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Abstract: - The increase and integration of renewable energy sources in electrical power systems implies an 

increase in uncertainty variables, both in costs and production, of economic dispatch (ED) and currently have a 

significant influence on wholesale electricity markets (MEM). Uncertainty costs refer to the quantification of 

additional expenses or economic losses associated with the variability inherent in the generation of renewable 

energy, such as wind, solar, or hydroelectric. Therefore, this article presents deterministic equations related to 

cost overestimation and underestimation, as well as CVaR, to model and evaluate the stochasticity of risks 

associated with the integration of renewable sources, allowing system operators and planners to make informed 

decisions. To mitigate or use said risks in energy systems with high penetration of elements, mainly smart 

networks. In this study, a mathematical analysis is carried out using the histogram spectrum formed by the 

power generated by the probability density function (PDF) for solar generation, although it is possible to 

consider other types of functions to determine energy generation. The objective of the proposed model is to 

provide another tool to the system operator for energy management and planning, which relieves a little of the 

weight of the computational load and at the same time presents more precision in the results by being able to 

work with a database. Historical data if these values are available. Commonly, for this type of analysis, values 

are estimated using probabilistic calculations by density functions when integrating these functions, or in other 

recent cases by estimating them by analytical methods of the same functions. A validation of the model is 

presented by comparing the result with the Monte Carlo simulation, developing the total cost of uncertainty 

only from "low probability generation extremes". Furthermore, the results are presented through analytical 

uncertainty cost functions (AUCF). This analysis includes the calculation of uncertainty costs for low and high-

probability energy generation, determined by the Conditional Value at Risk (CVaR), using deterministic 

equations. 
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1  Introduction 
The integration of renewable energy sources into 

power systems is a crucial aspect of transitioning 

towards a more sustainable and resilient energy 

matrix. Renewable energy generation, such as solar 

and wind, possesses unique characteristics that can 

impact the stability and operation of electrical 

systems. These renewable energy sources (RESs) 

are becoming increasingly important to mitigate the 

environmentally harmful impacts of traditional 

energy sources. Despite the inherent advantages of 

pollution reduction and resource conservation, the 

inherent variability in renewable generation, 

influenced by factors like natural resource 

availability and weather conditions, poses 

challenges in the operation, and distribution of the 

power system and in terms of managing energy 

supply and demand, [1]. 

The main objective of using renewable sources 

in the main power system, in addition to reducing 

gas emissions and replacing conventional 

generation, is cost reduction. However, the use of a 
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single renewable technology is not sufficient for the 

large daily demand, the same occurs if only a single 

main source of energy is used, due to its variability 

and imprecision in its generation. 

The authors in [2] have suggested integrated 

scheduling of wind, thermal, and hydropower 

including spinning reserve. Several literature opt for 

sets of renewable sources, which is why the 

continuity of the electrical service is more efficient 

than opting only for solar and wind sources due to 

their uncertainty. In [3], the minimization of 

the power generation cost of the thermal power units 

is achieved by incorporating renewable sources, 

such as hydro, winds, and solar plants for 24 hours 

scheduled, and available transfer capability 

calculation is the prime objective. This mixture of 

non-conventional generations usually provides 

greater support to the network but is not exempt 

from improvements when replacing or adding other 

sources. Today there is no completely reliable 

method or technique for the integration of RESs into 

the network, however, several kinds of the literature 

raise the problem in the short, medium, and long 

term in real-time.  

In [4], [5], they use the same methodology, 

however, they highlight the use of stochastic or 

deterministic optimization techniques. The article 

presents a short-term hydrothermal-wind 

complementary scheduling system (HTWCS) 

considering the uncertainty of wind energy, as well 

as several non-linear systems, formulated as a multi-

objective optimization problem to optimize 

economic and environmental criteria. An improved 

multi-objective bee colony optimization 

(EMOBCO) algorithm is proposed to solve this 

problem, and the second paper a hydro-thermal-

wind-solar hybrid energy system of the provincial 

power grid is taken as the background. A practical 

method for long-term coordination for this system is 

proposed. 

In real-time economic dispatch (ED), due to 

accurate forecasting, the range of uncertainty is 

lower compared to the long-run scheduling, [6]. The 

economic dispatch of energy on power systems with 

high penetration of renewable generation is a 

mathematical problem of optimization. The paper 

[7], shows a mathematical analysis with 

probabilistic methods contrasted with an analytic 

development for controllable renewable systems to 

be included in the target functions of economic 

dispatch problems. 

In [8], analytical formulas of uncertainty penalty 

costs are calculated, for solar and wind energy and 

electric vehicles, through a mathematical expected 

value formulation. 

The integration of renewable sources into the 

grid opens the way to various methods for their 

interconnection without affecting the stability of the 

main system, as well as new concepts such as costs 

due to the overestimation and underestimation 

presented by the uncertainties of renewable sources. 

The authors in [7], [8], [9] and [10], work on this 

concept analytically, improving the time and 

precision of the results that are commonly worked 

on by mathematical methods such as the Monte 

Carlo Method supported by the functions proposed 

for each generation. They present an analysis in the 

development of a new mathematical formulation 

with which it will be possible to determine, through 

probabilistic approaches, the cost that can be 

generated if a diversified electricity market exists, in 

which the demand can actively participate. 

Uncertain behavior of renewable generation 

plants and PEV modeling can be done by 

probability distribution functions (PDFs), as shown 

in [11], where the wind speed for the plants was 

modeled by the Weibull PDF, and the solar 

irradiance was modeled by a lognormal distribution. 

Probability Density Functions (PDFs) for 

determining solar and wind power are statistical 

tools that describe the distribution of energy 

generated by renewable sources based on the 

probability of occurrence. These functions allow 

modeling and predicting the variability in solar and 

wind energy production, which is crucial for the 

design and efficient management of renewable 

energy systems. 
This article mentions normal and log-normal 

PDF for solar energy estimation and Weibull PDF 

for wind energy estimation. The main objective is 

the determination of the costs of uncertainties 

through a deterministic method, using as a 

calculation basis the histogram generated by the 

powers that are determined by the previous 

functions, which can be replaced by a historical 

database for greater precision, helping Thus, the 

system operator is responsible for the management 

and planning of costs and powers associated with a 

certain risk that is determined by the CVaR. 

The commonly used probability density 

functions for wind and solar energy are presented in 

Section 1. Section 2 presents the formulation of the 

problem taking into account the uncertainties of 

costs and powers, and the conditional risk value. 

The Monte Carlo method and Analytical Low-

Probability Generation Extremes are presented in 

Section 3, being the simulation and case study. 

Finally, Section 4 presents the conclusions due to 

the results shown in the analysis. 
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1.1  Normal and Log-normal PDF 
In the context of analyzing solar power generation, 

probability density functions are essential for 

understanding the uncertainty associated with solar 

irradiance and power output. [12], utilized log-

normal probability distribution functions for solar 

irradiance and normal distribution functions for the 

loading and unloading behavior of plug-in electric 

vehicles (PEVs) to develop uncertainty cost 

functions. 

The article [9], develops a model with a normal 

distribution (eq. 1) power, presenting the validation 

for the uncertainty cost factor (UCF) by comparing 

the Monte Carlo simulation with the analytical 

proposal. 

𝑓(𝑃)  =  
1

√2𝜋𝜙2
 ∗  𝑒

(
𝑃−𝜇

√2 𝜙
)
2

 (1) 

 

where 𝑓 is the PDF of the demand, electric vehicle 

or solar power, P represents the power of the 

previous variables, μ and ϕ are the mean and 

standard deviation respectively of probabilistic 

behavior. 

Several investigations have been done to find 

the probability distribution of irradiance, being the 

primary resource of solar energy photovoltaic. The 

function that best describes the behavior of this font 

is the function Log-normal probability distribution 

as [10] (eq. 2). 

𝑓𝐺(𝐺)  =  
1

𝐺𝛽√2𝜋
 ∗  𝑒

−
(𝑙𝑛(𝐺)−𝜆)2

2𝛽2  (2) 

 

where 𝑓𝐺 is the PDF log-normal of the irradiation, G 

represents the solar irradiance, λ and β are the mean 

and standard deviation respectively of probabilistic 

behavior. 

 

1.2  Weibull PDF 
The Weibull distribution is commonly used to 

model wind speed data for wind energy 

applications. The Weibull parameters, shape and 

scale, can be estimated using various numerical 

methods to characterize the wind resource at a given 

location. Shape and scale factors are commonly 

values already estimated by previous analyzes due 

to historical databases for the simplicity of wind 

generation studies. The application of Weibull 

distribution in wind data assessment can be 

extensively found, but the methods applied for 

estimating the parameters still need improvement. 

According to the Weibull PDF with a shape 

factor (β) and scale factor (α), the wind speed 

distribution can be modeled as follows, as specified 

in [1], [13], [14]: 

𝑓𝜐(𝜐)  =  (
𝛽

𝛼
) (
𝜐

𝛼
)
(𝛽−1)

𝑒−(
𝜐
𝛼⁄ )𝛽; 

 
𝑓𝑜𝑟 0 <  𝜐 <  ∞ 

(3) 

 

where υ is the wind speed (m/s). 

In order to get the proposed uncertainty cost 

functions, probability distribution functions (PDF) 

of the energy primary sources are considered: log-

normal distribution for solar irradiance PDF, 

Rayleigh distribution for wind speed PDF and 

normal distribution for loading and unloading 

behaviour PDF of electric vehicles. 

 

 

2  Problem Formulation 
Renewable energies that are dependent on 

environmental factors, mainly such as solar 

irradiation and wind speed, present variability and 

uncertainty in energy production. Therefore, when 

this condition occurs in energy generation, operating 

costs are also related. Uncertainty costs quantify the 

variability that renewable sources introduce to the 

main system. 

 

2.1  Uncertainty Powers 
In the present study, it is assumed that the 

generation units can be operated by companies or by 

the end-users themselves, they are responsible for 

both energy production and buying/selling. This 

article presents an analysis of operational costs 

associated with the tails of probability distribution 

curves for each generation unit, specifically 

focusing on power levels with lower probability of 

occurrence. Depending on the probability density 

function (PDF) used, these power levels are 

influenced by parameters such as mean (μ) and 

standard deviation (σ), along with the conditional 

value-at-risk (CVaR). 

 

2.1.1 Direct Cost and Uncertainty Solar Power 

The direct cost function for the solar power plant is 

determined by the following expression. 

𝐶𝑝𝑣,𝑖(𝑃𝑝𝑣𝑠,𝑖)  =  𝐶𝑜|𝐶𝑢  ∗  𝑃𝑝𝑣𝑠,𝑖   (4) 
 

where 𝑃𝑝𝑣𝑠,𝑖 and 𝐶𝑤,𝑖 are the scheduled power and 

direct cost coefficients of the ith solar power plant, 

respectively. The constants Co and Cu represent the 

costs associated with the uncertainty of solar energy. 

The solar irradiance distribution can be modeled 

correctly using a lognormal PDF. Using the mean 

(μ) and standard deviation (σ) of the lognormal 

PDF, energy conversion for solar PV is defined in 

the following equation (2). 
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𝑃𝑝𝑣(𝐺𝑠)

=

{
 
 

 
 𝑃𝑝𝑣𝑟 (

𝐺𝑠
2

𝐺𝑠𝑡𝑑𝑅𝑐
) , 𝑓𝑜𝑟 0 < 𝐺𝑠 < 𝑅𝑐

𝑃𝑝𝑣𝑟 (
𝐺𝑠
𝐺𝑠𝑡𝑑

) ,                     𝑓𝑜𝑟 𝐺𝑠 ≥ 𝑅𝑐

 
(5) 

 

where 𝑅𝑐 is the irradiance point, 𝐺𝑠𝑡𝑑 is the solar 

irradiance in a standard environment, 𝐺𝑠 is the 

available actual solar, and 𝑃𝑝𝑣𝑟 is the rated power of 

the solar PV. 

 
2.1.2  Direct Cost and Uncertainty Wind Power 

The direct cost function for the wind power plant is 

determined by the following expression. 

𝐶𝑤,𝑖(𝑃𝑤𝑠,𝑖)  =  𝐶𝑜|𝐶𝑢  ∗  𝑃𝑤𝑠,𝑖   (6) 

 

where 𝑃𝑤𝑠,𝑖 and 𝐶𝑤,𝑖 are the scheduled power and 

direct cost coefficients of the ith wind power plant, 

respectively. The constants 𝐶𝑜 and 𝐶𝑢 represent the 

costs associated with the uncertainty of wind 

energy, where their usage is determined by the wind 

power equation (2).  

𝑝𝑤(𝜐) = {

0

𝑝𝑤𝑟  (
𝜐 −  𝜐𝑖𝑛

𝜐𝑟  −  𝜐𝑖𝑛
)

𝑝𝑤𝑟

  

𝜐 < 𝜐𝑖𝑛 𝑎𝑛𝑑 𝜐 > 𝜐𝑜𝑢𝑡 
 

𝜐𝑖𝑛 <= 𝜐 <= 𝜐𝑟 
 

𝜐𝑟 < 𝜐 <= 𝜐𝑜𝑢𝑡 

(7) 

 

The wind speed distribution can be modeled 

correctly using a Weibull PDF. Therefore, for the 

estimation of wind power, it is determined using 

scale parameter (c) and shape parameter (k) or in 

real cases by historical data. For the case study, 

random values determined by k and c were used. 

 

2.2  Uncertainty Cost Formulation 
To define the behavior of the generation of some 

renewable source or demand in terms of probability 

distribution functions, the Log-normal function, 

Weibull distribution function, normal function [7], 

[8], and the beta function [9], commonly related to 

solar, wind generation and demand prediction, 

respectively.  

The proposed deterministic method is presented 

to determine the penalty costs for each case, 

considering the risk conditioned at 10% and 90%, 

related to the cost of overestimation and 

underestimation, respectively. 

 

2.2.1  Penalty Cost due to Underestimate 

Penalty costs due to underestimation depend on the 

perspective of the operator. These costs arise when 

the actual generation power from a renewable 

source exceeds the programmed power value of the 

plant, leading to energy that cannot be delivered to 

the grid. Additionally, penalty costs occur when the 

electric power generator, typically the main grid, is 

unable to meet the energy demand of the users. 

Therefore, it is essential to apply penalties to costs 

associated with overestimating the available 

renewable energy or failing to meet demand 

requirements. 

In summary, if the generating unit provides a 

larger amount of actual energy than the scheduled 

power (8), the surplus power may be unused, and 

the grid operator is liable for the penalty cost. The 

penalty cost associated with the surplus can be 

referred to as follows (9):  
𝑃𝑎,𝑖  >  𝑃𝑠,𝑖 (8) 

 
𝐸[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝑃𝑎,𝑖)]  =  𝐶𝑢,𝑖  ∗  (𝑃𝑎,𝑖  −  𝑃𝑠,𝑖) (9) 

 

Presenting the corresponding function for each unit 

depending on the natural resource, the cost is (10): 
𝐸[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝑃𝑎,𝑖)] = 

𝐶𝑢,𝑖 ∗ ∫ (𝑃𝑎,𝑖 − 𝑃𝑠,𝑖) 𝑓𝑃(𝑃𝑎,𝑖) 𝑑
𝑃𝑎𝑟,𝑖
𝑃𝑠,𝑖

𝑃𝑎,𝑖   
(10) 

 

2.2.2  Penalty Cost due to Overestimate 

Due to the intermittent and uncertain nature of 

primary sources (irradiation or wind) for energy 

production, there is a possibility that the generating 

unit will not be able to generate scheduled power. If 

the actual power supplied by the renewable 

generation unit is less than the scheduled power by 

the operator (11), the system will require reserve 

energy sources to maintain supply continuity to 

consumers. Therefore, the penalty cost due to 

energy scarcity should be assumed by the reserve 

units and can be defined as follows (12): 
𝑃𝑎,𝑖  <  𝑃𝑠,𝑖 (11) 

 
𝐸[𝐶𝑜,𝑖(𝑃𝑠,𝑖, 𝑃𝑎,𝑖)]  =  𝐶𝑜,𝑖  ∗  (𝑃𝑠,𝑖  −  𝑃𝑎,𝑖) (12) 

 

Presenting the corresponding function for each unit 

depending on the natural resource, the cost is (13): 
𝐸[𝐶𝑜,𝑖(𝑃𝑠,𝑖, 𝑃𝑎,𝑖)] = 

𝐶𝑜,𝑖 ∗ ∫ (𝑃𝑠,𝑖 − 𝑃𝑎,𝑖) 𝑓𝑃(𝑃𝑎,𝑖) 𝑑
𝑃𝑎𝑟,𝑖
𝑃𝑠,𝑖

𝑃𝑎,𝑖  
(13) 

 

2.3  Conditional Value at Risk (CVaR) 
The development of an electricity system with high 

penetration of energy from renewable resources 

requires considerable flexibility to cover the risk of 

energy curtailment and shortages, [15]. This paper 

explores how the system generation portfolio of a 

pool of diverse renewable sources can be 

appropriately designed to balance overall planning 

costs and operational flexibility constraints. The 

proposed study is basically based on the production 

of renewable energy with little probability 
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presenting some risk when interacting with the main 

grid. An index based on the conditional value at risk 

(CVaR) method is introduced to quantify the risk of 

any renewable source, being a parameter or 

parameters necessary to determine or plan the needs 

of the system, for example, the capacity or need of a 

energy storage system. 

The CVaR is a tool of risk measurement, 

compared with the VaR (risk value), it only 

considers the risk information under confidence 

level, while the risk information behind the 

confidence level is ignored. The CVaR measures the 

average loss behind the confidence level, and the 

inclusion of tail risks can better reflect the portfolio 

risks. The framework of the CVaR is demonstrated 

in the Figure 1. 

 

 

 
Fig. 1: Framework of the conditional risk value 

(CVaR), [16] 

 

VaR can only determine a risk situation under 

the given confidence level and doesn’t consider the 

risk tail, so there are certain limitations in its 

practical applications, [17]. 

𝛼𝛽(𝑥)  = 𝑚𝑖𝑛 {𝛼 ∈  𝑅; ∫ 𝜌(𝑦)𝑑𝑦 ≥  𝛽

𝑓(𝑥,𝑦)≤𝛼

}  (14) 

 

Denote the loss function as f (x, y), where x and 

y denote the probability density function of the 

decision variable and the random variable, 

respectively. The probability density function of y is 

defined as ρ(y), then the VaR value at confidence 

level is given as αβ. 

𝜙𝛽(𝑥)  =
1

1 − 𝛽
 ∫ 𝑓(𝑥, 𝑦)𝜌(𝑦)𝑑𝑦

𝑓(𝑥,𝑦)≥𝛼𝛽(𝑥)

  (15) 

 

The Conditional Value at Risk (CVaR) can 

describe the distribution of risk outside the 

confidence level. The equation (15) describes the 

VaR (𝛼𝛽(𝑥)) value and CVaR (𝜙𝛽(𝑥)) value of the 

portfolio problem, where 𝜙𝛽(𝑥) is the CVaR value 

when the loss is greater than 𝛼𝛽(𝑥). 

 

3  Study Case and Simulation 
 

3.1  Monte Carlo Simulation  
Monte Carlo (MC) simulation uses random 

sampling and statistical modeling to estimate 

mathematical functions and mimic the operations of 

complex systems. The MC method has gained 

widespread acceptance for validating physical 

models involving variables with associated 

probability density distributions (e.g., solar 

radiation) [18], [19]. Through Monte Carlo 

simulation, the behavior of overestimation and 

underestimation instances was studied for a 

predetermined power value (Ps), considering 

randomly generated values of solar irradiance and 

wind speed, generated by the log-normal, normal, 

and Weibull distribution functions, respectively. 

The random generation of these values will be used 

to obtain the generation powers of the unit in 

question. 

The outcome will establish values within the 

generated scenarios (N=100000) for the Cost 

Overestimation (Co) and Cost Underestimation 

(Cu), depending on the average power value (Ps). 
𝐸[𝐶𝑜,𝑖(𝑃𝑠,𝑖, 𝑃𝑟,𝑖)]  =  𝐶𝑜,𝑖  ∗  (𝑃𝑠,𝑖  −  𝑃𝑟,𝑖) (16) 

 
𝐸[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝑃𝑟,𝑖)]  =  𝐶𝑢,𝑖  ∗  (𝑃𝑟,𝑖  −  𝑃𝑠,𝑖) (17) 

 

Equations (1), (2) and (3) represent the 

probability functions that will be used for the 

determination of the generated powers for each 

renewable source. The obtained values were 

considered for practical purposes using the MatLab 

software commands "lognrnd" and "wblrnd". For 

this framework, Table 1 and Table 2 shows the 

initial values for the simulation were: 

 

Table 1. PV Solar 
Rated power output      (Psr) 65 MW 

Scheduled power          (Ps) 20 MW 

Solar irradiation std      (Gstd) 1000 W/m2 

Certain irradiation        (Rc) 150 W/m2 

Maximum power          (Wmax) 100 MW 

Mean                             (μ)  6 

Standard deviation        (σ) 0.25 

 

After an elapsed simulation time of around 

2.1644 second for solar power and 3.4711 second 

for wind power, multiple statistical parameters were 

obtained. It includes expected values  and variances 

associated with the different cost functions that were 

modeled for the photovoltaic (PV) and wind turbine 

(WT) generation.  

 

 

WSEAS TRANSACTIONS on POWER SYSTEMS 
DOI: 10.37394/232016.2024.19.36 L. C. Perez, G. Idarraga-Ospina, S. R. Rivera

E-ISSN: 2224-350X 421 Volume 19, 2024



Table 2. WT Wind 
Rated power output         (Wsr) 150 MW 

Scheduled power             (Ws) 20 MW 

Cut-in speed                    (Vi) 5 m/s 

Rated output speed          (Vr) 15 m/s 

Cut-out speed                  (Vo) 45 m/s 

Linear coefficient of the WT                           

(a, b)  

(15, -75) 

Rayleigh distribution scale parameter 

(σ) 

15.9577 

Weibull Scale Parameter (√2* σ) 22.5676 

Weibull Shape Parameter (k) 2 

 

Figure 2 and Figure 3 show the results obtained 

by MC for solar and wind power, respectively. The 

costs of overestimation and underestimation present 

a certain relationship regarding their technology or 

power curves. 

 

 
Fig. 2: MC simulation for Solar power 

 

 
Fig. 3: MC simulation for Wind power 

 

 

Figure 4 and Figure 5 show the solar and wind 

power values, respectively. 

 

 
Fig. 4: Solar irradiation 

 

 

 
Fig. 5: Wind speed 

 

3.2 Analytical Low-Probability Generation 

 Extremes in Solar power and Wind 

 Power 
The equations (5) determine the power generated 

about the irradiance of the place. However, CVaR 

values are previously calculated (15) to determine 

the risk points of interest. 

The confidence level plays a very important role 

in the calculation of CVaR, which determines the 

minimum and maximum values of the data to be 

analyzed. In this work, only the data related to 

CVaR will be considered, obtaining the cost of 

overestimation and underestimation determined by 

the scheduled power. 

For this analysis, the points of interest are 

related to the management and need for energy 

storage, establishing the parameters for said actions 

as mentioned in section 2.3. 

Figure 6 shows the CVaR at 10%, determining 

the probability of energy generation on a smaller 

scale, for example, it could be demonstrated that the 

solar device is located in a place with cloud cover, 

leading to little production and having to take into 

account the need of the installation of an energy 

storage system. The same occurs with the value 

recorded for a CVaR at 90%, whose value would 

indicate the maximum solar production of the solar 
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panel, indicating that it is in a place with good solar 

irradiation. The analysis of these values is 

determined concerning the observer, in this case, the 

network operator. The same happens with Figure 8 

showing the CVaR at 10% and 90% for wind power. 

 

 
Fig. 6: Solar power with CvaR 10% and 90% 

 

 
Fig. 7: Power Curve of Wind Energy 
 

The power curve (Figure 7) is related to the 

wind speed, which is determined by the equations 

(7). This curve presents a certain increasing 

behavior due to the characteristics of the wind 

turbine. Unlike the behavior for solar production, 

where its generation depends on the intensity of 

solar irradiation, the wind turbine will not always 

generate energy even if there is a presence of wind 

in the area, due to the physical characteristics of the 

wind turbine. However, considering non-production 

values even with the presence of the primary source, 

can provide data on improvements in the system. 

The histograms in Figure 6 and Figure 8 for the 

solar and wind generation powers are determined by 

the equations: 

            𝐸1[𝐶𝑜,𝑖(𝑃𝑠,𝑖, 𝐶𝑉𝑎𝑅10)]  =  

(𝑐𝑜𝑢𝑛𝑡𝑠 ∗  𝐶𝑜,𝑖)  ∗  (𝑃𝑠,𝑖  −  (
(𝐵𝑖𝑛𝑏 + 𝐵𝑖𝑛𝑎)

2
))  

(18) 

 

𝐸2[𝐶𝑜,𝑖(𝑃𝑠,𝑖 , 𝐶𝑉𝑎𝑅10)] =  (
𝑐𝑜𝑢𝑛𝑡𝑠 ∗  𝐶𝑜,𝑖
𝐵𝑖𝑛𝑏  +  𝐵𝑖𝑛𝑎

) ∗ 

((𝑃𝑠,𝑖 ∗ (𝐶𝑉𝑎𝑅10 + 𝐵𝑖𝑛𝑎)) − (
𝐶𝑉𝑎𝑅10

2

2
) + (

𝐵𝑖𝑛𝑎
2

2
))  

(19) 

𝐸3[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝐶𝑉𝑎𝑅90)]  =  

(𝑐𝑜𝑢𝑛𝑡𝑠 ∗  𝐶𝑢,𝑖)  ∗  ((
(𝐵𝑖𝑛𝑏  + 𝐵𝑖𝑛𝑎)

2
)  − 𝑃𝑠,𝑖)  

(20) 

 

𝐸4[𝐶𝑢,𝑖(𝑃𝑠,𝑖 , 𝐶𝑉𝑎𝑅90)]  =  (
𝑐𝑜𝑢𝑛𝑡𝑠 ∗ 𝐶𝑢,𝑖

𝐵𝑖𝑛𝑏 + 𝐵𝑖𝑛𝑎
)  ∗

 ((
𝐶𝑉𝑎𝑅90

2

2
) − (

𝐵𝑖𝑛𝑏
2

2
) − (𝑃𝑠,𝑖  ∗  (𝐶𝑉𝑎𝑅90  + 𝐵𝑖𝑛𝑏)))  

(21) 

 

Each equation determines part of the structure 

of the histogram determined by its probability 

(counts) related by its minimum and maximum 

limits (Bin). The sum of the equations (18, 19) 

shows the uncertainty cost of overestimation, on the 

other hand, the sum of the equations (20, 21) shows 

the uncertainty cost of underestimation. 

This method calculates the cost of 

overestimation and underestimation in a time of 

0.0551 and 0.3097 seconds for solar and wind 

generation, respectively, regardless of the function 

or renewable system to be used. The points of 

interest are determined by the system operator with 

a confidence level for the CVaR as a reference, or 

by the operator himself. Table 3 and Table 4 present 

the results in comparison to MC simulation. 

The CVaR calculation is a risk index that 

determines the expected losses that slightly exceed 

the VaR. That is, expected losses greater than or 

equal to VaR. In other words, risk cost for high or 

minimum production, which may or may not use the 

system. In the case of wind energy, given that said 

production depends on wind speed, presenting 

uncertainty in the primary source, the CVaR value 

can coincide with the maximum production value 

due to its behavior in the power curve. 

The CVaR should be adjusted according to the 

operator's needs or can highlight the maximum or 

minimum generations for the power management or 

storage capacity seen above. For practical purposes, 

it was decided to have a confidence level of 0.7 for 

wind energy. In summary, the value of the 

confidence level represents a piece of information 

that indicates the percentage of risk to be analyzed. 

In the case of wind generation, the power curve is 

determined by the wind speed, which regardless of 

its value at that moment. If said speed is equal to or 

greater than the cutting speed established by the 

manufacturer or the equipment itself, the power will 

be unique, presenting a certain error when 

calculating the risk, since the percentile or quartile 

of the operation establishes the maximum or 

minimum generated. , having to adjust the 

percentage value so that it presents a degree of error 

in the risk by displaying a probability value. 
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Fig. 8: Wind power with CvaR 10% and 30% 

 

 

Table 3. Results of Solar power 
 MC 

simulation 

(sec) 

Analytical 

Method CVaR 

Solar Power 

(MW) 

Error % 

CVaR10 17.0025 N/A 

CVaR90 40.8575 N/A 

Co 13.6078 14.2643 0.0482 

Cu 28.1748 28.4930 0.0113 

time 1.5248 0.0551 N/A 

 

 

Table 4. Results of Wind power 
 MC 

simulation 

(sec) 

Analytical 

Method CVaR 

Wind Power 

(MW) 

Error 

% 

CVaR10 4.1161 N/A 

CVaR30 148.4147 N/A 

Co 99.3260 95.4860 0.0387 

Cu 2453.7 2346.0 0.0439 

time 2.5813 0.3097 N/A 

 

Table 5 shows the results obtained from MC 

simulation, analytical Method, and Analytical 

Method CVaR using a normal function. Times 

decrease significantly with the proposed methods. 

 

 

Table 5. Results of Solar power with normal 

function 
 MC 

simulation 

(sec) 

Analytical 

Method Solar 

Power (MW) 

Analytical 

Method 

CVaR Solar 

Power 

(MW) 

CVaR10 8.1297 

CVaR90 9.8788 

Co 1.6025 1.6064 1.6487 

Cu 1.9002 1.8774 1.9526 

time 2.9160 0.0137 0.0166 

 

 

4  Conclusion 
Due to the uncertainty generated by renewable 

sources for their production of electrical energy, the 

operator of the electrical system on the part of the 

main network or the part of microgrids, virtual 

power plants, distributed systems, etc., must-have 

tools, techniques, or methodologies. That can 

minimize the risk related to the integration of these 

renewable sources into any system or variable loads 

in the economic dispatch of electricity, pointing to 

the interaction of energy exchange. This article 

shows analytical advances, which can be an 

important part of the decision-making that the 

operator makes every day. This proposed 

mathematical formulation can be incorporated into 

optimization techniques to obtain dynamic 

economic dispatch models, due to the variability of 

the system. The proposed analytical method, in 

addition to improving the computational response 

time with an error of 0.05 seconds, has the 

practicality of obtaining acceptable cost values due 

to overestimation and underestimation, regardless of 

the probability density function that describes the 

behavior of the energy production from renewable 

energy sources, for example, solar and wind, 

described by the Log-normal and Weibull function, 

respectively. The method of this article works in a 

more tactile way, due to the calculations that are 

handled in the histogram graph. The proposed 

method can handle the probability of a historical 

database having as a reference a programmed power 

about its probability. Unlike previous articles related 

to the topic, this method uses the power histogram 

generated from the Monte Carlo Method using 

probability density functions to perform the 

estimated calculation for the associated costs and 

risks, instead of integral functions which have great 

computational weight, however, the use of a 

historical database can replace this step. The use of 

the historical database provides us with greater 

precision in the results obtained by using real data, 

for the analysis and for practicality the Monte Carlo 

Method was chosen as mentioned above. 

The main objective of this work is the analysis 

for the management, planning, and determination of 

the use of these sources in the main network or in 

any other system to be incorporated. The risk 

present in the energy generated by these sources 

usually indicates certain behavior due to its low 

probability of generation on a smaller or larger 

scale. For example, the values associated with the 

powers generated through an optimization process 

in a distribution system that presents a high CVaR 

concerning its VaR can give us indications of the 

need to have greater generation at the risk of not 
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being able to cover the user demand, or on the 

contrary, by presenting a relatively low CVaR 

compared to its VaR, it indicates stability in the 

system by being able to meet the user's needs, and 

could also lend itself to the installation of a battery 

bank for reserve use. Due to the high probability of 

generation. 

In the context of a photovoltaic system, a high 

CVaR could be interpreted as the average of the 

generated power that is expected to be lost in cases 

where the generated power falls below the level 

established by the VaR. It is a useful measure for 

understanding additional risk beyond VaR and can 

be used to make informed decisions about risk 

management strategies. 

The operator's point of view is an important 

piece of information because the cost of the 

overestimated/underestimated risk would depend on 

the element or system to be analyzed as it is 

associated with the risk that it presents in its 

operation. Both the analytical method and the 

proposed method about risk present very acceptable 

values compared to the MC simulation, however, 

the determination of risks helps the operator to 

improve the system. The decision-making that the 

operator, in charge of the electrical system, makes is 

vital for the stability of the system itself and even 

more so having a criterion of the estimated risk, 

presenting the possibility of helping to better 

manage the energy generated, stored, or required, 

however , the use of this analysis could present 

certain limitations due to the different systems being 

analyzed and even more so if they are analyzed 

together, as presented in the wind analysis (section 

3.2), which is why the point of view of the operator 

in charge of the system is of vital importance for the 

formulation of the problem. 
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