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Abstract: - Interval forecasting is essential because it presents predictions with associated uncertainties, which 
are not captured by point forecasts alone. In nature, data contain variability due to measurement and random 
noise. In machine learning, most research focuses on point forecasts, with relatively few studies dedicated to 
interval forecasting, especially in areas such as agriculture. In this study, durian exports in Thailand are used as 
a case study. We employed Monte Carlo Dropout (MCDO) for interval forecasting and investigated the impact 
of various hyperparameters on the performance of Monte Carlo Dropout Neural Networks (MCDO-NNs). Our 
results were benchmarked against traditional models, such as the Seasonal Autoregressive Integrated Moving 
Average (SARIMA). The findings reveal that MCDO-NN outperforms SARIMA, achieving a lower root mean 
squared error of 9,570.24 and a higher R-squared value of 0.4837. The interval forecast width obtained from 
the MCDO-NN was narrower compared to that of SARIMA. Also, the impact of hyperparameters was 
observed, and it can serve as guidelines for applying MCDO-NNs to other agricultural datasets or datasets with 
seasonal and/or trend components. 
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1   Introduction 
The durian industry in Thailand has rapidly grown 
owing to the country’s suitable climate and fertile 
soils, which are essential for agriculture. The area 
for growing durian has also increased, especially in 
important areas such as Rayong and Chanthaburi, 
[1]. In Thailand, the durian export has been driven 
by both governmental backing and the surging 
demand in global markets, particularly China, which 
serves as a major destination for exports, 
[2]. Thailand’s durian, which has been a significant 
export since 2014, is the country’s most profitable 
fruit export. In May 2021, it achieved exceptional 
sales of USD 934.9 million, setting a new record. 
China receives approximately 70% of Thailand’s 
durian exports, [3]. In the third quarter of 2023, the 
export value of fresh, chilled, frozen, and dried 
fruits experienced a year-on-year growth rate of 
61.4%. The heightened demand from Chinese 
consumers, which surged after the complete 

reopening of the country, contributed to a portion of 
this rise. The China-Laos high-speed railway also 
positively impacted fruit exports; this railway to 
Kunming in Yunnan Province, China, significantly 
reduced transportation costs and time, with the 
journey now taking approximately ten hours, [4]. 

This study aims to leverage the neural network 
architectures, specifically the one-head output 
model, for interval predicting the performance of 
durian in Thailand’s exports because a single value 
of forecast cannot capture uncertainty in the future, 
[5]. In doing so, the study goes beyond conventional 
forecasting methods and incorporates Monte Carlo 
dropout (MCDO) techniques. This aligns with 
recent developments in neural network research, 
such as Bayesian deep learning and dropout 
techniques, [6], research into uncertainties in deep 
learning, [7], and MCDO by limiting dropout layers 
to later stages of the neural network and using this 
modified method for sorting radio frequency 
transmitters, [8]. Furthermore, some studies have 
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shown that using dropout as a Bayesian estimator 
will improve the ability of deep neural networks to 
generalize in the context of speech improvement, 
[9]. One study showed the effectiveness of MCDO 
in terms of precision and reliability for categorizing 
rock facies, [10]. Researchers evaluated the 
integration of MCDO with the residual network 
using the C-MAPSS dataset, [11]. Also, there is a 
study showing a workable way to use MCDO to 
approximate Bayesian neural networks and 
effectively capture the uncertainty in satellite 
telemetry time series, [12] and a new method for 
landmark detection employed the MCDO technique 
in a U-shaped convolutional neural network, [13]. 

Despite its success in various applications, time 
series forecasting has underutilized MCDO, 
particularly for interval forecasts in agricultural 
areas where time series data usually contains the 
seasonal component. We believe that MCDO has 
the potential to improve the accuracy of interval-
predicting data with seasonality. In this paper, 
durian export values are used as a case study. In 
addition, we aim to explore the impact of 
hyperparameters on forecasting accuracy and to 
compare the accuracy of the MCDO-NN with that 
of the Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model. 
 

 

2   Related Theories 
This section will describe the importance of 
uncertainty in forecasting, Bayesian neural 
networks, MCDO-NN, model topology, and the 
SARIMA model. 
 
2.1  Uncertainty in Forecasting 
In a one-head output MCDO-NN, aleatoric 
uncertainty is captured directly through the 
network’s predictive variance. To do this, we train 
the network with dropout and then enable multiple 
forward passes with dropout at inference time. The 
variance observed in these predictions serves as an 
estimate of aleatoric uncertainty. Each forward pass 
with dropout will simulate a sample from the 
posterior predictive distribution, and the variance 
among these samples reflects the uncertainty 
inherent in the data, [14]. 

The mean squared error (MSE) is a standard loss 
function for regression tasks. It measures the 
average of the squares of the errors or the average 
squared difference between the estimated values and 
the actual value. In the context of an MCDO-NN, 
the MSE can be defined as: 
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For modeling aleatoric uncertainty, we can 
modify the MSE loss function to include a variance 
term. This will result in a weighted loss function 
where the inverse of the predicted variance weights 
the squared errors: 
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To prevent the network from predicting infinite 

variance, the following regularization term is 
included for the variance. 

 
2

2 log ( )iL  x                           (3) 
 

The total loss function combines the above two 
components: 

 
 1 2( ) 2NNL L L   .                     (4) 

 
By minimizing this loss function during training, 

the neural network learns to predict both the mean 
and variance of the data, [15], [16], [17], [18].  

Epistemic uncertainty arises from the model’s 
lack of knowledge and can be due to limited data or 
an imperfect model. Within a one-head output 
MCDO framework, estimating epistemic 
uncertainty involves calculating the variance in the 
network’s predictions across multiple stochastic 
forward passes. However, it is crucial to distinguish 
this from aleatoric uncertainty. Epistemic 
uncertainty reflects the variability in the model’s 
predictions due to different “thinnings” (dropout 
configurations) of the network, essentially different 
sub-models being sampled each time, [19]. 

 
2.2  Bayesian Neural Networks 
Bayesian Neural Networks (BNNs) combine 
Bayesian probability theory and neural networks. 
BNNs, in contrast to conventional NNs, consider 
weights as random variables with probability 
distributions. This enables the model to incorporate 
uncertainty into its predictions, [20]. In a BNN, each 
weight w is associated with a prior distribution 

( )P w , which captures our initial assumptions about 
the network’s parameters. After observing data D, 
we update our beliefs to form the posterior 
distribution ( | )P w D using Bayes’ theorem: 
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( | ) ( )( | )
( )

P D w P w
P w D

P D
 ,                (5) 

 
where ( | )P D w  is the likelihood of the data given 
the weights, and ( )P D  is the evidence or marginal 
likelihood of the data, which serves as a normalizing 
constant. The predictive distribution for a new data 
point x  can then be obtained by marginalizing the 
weights: 
 

   , , ( | )P y x D P y x w P w D dw     .      (6) 

 
While BNNs approach this through the formal 

framework of Bayesian inference, MCDO provides 
a more computationally tractable approximation. 
MCDO provides a computationally tractable 
approximation for implementing a form of Bayesian 
inference in NNs, avoiding the computational 
complexity of true Bayesian methods like Markov 
Chain Monte Carlo (MCMC) sampling, commonly 
used in BNNs, [21]. 
 

     
 

 

      
 

 
 

(a) Original neural network. 
 

 
 

 
 

 
      

(b) Dropout neural network. 
Fig. 1: The original and dropout neural networks 
 
2.3  Monte-Carlo Dropout 
The MCDO helps approximate the posterior 
distribution ( | )P w D . During training, dropout 
randomly sets a subset of the weights to zero, 
effectively sampling from a distribution over a  
possible sub-network. This process samples from an 
approximate posterior distribution, [6]. At test time, 
MCDO performs multiple forward passes with 

dropout enabled, each time randomly dropping out 
different neurons. These random forward passes 
result in different sets of active weights. This is 
similar to taking samples from the weights’ 
posterior distribution, [22], [23]. By aggregating the 
outputs from multiple stochastic forward passes, 
MCDO estimates the predictive distribution 
 ,P y x D  . It is thought that the empirical mean of 

these outputs is about the same as the predictive 
mean, and the empirical variance gives an idea of 
the predictive uncertainty, which includes both the 
aleatoric and epistemic uncertainty, [7]. 

Figure 1 presents the original and dropout neural 
networks. The top subfigure presents a fully 
connected 3-4-2-1 neural network architecture 
without dropout. The bottom subfigure illustrates 
the same network with dropout applied during two 
separate forward passes. 

 

                               
 

                                  
 

                                  
 

                                  
 

                                  
Fig. 2: Neural network architecture of a single-head 
output 

 
2.4  Model Topology 
In our exploration of neural network architectures 
for forecasting, we consider the single-output 
network, as illustrated in Figure 2. Each component 
is described here: 
1) Input layer: The input layer takes the feature 

vector 
ix  for the i-th instance. If the dataset has 

p features, the input layer is mathematically 
represented as n pX R , where n is the number 
of instances. 

2) Dense layer: A dense layer with 100 neurons 
can be represented as (1) 100nW R  for the 
weights and (1) 100b R for the biases. The 
output of this layer for each instance is a 100-
dimensional vector (1) ,ih computed as: 
 

 (1) (1) (1)T

i i h W x b ,             (7) 
 

Loss 

Dropout 

Flatten 

Dense 

Input 

. 
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where   is a non-linear activation function 
such as Rectified Linear Unit (ReLU) or 
sigmoid. 

3) Flatten Operation: If the output from the 
previous layer is multi-dimensional, the flatten 
operation reshapes it into a one-dimensional 
array before it is fed into the next dense layer. 
For instance, if the output is a two-dimensional 
array from a convolutional layer, flattening 
converts it into a one-dimensional array ( )flat

h . 
4) Dropout: Dropout is applied to the output of a 

layer, which can be represented by a diagonal 
matrix D  with entries being 1 (neuron is kept) 
or 0 (neuron is dropped) with probability dropp . 
The output after dropout is given by: 
 

( ) (1)*dropout

i ih D h                   (8) 
 

where *  denotes element-wise multiplication. 
5) Loss Function: The loss function measures the 

discrepancy between the true labels Y  and the 
predicted labels Ŷ . For regression tasks, a 
common loss function is the MSE, which is 
defined as in (1), [24], [25].  
 

2.5  Seasonal Autoregressive Integrated  

Moving Average 
The Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model is an extension of the 
ARIMA (Autoregressive Integrated Moving 
Average) model that specifically addresses and 
models seasonality in time series data. SARIMA 
models are often denoted as SARIMA(p, d, q)(P, D, 
Q)S, where: p, d, q are the non-seasonal components 
(AR order, differencing, and MA order); P, D, Q are 
the seasonal components; S represents the length of 
the seasonal cycle. The SARIMA model is defined 
as [5]: 
 

1 1

1 1

(1 )(1 )(1 ) )(1 )

(1 )(1 ) .
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i i ti i
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i i ti i

L L L L y

L L



 

 

 

    

   

 

 
(9)   

    
The parameters of SARIMA models are typically 

estimated using maximum likelihood estimation 
(MLE) or similar optimization techniques. The 
model’s performance and accuracy depend on the 
correct specification of its parameters (p, d, q, P, D, 
Q, S). Researchers often carry out model selection 
using criteria like the Akaike Information Criterion 
(AIC) or the Bayesian Information Criterion (BIC). 
 

 

3   Dataset 

We obtained the monthly export figures for durian, 
expressed in millions of Thai Baht (THB), from the 
Office of Agricultural Economics of Thailand, [26]. 
The dataset is comprehensive and free from any 
missing data points. It spans the period from 
January 2015 to November 2023, including a total 
of 107 months. We partitioned the data into two 
distinct sets: a training set and a testing set. The 
testing set comprises the 12 most recent months, 
spanning from December 2022 to November 2023. 
The training set consists of 95 months, spanning 
from January 2015 to November 2022. 
 

 
Fig. 3: Durian export with a quadratic trend line 

 

 
Fig. 4: Monthly variability of durian export values 
from the training dataset 

 
Based on Figure 3, it appears that the dataset is 

most accurately represented by a multiplicative 
model, expressed by the formula .t t t t tY T S I      
The regression line exhibits a distinct and consistent 
rising trajectory. Figure 4 indicates that April and 
May experience the highest variability in durian 
export values, suggesting significant fluctuations in 
the volume of durians exported due to factors like 
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seasonality, whereas months such as January, 
November, and December exhibit the lowest 
variability, as indicated by their much narrower 
boxplots. This variability presents challenges for 
forecasting, especially for high-variability months, 
while lower variability in other months implies 
more stable and predictable exports, yet it does not 
necessarily simplify forecasting due to potential 
underlying trends or shifts in the data not 
immediately apparent from the boxplot alone, 
necessitating robust forecasting models to capture 
any patterns or cyclicality in the export data. 
 
 
4   Methodology 
The methodology encompasses data preprocessing, 
model development, hyperparameter tuning, and 
validation to ensure accuracy and robustness in 
forecasting. The point and interval forecasts are 
compared to SARIMA. 
 

 
Fig. 5:  Untrended durian export data 
 
4.1  Data Preprocessing 
The dataset, comprising monthly export values of 
durian in Thai Baht from January 2015 to November 
2023, underwent preprocessing. Initial steps 
included parsing dates to ensure chronological 
consistency. To address the seasonality and trend 
components inherent in time series data, we applied 
regression techniques, thereby detrending the data 
as illustrated in Figure 5. Additionally, we generated 
lag features for up to 12 months to capture the 
seasonal component. This approach allowed us to 
integrate both recent and historical patterns into our 
analysis. 
 
4.2  Hyperparameters 
The hyperparameters that impact the MCDO-NN 
are the following: 
1) Number of Neurons: The structure of neural 

networks was progressively expanded to 
explore the effect of network depth. The 
simplest models began with two layers 

containing 60-30 neurons. For models with 
additional layers, the first layer’s neuron count 
was increased in a specific pattern: adding 120 
neurons for three-layer models, 180 for four-
layer models, and so forth, up to a maximum 
configuration of 300-240-180-120-60-30 for 
six-layer models. The increment strategy aimed 
to systematically increase model capacity while 
maintaining a consistent structure in subsequent 
layers, [27]. 

2) Activation Functions: Common choices like 
ReLU and sigmoid have different 
characteristics. The ReLU is generally 
preferred for its computational efficiency and 
ability to mitigate the vanishing gradient 
problem. The sigmoid function is useful for 
binary classification in output layers and can 
also be tested in hidden layers for its nonlinear 
properties, [28]. In our study, models were 
tested with different activation functions: 
ReLU, sigmoid, and tanh. These approaches 
can be useful for modeling nonlinear 
relationships. 

3) Dropout Rate: Dropout is a regularization 
technique to prevent overfitting. It randomly 
sets a fraction of input units to zero at each 
update during training. For instance, in simpler 
models with two layers, dropout rates are 0.2–
0.3. For the most complex models, the dropout 
rates are 0.7–0.6–0.5–0.4–0.3–0.2. The range 
from 0.2 to 0.7 corresponds to a light to a more 
aggressive dropout. 

4) Epochs: The models underwent training for 25, 
50, or 100 epochs. The epoch count 
corresponds to the total number of iterations of 
the learning algorithm trained for the training 
dataset. Increasing the number of epochs 
enables the model to get a deeper 
understanding of the data, but excessive epochs 
might result in overfitting. In contrast, a limited 
number of epochs may lead to underfitting. 

5) Batch Size: Batch sizes of 16, 32, 64, or 128 
were used. The batch size determines the 
number of samples that will be propagated 
through the network at a time. Smaller batch 
sizes often lead to a more stable convergence 
but can increase the training time. Larger batch 
sizes can speed up the training process but 
might lead to less stable convergence and 
potentially poorer generalization performance. 
 

Each model was iteratively evaluated using 
MCDO with 30,000 iterations to estimate the 
predictive uncertainty, capturing both aleatoric and 
epistemic uncertainties. 
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4.3 Model Development and Forecast 

Interval 
In our study, we utilize TensorFlow along with the 
Keras library, combining TensorFlow’s advanced 
computational power for data processing and model 
training with the user-friendly neural network API 
of Keras. This integration significantly enhances our 
application of complex machine learning 
techniques, particularly MCOD, [29], [30]. 

In the preparatory phase, we established a 
detailed grid of hyperparameters, which included 
varying layer depths, neuron counts, activation 
functions, dropout rates, epochs, and batch sizes. 
This framework enabled us to thoroughly explore a 
wide spectrum of models, ranging from simpler 
structures to more complex designs adept at 
capturing intricate data patterns. The models were 
fed time series data with lags ranging from 1 to 12 
months, allowing the networks to learn from past 
trends and patterns in durian exports. 

The activation functions we selected, namely 
ReLU, sigmoid, and tanh, are widely recognized in 
neural network modeling. Each of these functions 
offers distinct advantages when handling non-linear 
data. The utilization of dropout, a crucial 
regularization technique, has a significant impact on 
our models. To mitigate overfitting, neurons are 
randomly deactivated during the training process, 
[31]. 

In a conventional neural network, a point 
forecast ŷ  for a given input X  is obtained through 
a single forward pass using the learned weights W , 
expressed as  ˆ ;y f X W . However, in an MCDO-
NN, the point forecast is derived from the average 
output of N  stochastic forward passes: 

 

 1

1ˆ ;N

ii
y f X W

N 
  ,                 (10) 

 
This formulation, 

iW  denotes the set of weights 
used during the i-th forward pass, where dropout has 
been applied, effectively simulating a sample from 
the approximate posterior distribution of weights. 
This procedure approximates the expected value of 
the predictive distribution in a Bayesian framework, 
 |E Y X , as [6], [32]: 
 

     1

1| ;N

ii
E Y X f X W

N 
  .           (11) 

 

The variability of outputs across these forward 
passes provides an empirical estimate of the 
standard error (S.E.): 

 

   
2

1

1 ˆ. . ;
1

N

ii
S E f X W y

N 
 


 ,      (12) 

 
where  ; if X W  is the prediction from the i-th 
forward pass with dropout applied, ŷ  is the mean 
prediction from all forward passes. Using this 
standard error, the forecast interval at a given 
confidence level α can be calculated as: 

 
       2ˆ . .y z S E ,                         (13) 

 
where 2z  is the critical value from the standard 
normal distribution corresponding to the desired 
confidence level. The standard error represents 
aleatoric uncertainty as well as the epistemic. By 
capturing the variability of the outputs, the forecast 
interval can be constructed to reflect the confidence 
in the neural network’s predictions, [23], [33]. It is 
observed that the forecast interval in (13) can be 
considered as Wald’s confidence interval, [34], [35]. 
 
 
5   Results 
The results will be separated into two subsections: 
the optimal model, the impact of the 
hyperparameters, and the forecast intervals from the 
proposed method and the SARIMA. 
 
5.1 Optimal Model and Impact of 

Hyperparameters 

Our detailed analysis of neural network 
hyperparameters for forecasting durian exports 
reveals a relationship between model complexity 
and RMSEs. Figure 6 presents the top 40 models 
with the lowest RMSE. The optimal model, 
featuring a deep layer configuration of 300-240-
180-120-60-30, achieved an RMSE of 9,570.24. 
However, the RMSE values varied across 
configurations, suggesting potential overfitting in 
deeper networks. For instance, models with 120-60-
30 layers averaged an RMSE of 11,343.47, as 
shown in Figure 7. Concerning the activation 
functions of our optimal model, the sigmoid 
function was the least effective, achieving an 
average RMSE of 11,907.44, compared to 
11,822.70 for ReLU and 11,059.11 for Tanh, the 
latter being the most effective, as illustrated in 
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Figure 8. The length of training also had a big effect 
on accuracy.  
 

 
 

 
Fig. 6: Top 40 neural network models with the lowest RMSE values 

 

 
Fig. 7: Average RMSE for various layer 
configurations 

 

 
Fig. 8: Average RMSE for different activation 
functions 
 

 
Fig. 9: Average RMSE for different numbers of 
Epochs 

 

 
 

Fig. 10: Average RMSE for different numbers of 
batch sizes 
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Fig. 11: Average RMSE for different dropout 
patterns 
 

For example, Figure 9 shows that neural 
network models trained for 100 epochs had the 
lowest average RMSE of 11,110.30, which shows 
how important it is to have enough training time. 
Smaller batch sizes improved performance, with the 
optimal model using a batch size of 16 reaching an 
RMSE of 11,328.21, while larger sizes resulted in 
higher RMSEs, as shown in Figure 10. Figure 11 
shows that models with dropout rates between 0.4 
and 0.3 to 0.2 did better than models with higher 
dropout rates, with an average RMSE of 11,343.47. 
This shows how important it is to have balanced 
regularization. 
 
5.2  Interval Forecasting of Durian Export 
The study investigated the efficacy of a MCDO-NN 
model for interval forecasting durian exports and 
compared its performance with a benchmark 
SARIMA(1, 1, 2)(0, 1, 2)12 model which gives the 
lowest AIC from the grid search. The SARIMA 
model, was chosen for its popularity and widespread 
use in time series forecasting. However, when 
subjected to out-of-sample testing, the SARIMA 
model presented an RMSE of 11,581.04, an MSE of 
134,120,379.12, and an R-squared value of 0.2439. 
In contrast, the MCDO-NN model demonstrated 
superior predictive performance with an RMSE of 
9,570.24, an MSE of 91,589,426.42, and an R-
squared value of 0.4837. These metrics indicate that 
the MCDO-NN model not only provided better 
point estimates but also explained a greater variance 
in the data, thus offering a more accurate forecast. 

Table 1 and Table 2 summarize the point, lower, 
and upper forecasts generated by the SARIMA and 
MCDO-NN models, respectively. Both models can 
generate negative forecasts for lower bounds, but 
the SARIMA model tends to produce higher 
negative values. Furthermore, the average width of 

the forecast intervals—an indicator of the model’s 
confidence in its predictions—was narrower for the 
MCDO-NN model (13,492.32) than for the 
SARIMA model (16,006.12). This indicates that the 
MCDO model was not only more accurate but also 
more precise, offering tighter confidence intervals. 
Figure 12 and Figure 13 illustrate the interval 
forecasts. 

 
Table 1. Comparison of point, lower, and upper 
forecasts from the SARIMA model with actual 

values in the test dataset 

Month 
Actual 

values 

SARIMA Model 

Lower 

Forecast 

Point 

Forecast 

Upper 

Forecast 

  Dec-22 8,016.03 -2,734.33 4,715.00 12,164.33 

Jan-23 2,508.98 -5,174.65 2,861.73 10,898.11 

Feb-23 2,955.26 -5,906.12 2,139.58 10,185.28 

Mar-23 6,376.79 -6,038.98 2,009.08 10,057.15 

Apr-23 48,583.21 12,862.15 20,912.25 28,962.36 

 May-23 12,397.42 30,432.27 38,484.38 46,536.50 

Jun-23 29,361.91 14,605.78 22,659.91 30,714.04 

Jul-23 15,200.59 8,804.16 16,860.31 24,916.46 

Aug-23 8,604.99 -1,157.88 6,900.28 14,958.45 

Sep-23 8,241.27 -6,118.60 1,941.58 10,001.75 

Oct-23 2,323.94 -5,976.57 2,085.62 10,147.81 

 
Table 2. Comparison of point, lower, and upper 

forecasts from the MCDO-NN model with actual 
values in the test dataset 

Month 
Actual 

values 

MCDO-NN Model 

Lower 

Forecast 

Point 

Forecast 

Upper 

Forecast 

  Dec-22 8,016.03 -1,844.70 2,443.93 6,732.56 

Jan-23 2,508.98 -1,766.84 2,641.08 7,049.00 

Feb-23 2,955.26 -1,790.59 2,914.34 7,619.28 

Mar-23 6,376.79 -2,255.36 7,108.63 16,472.62 

Apr-23 48,583.21 11,613.31 19,424.14 27,234.97 

May-23 12,397.42 12,417.06 20,298.94 28,180.81 

Jun-23 29,361.91 10,910.00 19,345.95 27,781.89 

Jul-23 15,200.59 10,573.10 19,375.07 28,177.03 

Aug-23 8,604.99 -2,573.09 7,379.21 17,331.52 

Sep-23 8,241.27 -2,064.47 3,001.72 8,067.90 

Oct-23 2,323.94 -2,141.27 2,930.45 8,002.17 
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Fig. 12: Time series representation of durian export volumes, highlighting the division of data into training 

(solid line), test (dashed line), and the forecasted mean with a 95% forecast interval (shaded area) 
 

 
Fig. 13: Forecast visualization between the SARIMA and MCDO-NN models against actual test data from 

December 2022 to November 2023 (the shaded areas represent the prediction intervals) 
 
6   Conclusions and Future Work 
This study has shown the application of MCDO-
NNs to create forecast intervals for durian exports in 
Thailand. The effects of various hyperparameters on 
the MCDO-NN models were explored. The result 

can be a guideline for data with seasonality, like the 
durian dataset. The point and interval forecasts were 
compared to those from the SARIMA model, a 
widely used statistical approach for time series data. 
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 For future research, incorporating external 
factors, such as economic indicators, weather 
conditions, or market trends, could further improve 
the accuracy of the MCDD-NN. Additionally, the 
potential of combining MCDO-NN with other 
statistical methods can potentially improve both 
point and interval forecasts. This ensemble approach 
could leverage the strengths of various forecasting 
methodologies. 
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