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Abstract: - A conventional attitude estimation system for a nanosatellite involves direct input of the attitude 

sensor measurements to a Kalman filter. However, in case of using an extended Kalman filter (EKF) for the 

attitude filtering, frequent calculations of the Jacobian matrices bring an excessive computational burden which 

may not be practical for a nanosatellite on-board computer. In order to deal with this problem, in this study, a 

QUEST aided EKF attitude and attitude rate estimation system is proposed. QUEST algorithm is used to obtain 

an initial coarse attitude estimation and then, this estimation is filtered via an EKF. The proposed integrated 

system reduces the computational burden that an EKF brings since the direct input of the attitude measurements 

to the filter makes the measurement model linear. For the attitude representation, modified Rodrigues 

parameters (MRPs) are used unlike widely used quaternions due to the advantages they provide. MRP 

representation has a singularity at only at the multiples of 2π, therefore, any rotation can be represented by 

MRPs, except a complete 360∘ rotation. This singularity can be easily avoided switching between alternate 

MRP sets which is also discussed in this study. The performance of the proposed system is tested with several 

simulations and the results are presented together with the estimation errors and variances. 
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1 Introduction 
The contribution of small satellites to advances in 

space technologies is increasing day after day. Their 

low costs and short development time have led more 

people and private companies to do research and 

produce products in this field. New mission 

concepts have emerged and more elegant solutions 

to existing problems have been developed. 

However, these satellites, which have strict 

constraints in terms of cost, mass, and size, have 

also brought new challenges. Especially, due to the 

cost constraint, the use of expensive high-capability 

components may not be possible. Considering that 

the selection of the on-board computer is also 

affected by this constraint, the developed software 

for the satellite must be computationally light.  

The attitude determination and control (ADCS) 

sub-system is one of the most important sub-

systems in a satellite. It is very important to meet 

the desired pointing accuracy in order to perform the 

control actions properly. An inaccurate attitude 

estimation may cause wrong control actions to be 

taken and lead dire consequences, up to loss of 

mission. For nanosatellites which consist of 10 cm 

× 10 cm × 10 cm units and have masses ranging 

from 1 to 10 kg [1], conventional attitude estimation 

algorithms are usually not applicable due to the high 

demand of computational power. Thus, it is crucial 

to design an elegant attitude estimation system. The 

designed system should be light, fast, and give good 

enough estimations. 

The attitude of a nanosatellite (or any spacecraft) 

can be represented using different attitude 

parameters such as quaternions, Euler angles, and 

Rodrigues parameters [2]. Each representation has 

advantages and disadvantages over each; however, 
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up to date, quaternions are one of the most 

commonly used parameters [3-5]. Although 

quaternions are non-singular attitude parameters 

with attractive properties, the quaternion unit norm 

constraint makes the attitude estimation process 

complicated. In this regard, utilizing from other 

attitude parameters can be beneficial, provided that 

singularities are avoided. A good suggestion might 

be the modified Rodrigues parameters (MRPs), 

which have become increasingly popular in recent 

years [6]. MRP representation has a singularity only 

at the multiples of 2𝜋, therefore, any rotation can be 

represented by the MRPs, except a complete 360∘ 

rotation. This singularity can be easily avoided 

switching between alternate MRP sets which will be 

discussed in Section 2. 

The attitude determination methods for a 

nanosatellite, on the other hand, can be divided into 

two main categories as “static attitude determination 

methods” and “attitude filtering methods”. To the 

author’s best knowledge, the “algebraic method” 

developed by Harold Black in 1964 [7] is the first 

published static attitude determination method. This 

method was also presented as TRIAD which stands 

for “Tri-Axial Attitude Determination” by Malcolm 

Shuster in his 1981’s paper [8]. The TRIAD (or 

algebraic) method aims to find the transformation 

matrix between the spacecraft body frame and the 

reference frame of interest using only two vector 

observations and cannot accommodate more than 

two vectors. One year after the Black’s method, 

Grace Wahba published her famous problem [9] that 

removes the two-vector constraint and can be used 

for any number of vector observations. The 

Wahba’s problem contains minimization of a loss 

function and the first practical solution to the 

problem was presented by Davenport known as the 

“q-method” [10]. Q-method requires an 

eigenvalue/eigenvector decomposition of a 4 × 4 

matrix in order to minimize the Wahba’s loss 

function which inherently demands a considerable 

amount of computational power. Following the q-

method, “QUaternion ESTimator” (QUEST) was 

developed by Shuster [8] which does not require an 

eigenvalue/eigenvector decomposition and is 

computationally more efficient than the q-method. 

Later in 1988, Markley presented a new method to 

minimize the loss function [11]. This method is 

based on the singular value decomposition (SVD) of 

a 3 × 3 matrix and known as SVD method. All the 

mentioned methods have advantages and 

disadvantages compared to each other. Therefore, it 

is important to choose the most appropriate method, 

taking into account the purpose and requirements of 

the mission. One can gain more insight by 

examining the studies comparing these methods [5, 

12]. 

One of the biggest disadvantages of static 

attitude determination methods is that they are 

highly dependent on the quality of attitude sensors. 

Any malfunction in these sensors can make the 

attitude estimation system unreliable or insomuch 

that completely losing a sensor can make the 

estimation impossible. To cope with this problem, 

filtering techniques, especially the use of Kalman 

filters, has become an important part of the 

spacecraft attitude estimation problem [13]. Unlike 

static methods, attitude estimation algorithms with 

Kalman filtering take advantage of the satellite’s 

mathematical model in addition to sensor 

measurements. Thus, the estimation system 

continues to give attitude estimates even if there is 

no available attitude sensor measurement. Since the 

satellite’s dynamics and kinematics equations are 

nonlinear, attitude estimation algorithms require 

nonlinear filtering, two of the most popular ones 

being extended Kalman filter (EKF) [13] and 

unscented Kalman filter (UKF) [14]. The survey 

paper [3] presents a comprehensive study of 

nonlinear attitude estimation methods for 

spacecrafts including two-step estimator, particle 

filters and orthogonal attitude filter. 

For nanosatellites, attitude estimation algorithms 

with Kalman filtering can also be divided into two 

sub-categories as traditional and non-traditional (or 

integrated) approaches. Traditional approaches are 

approaches where attitude sensor measurements are 

directly given as input to the filter [15, 16]. Since 

the measurement models of some basic attitude 

sensors are nonlinear (e.g., magnetometers), the 

computational load is increased in this approach, 

especially if EKF is used. On the other hand, in 

integrated approaches, sensor measurements are first 

pre-processed by one of the static attitude 

determination methods to obtain an initial coarse 

attitude estimation. Then, this attitude estimation is 

given as input to the Kalman filter to filter the result 

[17-21]. In these approaches, where the first phase 

attitude estimation is given directly to the filter, the 

measurement model becomes linear unlike the 

traditional approaches. As a result, compared to 

traditional approaches, integrated approaches reduce 

the computational load relatively. However, overall 

accuracy of the attitude estimation system in 

integrated approaches depends also on the chosen 

first phase static attitude determination method as 

well as the accuracy of measurements and filter 

properties. In [17, 18], authors integrate the TRIAD 

method with an EKF to estimate the attitude angles 

and the angular velocity vector. In [19], SVD 
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method is integrated with an EKF whereas in [20] 

SVD is integrated with an UKF. And in [21], a 

study integrating the q-method with an EKF is 

presented by the authors. 

In this study, an integrated QUEST/EKF attitude 

and angular rate estimation system is presented. The 

QUEST algorithm is chosen because of its accurate 

and efficient algorithm. For the attitude 

representation and the satellite mathematical model, 

MRPs are used due to the advantages they provide. 

The remainder of this paper is organized as 

follows: MRPs are introduced in Section 2. 

Mathematical model of satellite attitude motion is 

given in Section 3, and the measurement models for 

the attitude sensors are given in Section 4. In 

Section 5, the QUEST algorithm and its covariance 

analysis is presented. Kalman filter formulation 

using the MRPs are given in Section 6, and 

simulation results for the proposed system is 

presented in Section 7. Lastly, in Section 8 

conclusion is drawn and the study is summarized. 

 

2 Modified Rodrigues Parameters for 

Attitude Representation 
The modified Rodrigues parameters (MRPs) are a 

minimal set for attitude representation with useful 

properties. The relationship between the MRP 

vector 𝒑 and the quaternion vector 𝒒 is given by [6] 

 

𝑝𝑖 = 
𝑞𝑖

1 + 𝑞4
      𝑖 = 1,2,3 (1) 

 

where the quaternion vector 𝒒 is defined in terms of 

the principal rotation elements as  

 

𝒒 = [

𝑞1

𝑞2

𝑞3

𝑞4

] =

[
 
 
 
𝑒1 𝑠𝑖𝑛(𝜃/2)

𝑒2 𝑠𝑖𝑛(𝜃/2)

𝑒3 𝑠𝑖𝑛(𝜃/2)

𝑐𝑜𝑠(𝜃/2) ]
 
 
 

(2) 

 

The inverse transformation is given by  

 

𝑞4 = 
1 − 𝑝2

1 + 𝑝2
                      (3) 

 

𝑞𝑖 = 
2𝑝𝑖

1 + 𝑝2
    𝑖 = 1,2,3 (4) 

 

where 𝑝2 = 𝒑𝑇𝒑. Using Eq. (1) and (2), principal 

rotation elements can be directly related to the MRP 

vector as 

 

𝒑 = 𝑡𝑎𝑛
𝜃

4
𝒆̂ (5) 

 

The attitude matrix 𝐴 in terms of MRPs, on the 

other hand, is given in compact form by 

 

𝐴 = 𝐼3×3 +
8[𝒑×]2 − 4(1 − 𝑝2)[𝒑×]2

(1 + 𝑝2)2
(6) 

 

where 𝒑× is the skew-symmetric matrix of 𝒑 and 

given by 

 

𝒑× = [

0 𝑝3 −𝑝2

−𝑝3 0 𝑝1

𝑝2 −𝑝1 0
] (7) 

 

Looking at Eq. (5), one can easily see that the 

MRP vector has a singularity at θ = ±360∘, 

meaning that any rotation can be represented, except 

a complete 360∘ rotation, using the MRP vector 

without encountering any singularity problem. Also, 

it is obvious that 

 

|𝒑| ≤ 1     if     θ ≤ 180∘ (8) 
 

|𝒑| ≥ 1     if     θ ≥ 180∘ (9) 
 

|𝒑| = 1     if     θ = 180∘ (10) 
 

Another important feature of MRPs is that, 

similar to quaternions, there are two unique MRP 

sets representing the same attitude. The alternate set 

is known as the “shadow set” and defined as 

 

𝑝𝑖
𝑠 =

−𝑞𝑖

1 − 𝑞4
     𝑖 = 1,2,3 (11) 

 

The shadow set can also be given in terms of the 

principal rotation elements by 

 

𝒑𝑆 = 𝑡𝑎𝑛 (
θ − π

4
) 𝒆̂ (12) 

 

which is singular at θ = 0∘, unlike the original MRP 

set which is singular at θ = ±360∘. Since both sets 

represent the same attitude and also satisfy the same 

kinematic differential equation, the singularity 

problem can be avoided by switching between these 

two sets. The relationship between the original set 

and the shadow set is given by 

 

𝑝𝑖
𝑆 =

−𝑝𝑖

𝑝2
          𝑖 = 1,2,3 (13) 

 

There are no strict restrictions about when to 

switch between two sets; however, by looking at Eq. 
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(5), (12), and (13) one can notice that one set of 

MRP always corresponds to a θ ≤ 180∘ principal 

rotation and the other corresponds to a θ ≥ 180∘ 

rotation. Therefore, choosing 𝒑𝑇𝒑 = 1 as the 

switching surface is convenient for control purposes 

because now, attitude will always be represented by 

the short rotation. Also, at 𝒑𝑇𝒑 = 1, Eq. (13) 

simplifies to 𝒑𝑆 = −𝒑 and length of the attitude 

representation becomes bounded above by 1. 

 

3 Mathematical Model of Satellite 

Attitude Motion 
The attitude dynamics for a satellite is derived using 

the relationship between the time derivative of the 

angular momentum vector 𝑑𝑳/𝑑𝑡 and the applied 

torque vector 𝑵 as [22] 

 
𝑑𝑳

𝑑𝑡
= 𝑵 − 𝛚𝑏𝑖 × 𝑳 = 𝐽

𝑑𝛚𝑏𝑖

𝑑𝑡
(14) 

 

where 𝐽 is the satellite moment of inertia matrix and 

𝛚𝑏𝑖 is the body angular velocity vector with respect 

to the inertial frame. Since 𝑳 = 𝐽𝛚𝑏𝑖, Eq. (14) can 

be rewritten as  

 
𝑑𝛚𝑏𝑖

𝑑𝑡
= 𝐽−1[𝑵 − 𝛚𝑏𝑖 × (𝐽𝛚𝑏𝑖)] (15) 

 

The net torque applied to a satellite consists of 

two parts as disturbance torques and control torques. 

Disturbance torques can be caused by different 

effects such as gravity gradient, aerodynamic drag, 

and solar radiation pressure. For a nanosatellite 

orbiting in a low Earth orbit (LEO), the most 

dominant disturbance torque is known to be the 

gravity gradient torque and other disturbances can 

be neglected. Therefore, assuming zero control 

torque input, the attitude dynamics for a 

nanosatellite can be simplified as 

 
𝑑𝛚𝑏𝑖

𝑑𝑡
= 𝐽−1[𝑵𝒈𝒈 − 𝛚𝑏𝑖 × (𝐽𝛚𝑏𝑖)] (16) 

 

where 𝑵𝑔𝑔 is gravity gradient torque given by [23] 

 

𝑵𝑔𝑔 = −3
𝜇

𝑟0
3 [

(𝐽𝑦𝑦 − 𝐽𝑧𝑧)𝐴23𝐴33

(𝐽𝑧𝑧 − 𝐽𝑥𝑥)𝐴13𝐴33

(𝐽𝑥𝑥 − 𝐽𝑦𝑦)𝐴13𝐴23

] (17) 

 
along the orbit. Here, 𝜇 is the gravitational 

parameter for the Earth and 𝑟0 is the distance 

between the center of mass of the Earth and the 

satellite. 

On the other hand, the kinematic equations of 

motion of the satellite via MRP attitude 

representation is given as follows [24] 

 

𝒑̇ =
1

2
{
1

2
(1 − 𝒑𝑇𝒑)𝐼3×3 + [𝒑×] + 𝒑𝒑𝑇}𝛚𝑏𝑟 (18) 

 

where 𝛚𝑏𝑟 is the body angular velocity vector with 

respect to the reference frame.  

Here, one should note that Eq. (18) is highly 

dependent on the chosen reference frame. If the 

reference frame is chosen as Earth-centered inertial 

(ECI) frame, then following equity can be written 

 

𝛚𝑏𝑟 = 𝛚𝑏𝑖 (19) 
 

However, if the chosen reference frame is not an 

inertial frame, then 𝛚𝑏𝑖 and 𝛚𝑏𝑟 should be related 

accordingly. In case it is chosen as the orbital frame, 

they can be related as 

 

𝛚𝑏𝑟 = 𝛚𝑏𝑜 = 𝛚𝑏𝑖 − 𝐴[0 −ω𝑜 𝑜]𝑇 (20) 

 

where 𝛚𝑏𝑜 is the body angular velocity vector with 

respect to the orbital frame and ω𝑜 is the angular 

velocity of the orbit given by 

 

ω𝑜 = √
𝜇

𝑟0
3

(21) 

 

4 Attitude Sensors and Sensor 

Measurement Models 
The proposed QUEST aided EKF nanosatellite 

attitude estimation system uses a three-axis 

magnetometer and sun sensor as the attitude sensors. 

Also, it has a gyroscope that provides body angular 

velocity measurements. In this section, 

measurement models related to these sensors are 

given where all the sensors are assumed to be in-

flight calibrated. 
 
4.1 Magnetometer Measurement Model 
The magnetometer measurement model including 

noise can be given as follows [23] 

 

𝑩̃𝑏 = 𝐴𝑩𝒓 + 𝛈𝑚 (22) 

 

where 𝑩̃𝑏 is the measured magnetic field vector in 

the body frame, 𝑩𝒓 is the magnetic field vector in 

the reference frame, and 𝛈𝑚 is the magnetometer 

noise vector which is assumed to be a zero-mean 

Gaussian white noise with the characteristics of 
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𝐸{𝛈𝑚𝑘
𝛈𝑚𝑗

𝑇 } = 𝐼3×3σ𝑚
2 δ𝑘𝑗 (23) 

 

where σ𝑚 is the standard deviation of the 

magnetometer error and δ𝑘𝑗 is the Kronecker delta 

symbol. The Earth magnetic field vector 𝑩𝒓 can be 

modeled in the orbital frame using the International 

Geomagnetic Reference Field (IGRF) as [23] 

 

𝐵𝑟𝑥 =
𝑀𝑒

𝑟0
3 {𝑐(ω𝑜𝑡)[𝑐(ε)𝑠(𝑖) − 𝑠(ε)𝑐(𝑖)𝑐(ω𝑒𝑡)] 

−𝑠(ω𝑜𝑡)𝑠(ε)𝑠(ω𝑒𝑡)} (24) 
 

𝐵𝑟𝑦 = −
𝑀𝑒

𝑟0
3 {𝑐(ε)𝑠(𝑖) + 𝑠(ε)𝑠(𝑖)𝑐(ω𝑒𝑡)}          (25) 

 

𝐵𝑟𝑧 =
2𝑀𝑒

𝑟0
3 𝑠(ω𝑜𝑡)[𝑐(ε)𝑠(𝑖) − 𝑠(ε)𝑐(𝑖)𝑐(ω𝑒𝑡)] 

−2𝑠(ω𝑜𝑡)𝑠(ε)𝑠(ω𝑒𝑡) (26) 
 

where 𝑀𝑒 = 7.71 × 1015 Wb.m is the magnetic 

dipole moment of the Earth, ε = 9.3∘ is the 

magnetic dipole tilt angle, ω𝑒 = 7.29 × 10−5 rad/s 

is the spin rate of the Earth, and 𝑖 is the orbit 

inclination. 𝑐(⋅) and 𝑠(⋅) are abbreviations for 

cosine and sine, respectively. 

 

4.2 Sun Sensor Measurement Model 
The sun sensor measurement model including noise 

can be given as follows [23] 

 

𝑺̃𝑏 = 𝐴𝑺𝒓 + 𝛈𝑠 (27) 
 

where 𝑺̃𝑏 is the measured sun direction vector in the 

body frame, 𝑺𝒓 is the sun direction vector in the 

reference frame, and 𝛈𝑠 is the sun sensor noise 

vector which is assumed to be a zero-mean Gaussian 

white noise with 

 

𝐸{𝛈𝑠𝑘
𝛈𝑠𝑗

𝑇 } = 𝐼3×3σ𝑠
2δ𝑘𝑗 (28) 

 

where σ𝑠 is the standard deviation of the sun sensor 

error. The sun direction vector 𝑺𝒓 can be calculated 

via well-known algorithms. One example of a 

standard sun direction vector calculation algorithm 

is well-documented in [25] and will not be repeated 

here for the sake of brevity. 

 

4.3 Gyroscope Measurement Model 
The gyroscope measurement model including noise 

can be given as follows [23] 

 

𝛚̃𝑏𝑟 = 𝛚𝑏𝑟 + 𝛈ω (29) 
 

where 𝛚̃𝑏𝑟 is the measured body angular velocity, 

𝛚𝑏𝑟 is the true body angular velocity vector, and 𝛈ω 

is the gyroscope noise vector which is assumed to 

be a zero-mean Gaussian white noise with the 

characteristics of 

 

𝐸{𝛈ω𝑘
𝛈ω𝑘

𝑇 } = 𝐼3×3σω
2 δ𝑘𝑗 (30) 

where σω is the standard deviation of the gyroscope 

error. 
 

5 Minimization of Wahba’s Problem 

and the QUEST Algorithm 
QUEST algorithm is one of the most popular and 

efficient static attitude determination methods 

developed to minimize Wahba’s loss function. This 

section is devoted to explaining the QUEST 

algorithm with details and follows the original work 

[8] of Malcolm D. Shuster, creator of the QUEST. 

The original loss function proposed by Wahba is 

given as [9] 

 

𝐿(𝐴) =
1

2
∑𝑎𝑖|𝑾̂𝑖 − 𝐴𝑽̂𝑖|

2
𝑛

𝑖=1

(31) 

 

where 𝑾̂𝑖, 𝑖 = 1,… , 𝑛 are observation unit vectors, 

𝑽̂𝑖 are reference unit vectors, and 𝑎𝑖 are nonnegative 

weights assigned to each particular observation.  

The aim of the QUEST algorithm is to find the 

optimal attitude matrix 𝐴𝑜𝑝𝑡 that minimizes Eq. (31) 

or that maximizes the corresponding gain function 

𝑔(𝐴) given by 

 

𝑔(𝐴) = 1 − 𝐿(𝐴) = ∑𝑎𝑖𝑾̂𝑖
𝑇𝐴𝑽̂𝑖

𝑛

𝑖=1

(32) 

 

Considering that the attitude matrix 𝐴 is an 

orthogonal matrix and using the cyclic invariance 

property of the trace operation, gain function can be 

rewritten as  

 

𝑔(𝐴) = 𝑡𝑟[𝐴𝐵𝑇] (33) 

 

where 𝑡𝑟[⋅] denotes the trace operation and the 

matrix 𝐵 is known as the “attitude profile matrix” 

defined as 

 

𝐵 = ∑𝑎𝑖𝑾̂𝑖𝑽̂𝑖
𝑇

𝑛

𝑖=1

(34) 

 

It can be seen easily from Eq. (33) that 𝐿(𝐴) is 

minimized when 𝑡𝑟[𝐴𝐵𝑇] is maximized. 
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Since 𝐴 is a 3 × 3 orthogonal matrix subject to 

six constraints, it is expressed in terms of its related 

quaternions in order to reduce the complexity during 

the maximization of Eq. (33). The relationship 

between the attitude matrix 𝐴 and its related 

quaternion vector is given by 

 

𝐴(𝒒) = (𝑞4
2 − 𝑸 ⋅ 𝑸)𝐼3×3 + 2𝑸𝑸𝑇 + 2𝑞4𝑸

× (35) 

 

where 𝑸 =  [𝑞1 𝑞2 𝑞3] is the vector component 

of the quaternion vector 𝒒 and 𝑸× is the skew-

symmetric matrix of 𝑸 given by 

 

𝑸× = [

0 𝑞3 −𝑞2

−𝑞3 0 𝑞1

𝑞2 −𝑞1 0
] (36) 

 

Using Eq. (35), gain function can be written in 

terms of quaternions as follows 

 

𝑔(𝒒) = (𝑞4
2 − 𝑸 ⋅ 𝑸)𝑡𝑟[𝐵𝑇] + 2𝑡𝑟[𝑸𝑸𝑇𝐵𝑇] 

                                                   +2𝑞4𝑡𝑟[𝑸
×𝐵𝑇] (37) 

 

In order to obtain the bilinear form of Eq. (37), 

following quantities are introduced 

 

σ = 𝑡𝑟[𝐵] (38) 
 

𝑆 = 𝐵 + 𝐵𝑇 (39) 
 

𝒁 = ∑𝑎𝑖(𝑊̂𝑖 × 𝑉̂𝑖)

𝑛

𝑖=1

(40) 

 

These quantities are used to create the 4 × 4 𝐾 

matrix as 

 

K = [
S − σI 𝒁

𝒁𝑇 σ
] (41) 

 

And using the matrix 𝐾, gain function can be 

written in the bilinear form as 

 

𝑔(𝒒) = 𝒒𝑇𝐾𝒒 (42) 

 

The attitude determination problem can now be 

thought of as finding the quaternion vector 𝒒𝑜𝑝𝑡 that 

maximizes the Eq. (42). However, it is known that 

the quaternion vector 𝒒 must satisfy the unit-length 

constraint given by 

 

𝒒𝑇𝒒 = 1 (43) 

 

Using the method of Lagrange multipliers, this 

constraint can be taken into account and a new gain 

function 𝑔′(𝒒) can be defined as  

 

𝑔′(𝒒) = 𝒒𝑇𝐾𝒒 − λ𝒒𝑇𝒒 (44) 

 

where λ is chosen to satisfy the constraint. 

Differentiating Eq. (44), one can see that 𝑔′(𝒒) 

is maximized when  

𝐾𝒒 = λ𝒒 (45) 
 

Therefore, it can be said that 𝒒𝑜𝑝𝑡 must be an 

eigenvector and λ must be an eigenvalue of 𝐾. Gain 

function 𝑔(𝒒) is maximized when 𝒒𝑜𝑝𝑡 is chosen to 

be the eigenvector corresponding to the largest 

eigenvalue of 𝐾. This statement can be expressed 

mathematically as 

 
𝐾𝒒𝑜𝑝𝑡 = λ𝑚𝑎𝑥𝒒𝑜𝑝𝑡 (46) 

 

5.1 Finding the Optimal Quaternion Set 
Finding the exact largest eigenvalue and its 

corresponding eigenvector of the 4 × 4 𝐾 matrix, as 

in Davenport’s q-method, was expensive to compute 

for an on-board computer in the early of 1980s. The 

QUEST algorithm is a numerical approximation of 

the Davenport’s q-method which was developed to 

ease this computational burden. Shuster derived an 

analytic formula of the characteristic equation of the 

𝐾 matrix given as [8] 

 

λ4 − (𝑎 + 𝑏)λ2 − 𝑐λ + (𝑎𝑏 + 𝑐σ − 𝑑) = 0 (47) 
 

where the coefficients 𝑎, 𝑏, 𝑐, and 𝑑 are defined as 

 

𝑎 = σ2 − tr[adj(𝑆)] (48) 

 

𝑏 = σ2 + 𝒁𝑇𝒁           (49) 
 

𝑐 = 𝑑𝑒𝑡(𝑆) + 𝒁𝑇𝑆𝒁 (50) 
 

 𝑑 = 𝒁𝑇𝑆2𝒁                 (51) 
 

Here 𝑎𝑑𝑗(⋅) denotes the adjoint and 𝑑𝑒𝑡(⋅) denotes 

the determinant operation. Any iterative technique 

can be used to find the root of Eq. (47) and a 

starting value of λ = 1 can be used for this process. 

After finding the largest eigenvalue λ𝑚𝑎𝑥, following 

quantities are introduced 

 

α = λ𝑚𝑎𝑥
2 − σ2 + 𝑡𝑟[𝑎𝑑𝑗(𝑆)] (52) 

 

β = λ𝑚𝑎𝑥 − σ                            (53) 
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γ = (λ𝑚𝑎𝑥 + σ)α − 𝑑𝑒𝑡(𝑆)   (54) 
 

 𝑿 = (α𝐼 + β𝑆 + 𝑆2)𝒁               (55) 

 

and the optimal quaternion vector is constructed as  

 

𝒒𝑜𝑝𝑡 =
1

√γ2 + |𝑿|2
[
𝑿
γ
] (56) 

 

One should note that solution given by Eq. (56) 

is an approximation and inherently less accurate 

than the exact solution given by Davenport’s q-

method. 

 

5.2 QUEST Algorithm Covariance Analysis 
The variances of the attitude parameters are needed 

to compose the measurement noise covariance 

matrix 𝑅 for the Kalman filter. The 3 × 3 quaternion 

covariance matrix is given by [8] 

 

𝑃𝑄𝑄 = 𝐸[δ𝑸δ𝑸𝑇] (57) 

 

where 𝐸[⋅] denotes the expectation value. Assuming 

that for a very small rotation, reference and 

observation vectors are identical, that is 

 

               𝑾̂𝑖 = 𝑽̂𝑖    (i = 1,… , n) (58)  

 

Then, 𝛿𝑸 can be written as  

 

δ𝑸 = 𝑀−1δ𝒁 (59) 
 

where 𝑀 and δ𝒁 is given by 

 

𝑀 = 2𝐼3×3 − 2∑𝑎𝑖𝑾̂𝑖

𝑛

𝑖=1

𝑾̂𝑖
𝑇 (60) 

δ𝒁 = ∑𝑎𝑖(δ𝑾̂𝑖 × 𝑽̂𝑖 + 𝑾̂𝑖 × δ𝑽̂𝑖)

𝑛

𝑖=1

(61) 

 

The 3 × 3 quaternion covariance matrix given in 

Eq. (57) can now be rewritten as 

 

𝑃𝑄𝑄 = 𝑀−1𝐸[δ𝒁δ𝒁𝑇]𝑀−1 (62) 

 

where 𝐸[δ𝒁δ𝒁𝑇] can be calculated as 

 

𝐸[δ𝒁δ𝒁𝑇] = ∑𝑎𝑖
2σ𝑖

2[𝐼 − 𝑾̂𝑖𝑾̂𝑖
𝑇]

𝑛

𝑖=1

(63) 

 

Finally, substituting Eq. (60) and (63) into Eq. 

(62) yields 

 

𝑃𝑄𝑄 =
1

4
σ𝑡𝑜𝑡

2 [𝐼 − ∑𝑎𝑖𝑾̂𝑖

𝑛

𝑖=1

𝑾̂𝑖
𝑇]

−1

(64) 

 

(σ𝑡𝑜𝑡
2 )−1 = ∑(σ𝑖

2)
−1

𝑛

𝑖=1

= ∑(𝜎𝑽𝑖

2 + 𝜎𝑾𝑖

2 )
−1

𝑛

𝑖=1

(65) 

 

Eq. (64) gives the final form of the 3 × 3 

quaternion covariance matrix; however, it is more 

convenient to define the quaternion covariance 

matrix as a 4 × 4 matrix by including also the 

covariance of the scalar component 𝑞4. The 

relationship between the 4 × 4 quaternion 

covariance matrix 𝑃𝑞𝑞 and 3 × 3 quaternion 

covariance matrix 𝑃𝑄𝑄 is given by 

 

𝑃𝑞𝑞 = [𝒒𝑜𝑝𝑡] [
𝑃𝑄𝑄 𝟎

𝟎𝑇 𝟎
] [𝒒𝑜𝑝𝑡]

𝑇
(66) 

 

where the matrix [𝒒] is defined as 

 

[𝑞] = [

𝑞4 −𝑞3 𝑞2 𝑞1

𝑞3 𝑞4 −𝑞1 𝑞2

−𝑞2 𝑞1 𝑞4 𝑞3

−𝑞1 −𝑞2 −𝑞3 𝑞4

] (67) 

 

5.2.1 Computation of the Covariance Matrix 

for the Modified Rodrigues Parameters  
The proposed QUEST aided EKF attitude 

estimation system provides the attitude information 

in terms of MRPs. The 3 × 3 MRP covariance 

matrix can be obtained from 𝑃𝑞𝑞 using the well-

known covariance law [26] as 

 

𝑃𝑝𝑝 = 𝐻𝑃𝑞𝑞𝐻
𝑇 (68) 

 

where the matrix H is calculated as 

 

𝐻 = 

[
 
 
 
 
 
 
𝜕𝑝1

𝜕𝑞1

𝜕𝑝1

𝜕𝑞2

𝜕𝑝1

𝜕𝑞3

𝜕𝑝1

𝜕𝑞4

𝜕𝑝2

𝜕𝑞1

𝜕𝑝2

𝜕𝑞2

𝜕𝑝2

𝜕𝑞3

𝜕𝑝2

𝜕𝑞4

𝜕𝑝3

𝜕𝑞1

𝜕𝑝3

𝜕𝑞2

𝜕𝑝3

𝜕𝑞3

𝜕𝑝3

𝜕𝑞4]
 
 
 
 
 
 

 (69) 

 Since the relationship between MRPs and 

quaternions change when the original MRP set 𝒑 is 

switched to shadow set 𝒑𝑺 as stated in Eq. (1) and 

(11), one should be careful while creating the H 

matrix and calculate the derivatives accordingly. 
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6 Kalman Filter Formulation Using 

Modified Rodrigues Parameters 
The 6 × 1 state vector for the proposed QUEST 

aided EKF consists of MRPs and body angular 

velocity vector components, given by 

 

𝒙 = [
𝒑

𝝎𝑏𝑖
] (70) 

 

The state vector can be propagated using the 

following discrete model [27] 

 

𝒙𝑘+1 = 𝒇(𝒙𝑘 , 𝑘) + 𝒘𝑘 (71) 
 

where the function 𝒇(𝒙𝑘 , 𝑘) is the nonlinear state 

transition function and 𝒘𝑘 is the process noise. The 

state transition function 𝒇(𝒙𝑘 , 𝑘) maps the previous 

state to the current state and formed by integrating 

Eq. (16) and (18). The measurement vector, on the 

other hand, is modeled as 

 

𝒛𝑘 = 𝒉(𝒙𝑘 , 𝑘) + 𝒗𝑘 (72) 
 

where 𝒉(𝒙𝑘 , 𝑘) is the nonlinear measurement model 

and 𝒗𝑘 is the measurement noise. The nonlinear 

measurement model 𝒉(𝒙𝑘 , 𝑘) maps the current state 

to measurements. 

 The process noise 𝒘𝑘 and measurement noise 𝒗𝑘 

are both assumed to be zero-mean white Gaussian 

with the covariances 

 

𝐸[𝑤𝑘𝑤𝑗
𝑇] = 𝑄𝑘δ(𝑘𝑗) (73) 

 

𝐸[𝑣𝑘𝑣𝑗
𝑇] = 𝑅𝑘δ(𝑘𝑗) (74) 

 

 It is also assumed that both noises are 

uncorrelated, that is  

 

𝐸[𝑤𝑘𝑣𝑗
𝑇] = 0 (75) 

 

 The propagation of the state error covariance 

matrix 𝑃 in discrete time is given by  

 

𝑃𝑘+1 = Φ𝑘𝑃𝑘Φ𝑘
𝑇 + 𝑄𝑘 (76) 

 

where Φ is the state transition matrix and calculated 

by using the first-order Taylor series expansion as 

follows 

 

Φ(𝑡) = 𝑒𝐹𝑡 ≈ 𝐼 + 𝐹𝑡 (77) 
 

where the matrix 𝐹 is given by 

 

𝐹 =
∂𝒇

∂𝒙
(78) 

 

The discrete state transition matrix Φ𝑘 can be 

found evaluating Eq. (77) at the sampling time 𝑇𝑠 as 

 

Φ𝑘 = 𝑒𝐹𝑘𝑇𝑠 ≈ I + FkTs (79) 

 

where the matrix 𝐹𝑘 is obtained evaluating the Eq. 

(78) at 𝒙𝑘. Eq. (71), and Eq. (76) constitutes the 

prediction part of the EKF. Hereafter, the 

uncorrected predictions obtained via Eq. (71) and 

(76) will be denoted by . ̂− symbol. 

 The correction or update part of the filter starts 

with calculating the Kalman gain matrix 𝐾𝑘+1 as  

 

𝐾𝑘+1 =
𝑃̂𝑘+1

− 𝐻𝑘+1
𝑇

𝐻𝑘+1𝑃̂𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1

(80) 

 

where 𝐻𝑘+1 is known as the state observation matrix 

calculated as 

 

𝐻𝑘+1 =
∂𝒉(𝒙̂𝑘+1

− , 𝑘 + 1)

∂𝒙
|
𝒙=𝒙̂𝑘+1

−

(81) 

 

At this point, the advantage of the proposed 

QUEST aided EKF attitude estimation system 

comes to the fore. In the system, the attitude and 

angular velocity measurements are obtained from 

the QUEST algorithm and gyroscopes, respectively. 

Looking at Eq. (72), one can realized that for the 

proposed system the states are directly observable, 

that is  

 

𝒛𝑘 = 𝒙𝑘 + 𝒗𝑘 (82) 
 

Using the QUEST algorithm before the filtering 

and obtaining an initial coarse attitude estimation 

makes the nonlinear measurement model 𝒉(𝒙𝑘 , 𝑘) 

linear and reduces the computational load that an 

EKF brings. The matrix 𝐻𝑘+1 becomes just an 

identity matrix independent of the sampling index 

𝑘 + 1. 

After the calculation of the Kalman gain matrix 

𝐾𝑘+1, the update or correction is made for the 

predicted state vector and state error covariance 

matrix as  

 

𝑃𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻)𝑃̂𝑘+1

−      (83) 

 

𝒙𝑘+1
+ = 𝒙̂𝑘+1

− + 𝐾𝑘+1𝑦𝑘+1      (84) 

 

where 𝑦𝑘+1 is the measurement residual defined as 
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      𝒚𝑘+1 = 𝒛𝑘+1 − 𝐻𝒙̂𝑘+1
−     (85) 

 

Here one should note that for the 𝐻 matrix sampling 

index 𝑘 + 1 is omitted since it is just an identity 

matrix independent of the sampling index. 

 

6.1 MRP Shadow Set Consideration for 

Kalman Filtering 
If after the state prediction with Eq. (71) or update 

with Eq. (84), the MRP set exceeds the switching 

surface, that is 𝒑𝑇𝒑 ≥ 1 or |𝒑| ≥ 1, it is switched 

to the shadow set using Eq. (13). Then, the state 

vector 𝒙 becomes 

 

𝒙𝑺 = [
𝒑𝑺

𝝎𝑏𝑖
] (86) 

 

Also, the state error covariance matrix shadow 

set transformation is given by [28] 

 

𝑃𝑆 = [
𝑆𝑃𝑝𝑝𝑆𝑇 𝑆𝑃𝑝ω𝑏𝑖

𝑃𝑝ω𝑏𝑖
𝑇 𝑆𝑇 𝑃ω𝑏𝑖ω𝑏𝑖

] (87) 

 

where 𝑃𝑎𝑎 is the covariance matrix of 𝑎, 𝑃𝑎𝑏 is the 

cross-correlation matrix between 𝑎 and 𝑏, and 

matrix S is calculated as 

 

𝑆 = 2𝑝−4𝒑𝒑𝑇 − 𝑝−2𝐼3×3 (88) 

 

 One other important consideration is related to 

the MRP part of the measurement residual 𝒚𝑘+1 

which is given by 

 
𝒚𝒑𝑘+1

= 𝒑̃𝑘+1 − 𝐻𝑘+1𝒑̂𝑘+1 (89)  

 

 Near the switching surface where the original 

MRP set measurement 𝒑̃𝑘+1 or estimate 𝒑̂𝑘+1 is 

close to one, the calculation of the measurement 

residual can be problematic. To illustrate, consider 

the situation where 𝒑̃𝑘+1 = [1,0,0], 𝒑̃𝑘+1
𝑆 =

[−1,0,0], and 𝒑̂𝑘+1 = [−1,0,0]. Calculating the 

measurement residual using the original set yields 

 
𝒚𝒑𝑘+1

= [1,0,0] − [−1,0,0] = [2,0,0] (90) 

 

On the other hand, calculating the measurement 

residual using the shadow set yields 

 
𝒚𝒑𝑘+1

= [−1,0,0] − [−1,0,0] = [0,0,0] (91) 

 

As can be seen easily, Eq. (90) and (91) yields 

different measurement residuals and Eq. (90) causes 

a correction to be applied when it is not needed. In 

order to deal with this problem, an elegant algorithm 

is proposed by the authors in [29] which the 

pseudocode for it is given as follows 

 

Algorithm 1: Measurement residual algorithm 

for MRP based EKF 

1 𝒚𝒑𝑘+1
= 𝒑̃𝑘+1 − 𝐻𝑘+1𝒑̂𝑘+1 

2 if |𝒑̃𝑘+1| > 1/3 then 

3      𝒚𝒑𝒌+𝟏
′ = 𝒑̃𝒌+𝟏

𝑺 − 𝑯𝒌+𝟏𝒑̂𝒌+𝟏 

4      if |𝒚𝒑𝒌+𝟏
′ | < |𝒚𝒑𝑘+1

|   

5           𝒚𝒑𝒌+𝟏
= 𝒚𝒑𝒌+𝟏

′  

6      end if 

7 end if 

 

7 Simulations and Results 
In the proposed QUEST aided EKF attitude and 

angular rate estimation system, the QUEST 

algorithm estimates the MRP set at each time step 

using magnetometer and sun sensor measurements. 

Then, this estimate is given to the EKF as an input 

together with the gyroscope measurement which is 

simulated separately. The EKF filters the QUEST 

solution and the gyroscope measurement with the 

help of the mathematical model of the satellite 

dynamics and kinematics. In order to verify the 

performance of the proposed estimation system, 

simulations are performed for 583.4 seconds with a 

sampling time Ts  =  0.1 second in a circular LEO, 

assuming an environment where only the gravity 

gradient torque exists as the disturbance torque. 

Simulated orbit has an altitude of 626 𝑘𝑚 and its 

inclination and longitude of the ascending node are 

chosen to be 111.5∘ and 15∘, respectively. It is also 

assumed that the satellite never enters eclipse 

throughout the orbit so that measurements are 

available from the sun sensor continuously. 

Figure 1, 2, and 3 show the estimation results for 

each individual MRP (𝑝1, 𝑝2, 𝑝3) including the 

absolute values of estimation errors and variances, 

respectively. Sudden drops in the parameters 

indicate the switching between alternate MRP sets.  
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Fig. 1 QUEST aided EKF estimation results for 𝑝1 

 

 
Fig. 2 QUEST aided EKF estimation results for 𝑝2 

 

 
Fig. 3 QUEST aided EKF estimation results for 𝑝3 

 

In addition to the figures, Table 1 shows the 

average root mean square error (RMSE) value for 

each individual MRP after 500 simulation runs are 

executed and Table 2 shows the overall attitude 

estimation error in terms of the principal rotation 

angle (PRA). 

 

MRP 
QUEST aided EKF estimation 

error 

𝒑𝟏 5.7572 × 10−3 

𝒑𝟐 5.4996 × 10−3 

𝒑𝟑 4.8912 × 10−3 

 

Table 1 RMSE errors for each MRP  

(500 simulation average) 

 

PRA 
QUEST aided EKF estimation 

error  

𝛉 0.78298∘ 

 

Table 2 RMSE error for PRA 

 (500 simulation average) 

 

The proposed system also estimates the body 

angular velocity ω𝑏𝑖. Figure 4, 5, and 6 show the 

estimation results for each component of the body 

angular velocity (ω𝑥 , ω𝑦, ω𝑧) including the 

estimation error and variance, respectively. 

 

 
Fig. 4 QUEST aided EKF estimation results for ω𝑥 

 

 
Fig. 5 QUEST aided EKF estimation results for ω𝑦 
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Fig. 6 QUEST aided EKF estimation results for ω𝑧 

 

In addition to the figures, Table 3 shows the 

average root mean square error (RMSE) value for 

each angular velocity component after 500 

simulation runs are executed. 

 

MRP 
QUEST aided EKF estimation 

error 

ω𝑥 4.6287 × 10−5 rad/s 

ω𝑦 4.4945 × 10−5 rad/s 

ω𝑧 4.6353 × 10−5 rad/s 

 

Table 3 RMSE errors for each angular velocity 

component (500 simulation average) 

 

8 Conclusion 
In this study, an integrated QUEST/Extended 

Kalman Filter (EKF) attitude and angular rate 

estimation system is proposed for a nanosatellite. 

QUEST algorithm is used to obtain an initial coarse 

attitude estimation and then, this estimation is 

filtered via an EKF. The proposed integrated system 

reduces the computational burden that an EKF 

brings since the direct input of the attitude to the 

filter makes the measurement model linear. For the 

attitude representation and the satellite mathematical 

model, modified Rodrigues parameters (MRPs) are 

used due to the advantages they provide.  

In order to verify the performance of the 

proposed system, several simulations are performed 

and the attitude and angular rate estimations are 

obtained. As a result of the simulations, the attitude 

estimation errors for each individual MRP are 

obtained on the order of 10−3 whereas for the 

angular rate estimations, errors are obtained on the 

order of 10−5. In addition, the overall attitude 

estimation error in terms of the principal rotation 

angle is obtained as 0.78298∘ which is considered 

to be sufficient for a nanosatellite estimation 

accuracy requirement. 
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