µi, νi, ξi, ρi), for 1 ≤ i ≤ r,

and
κj < κj+1, 1 ≤ i ≤ r − 1.

Theorem 3 [14]: The three-term quadratic
Plucker relations given by the set S of Corollary 1
describe completely the Grassmann variety Ω(m,n)
of the projective space P k−1(R).

Next, we propose the following algorithm which
computes the Reduced Set of Quadratic Plucker Re-
lations (RSQPR).

Algorithm RSQPR
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• Step 1: Read the dimensions n,m.

• Step 2: Compute k =
(
n
m

)
.

• Step 3: Repeat for k = 0, 1, . . . , k − 1.

a. Find the κ-th order multi-index
< a1, a2, . . . , am >.

b. If λ2 < n−m+ 1 then

b1. Find indices j1, j2 ∈ Tn−{a1, a2, . . . , am}
such that j1 > a2 and j2 > a2.

b2. Define am+1 := j2,
βρ := (a3, . . . , am, j1, aρ) and
γρ := (a1, . . . , aρ−1, aρ+1, . . . , am+1).

b3. Type Plucker relation∑
(−1)ρ · g(βρ) · g(γρ) = 0

• Step 4: End.

Finally, suppose we have computed the coordinates of
a decomposable vector as shown below

x = [x0, x1, . . . , xk−1]
t ∈ Ω(m,n)

using the quadratic Plucker relations generated by the
above algorithm. Then, we would like to construct
H ∈ Rn×m with the property:

Cm(H) = x (23)

The following Proposition is helpful for this purpose.

Proposition 1 [14]: Let

x = [x0, x1, . . . , xk−1]
t ∈ Rk

be a decomposable vector and xp 6= 0 for an index p,
1 ≤ p ≤ k − 1, such that

φ−1(xp) =< a1, a2, . . . , am >

Then, the elements hij of matrix H ∈ Rn×m which
satisfies equation (23) are given by

hij = g((a1, a2, . . . , aj−1, i, aj+1, . . . , am)) (24)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

4 Numerical Example
The benefits of the proposed algorithmic procedure
are clarified in the following example. We consider
the system of the form (2), with

M = 10I3, K =

[
40 −40 0
−40 80 −40
0 −40 80

]

and

D = 03×3, B =

[
1
3
3

]
The open-loop e-values are

{±3.6039i,±2.4940i,±0.8901i}

. Suppose we want to shift these to

{−1,−2,−3,−4,−5,−6}

using the state feedback law (4) where F1, F2 ∈
R1×3. In this case the problem consists of finding ma-
trices F1, F2 such that the closed-loop system (5) has
a charactristic polynomial

φ̃(s) = (detM)f(s)

where

f(s) =

6∏
i=1

(s− λi) =

6∏
i=1

(s+ i)

.
After several computations, we arrive at a linear

system of the form (18) which isPg = a , the solution
of which is given by:

g0 = 1, g1 = 2932.5, g2 = −4318.571, g3 = 3345

g4 = −5737.143, g6 = 1447.5, g7 = −2705.714

Variables g5, g8, g9 can be chosen arbitrarily since
they do not appear in equations of the linear system.
Now we must solve a multinear subproblem, which
consists of the following three equations, the so-called
reduced set of quadratic Plucker relations:

g4g6 − g3g7 + g0g9 = 0

−g5g6 + g3g8 − g1g9 = 0

g5g7 − g4g8 + g2g9 = 0

These equations are generated by the proposed algo-
rithm. Using a symbolic package, i.e. Mathematica,
and substituting the solutions of the linear system to
the above set of quadratic relations the following so-
lutions are obtained:

g5 = −2378500, g8 = −1683375, g9 = −746100

Now, using equation (18) together with Proposi-
tion 1, we obtain:

F1 = [g7,−g4, g2]

= [−2705.714 , 5737.143 , −4318.571]
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and

F2 = [g6,−g3, g1] = [1447.5 , −3345 , 2932.5]

In order to avoid cumbersome calculations by
hand, a numerical software package can be used to
verify that the closed-loop system (5) has the follow-
ing poles:

λ̃1 = −1.000000000047105

λ̃2 = −1.999999999594935

λ̃3 = −3.000000000111104

λ̃4 = −3.999999999929748

λ̃5 = −5.000000000132230

λ̃6 = −6.000000000120886

Note that whatever the starting guess for the approx-

imation of the eigenvalues, the error |λi − λ̃i|, for
i = 1, . . . , 6 , is always smaller than 10−9.

5 Conclusion
An efficient algorithmic framework has been pro-
posed for the solution of the pole-assignment problem
of symmetric quadratic systems. This involves the
computation of a reduced set of quadratic Plucker
relations describing completely the Grassmann
variety of the corresponding projective space. The
extraction of this reduced set has been achieved by
the use of a simple criterion based on the correspon-
dence between the coordinates of a decomposable
vector and lexicographical orderings. The minimum
number of the linear independent quadratic Plucker
relations which describe completely the Grassmann
variety is given in equation (22). Each equation of
this reduced set is homogeneous and contains only
three terms. We have to emphasize that the proposed
algorithm is free from numerical errors because it
does not contain any numerical calculation.This fact
has beneficial influence on the overall complexity of
the solution of the problem which is mainly due to
its non-linearity. The redundant Plucker relations can
be expressed as linear combinations of the remaining
minimal set, and hence can be completely ignored
in the subsequent steps of the algorithm, which
reduces the complexity of the solution significantly.
An advantage of the proposed method relative to
existing ones is that it generates the whole family of
feedback matrices with the specified pole-placement
properties; this family can be subsequently used for
further optimization purposes if additional design
objectives are desirable or further constraints are
imposed. Another advantage of the approach is that

it can be extended to more general classes of models,
including descriptor (implicit) systems and matrix
higher-order models (only quadratic matrix models
have been considered in this paper). Descriptor
systems are widely employed in systems and con-
trol engineering to model and simulate dynamical
systems with algebraic constraints, i.e. systems de-
scribed by mixed differential and algebraic equations.
They have a wide range of applications, such as in
mechanical multi-body systems, electrical circuits,
chemical (process) engineering, fluid dynamics and
many others. The methods can be extended also to
non-linear systems and can be used to solve a wide
range of related initial-value and boundary value
problems. The method can also be extended to the
solution of other problems of control theory hav-
ing a similar multi-linear nature, [15], [16], [17], [18].
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