
After the discovering of pairing-based cryptography, de-
velopers and researchers have been studding and developing
new techniques and methods for constructing more efficiently
implementation of pairings protocols and algorithms.The first
pairing is introduced by Weil Andre in 1948 called Weil
pairing, after that more pairing are appear like tate pairing,
ate pairing and a lot more. The benefice of Elliptic curve
cryptosystems which was discovered by Neal Koblitz [1] and
Victor Miller [2] are to reduce the key sizes of the keys utilize
in public key cryptography. Some works like presented in
[3] interested in signature numeric. The authors in [4] show
that we can use the final exponentiation in pairings as one
of the countermeasures against fault attacks. In [5], [6], [7],
[13] Nadia El and others show a study case of working with
elliptic curve with embedding degree 5,9,15 and 27. Also in
[9], [10], [11], [12] researchers show the case of working with
curve with embedding degree 18. In [8] they give a study of
security level of optimal ate pairing.
In the present article, we seek to obtain efficient ways to
pairing computation for curves of embedding degree 54. We
will see how to improve arithmetic operation in curves with
embedding degree 54 by using the tower building technique.
We will give three cases studies that show, when we use a
degree 2 twists, we can handle most operations in Fp2 , Fp6

and Fp18 , and when we use a degree 3 twists, we can handle
most operations in Fp3 , Fp6 , Fp9 , Fp18 and Fp27 instead. By
making use of an tower building technique, we also improve
the arithmetic of Fp6 , Fp18 and Fp54 in order to get better
results. Finally we will compare these cases to know which
path is the optimal path.
In this paper, we will investigate and examine what will
happens in case of optimal ate pairing with embedding degree
54.

The paper is organized as follow. Section 2 we recall some
background on the main pairing proprieties also ate pairing,
and Miller Algorithm. Section 3 presents our main theorem
in this work. Section 4 will presents the results of our work.
Finally, Section 5 concludes this paper.

In everything that follows, E will represent an elliptic curve
with equation
y2 = x3+ax+b for b ∈ Fq with q prime number. The symbol
aopt will denote the optimal ate pairing. We shall use, without
explicit mention, the following :
• G1 ⊂ (E(Fq)): additive group of cardinal n ∈ N∗ .
• G2 ⊂ (E(Fqk)): additive group of cardinal n ∈ N∗.
• G3 ⊂ F∗qk ⊂ µn : cyclic multiplicative group of cardinal
n ∈ N∗.

• µn = {u ∈ F̄q|un = 1}.
• P∞ : the point at infinity of the elliptic curve.
• k : the embedding degree: the smallest integer such that
r divides qk − 1.

• fs,P : a rational function associated to the point P and
some integer s.

• m,s,i: multiplication, squaring, inversion in field Fp.
• M2, S2, I2: multiplication, squaring, inversion in field

Fp2 .
• M3, S3, I3: multiplication, squaring, inversion in field

Fp3 .
• M6, S6, I6: multiplication, squaring, inversion in field

Fp6 .
• M9, S9, I9: multiplication, squaring, inversion in field

Fp9 .
• M18, S18, I18: multiplication, squaring, inversion in field

Fp18

• M27, S27, I27: multiplication, squaring, inversion in field
Fp27 .
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• M54, S54, I54: multiplication, squaring, inversion in field
Fp54

Remark 1: In this paper, our main objective is to identify
the optimal path with the lowest cost. Although the cost of
multiplication remains the same in each path we choose, we
aim to determine the path with the minimum cost of squaring
or inversion.

Proposition 1:
We investigate these cases by following the process outlined
below:

1) Transform the elliptic curve with embedding degree k
using the variable change (x, y)→ (xu2/d, yu3/d)

2) Choose an appropriate irreducible polynomial for tower
building

3) Construct the twisted isomorphic rational point
4) Determine the cost of multiplication, squaring, and in-

version in the corresponding field.

TWIST OF AN ELLIPTIC CURVE

Definition 1: (Twist of an elliptic curve) [6]
Let E and E’ be two elliptic curves defined over Fq , for q, a
power of a prime number p. Then, the curve E’ is a twist of
degree d of E if we can define an isomorphism Ψd over Fqd

from E’ into E and such that d is minimal:

Ψd : E′(Fq)→ E(Fqd).

Theorem 1: [6] Let E be an elliptic curve defined by the
short Weiestrass equation y2 = x3 + ax+ b over an extension
Fq of a finite field Fp, for p a prime number, k a positive
integer such that q = pk. According to the value of k, the
potential degrees for a twist are d =2, 3, 4 or 6 (in this paper,
we are intersted with the case of d=2 and 3).
• d = 2, Let v ∈ Fpk/2 such that the polynomial X2 − v is
irreducible in Fpk/2 . The equation of the curve E′ defined on
Fpk/2 is E′ : vy2 = x3 +ax+ b. The morphism Ψ2 is defined
by:

Ψ2 : E′(Fpk/2) −→ E(Fpk)

(x, y) −→ (x, yv1/2)

• d = 3, the curve E admits a twist of degree 3 if and only
a = 0. Let v ∈ Fpk/d be such that the polynomial X3 − v is
irreducible in Fpk/d . The equation of E′ is then y2 = x3 + b

v .
The morphism is:

Ψ3 : E′(Fpk/3) −→ E(Fpk)

(x, y) −→ (xv1/3; yv1/2)

Cost calculation:
We use the cost of operation in Quadratic and cubic twisted
curve to calculate the cost of operation in the field with
embedding degree 2i.3 with the tower building technique for
every path.
• Cost of operation in Quadratic twisted curve:
We already know that the cost of multiplication, squaring and
inversion in the quadratic field Fp2 are:
M2 = 3m, S2 = 2m, I2 = 4m+ i respectively ( [17]).

• Cost of operation in Cubic twisted curve:
We already know that the cost of multiplication, squaring and
inversion in in the cubic twisted field Fp3 are:
M3 = 6m, S3 = 5s, I3 = 9m+ 2s+ i respectively ( [17]).
Vector representation point:
In order to construct a vector representation point in Fpk ,
we generally need the following set forms a basis of Fpk

over Fp, Bk = {1, u, u2, ..., uk−1}, which is known as
polynomial basis. An arbitrary element A in Fpk is written
as A = a0 + a1u + a2u

2 + ... + ak−1u
k−1. The vector

representation of A is vA = (a0, a1, a2, ..., ak−1).
We use the vector representation point of Quadratic and cubic
twisted curve to know the vector representation point of
operation in the field with embedding degree 2i.3 with the
tower building technique for every path.
Vector representation point in Quadratic twisted curve:
We have E is y2 = x3 + ax+ b.
Let u ∈ Fp such that the polynomial x2−u is irreducible over
Fp.
The equation of E′ is uy2 = x3 + ax+ b.
So to map E(Fp) to E′(Fp),we have:

E(Fp)→ E′(Fp)

(x, y)→ (x1, y1) = (x, yu1/2)

Using ψ2(x, y) = (x, yu1/2) to map E′(Fp) to E(Fp2)

E′(Fp)→ E(Fp2)

(x, y)→ (x, yu1/2)

Hence, to map E(Fp) to E(Fp2), we have:

E(Fp)→ E(Fp2)

(x, y)→ (x1, y1) = (x, yu)

• Let map P to P1:
Let P = (x, y) = (a, b) and P1 = (x1, y1) = (a1, b1)B2 ,
where x1, y1, a1, b1 ∈ Fp2 .
P1 has a special vector representation with 2 Fp elements
for each x1 and y1 coordinates. We have B2 = (1, u), ψ2 :
E′(Fp)→ E(Fp2),
ψ2(x, y) = (x1, y1) = (x, yu), (see [9]) we have:

P → P1

E(Fp)→ E(Fp2)

(x, y)→ (x1, y1) = (x, yu) = (a, bu)B2

P1 = (x1, y1) = (x, yu) = (a, bu)B2
= ((a, 0), (0, b))

• Let remap P1 to P: obtained easily by just placing a and
b in the correct basis position.

P1 → P

E(Fp2)→ E(Fp)

(x1, y1)→ (x, y) = (a, b)

P = (x, y) = (a, b)

So we can easly map and remap between P and P1.
Vector representation point in Cubic twisted curve:
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The curve E admits a twist of degree 3 if and only if a = 0
i,e y2 = x3 + b.
Let u ∈ Fp such that the polynomial x3−u is irreducible over
Fp.
The equation of E′ is y2 = x3 + b/u.
So to map E(Fp) to E′(Fp),we have:

E(Fp)→ E′(Fp)

(x, y)→ (x1, y1) = (xu1/3, yu1/2)

Using ψ3(x, y) = (xu2/3, yu1/2) to map E′(Fp) to E(Fp3)

E′(Fp)→ E(Fp3)

(x, y)→ (xu2/3, yu1/2)

Hence, to map E(Fp) to E(Fp3), we have:

E(Fp)→ E(Fp3)

(x, y)→ (x1, y1) = (xu, yu)

• Let map P to P1:
Let P = (x, y) = (a, b) and P1 = (x1, y1) = (a1, b1)B3

,
where x1, y1, a1, b1 ∈ Fp3 .
P1 has a special vector representation with 3 Fp elements for
each x1 and y1 coordinates.
We have B3 = (1, u, u2), ψ3 : E′(Fp)→ E(Fp3),
ψ3(x, y) = (x1, y1) = (xu, yu), (see [9]) we have:

P → P1

E(Fp)→ E(Fp3)

(x, y)→ (x1, y1) = (xu, yu) = (au, bu)B3

P1 = (x1, y1) = (xu, yu) = (au, bu)B3
= ((0, a, 0), (0, b, 0))

• Let remap P1 to P: obtained easily by just placing a and b
in the correct basis position

P1 → P

E(Fp3)→ E(Fp)

(x1, y1)→ (x, y) = (a, b)

P = (x, y) = (a, b)

So we can easly map and remap between P and P1.
Corollary 1: :

We can do an extension for the above vector representation,
we have:

E(Fpk/2)→ E(Fpk)

(x, y)→ (x, yu)

and,

E(Fpk/3)→ E(Fpk)

(x, y)→ (xu, yu)

The figure below show all path possible for building an
elliptic curve with embedding degree 54

There is four path possible to building this curve

Fp −→ Fp2 −→ Fp6 −→ Fp18 −→ Fp54

Fp −→ Fp3 −→ Fp6 −→ Fp18 −→ Fp54

Fp −→ Fp3 −→ Fp9 −→ Fp18 −→ Fp54

Fp −→ Fp3 −→ Fp9 −→ Fp27 −→ Fp54

Exploring the first path

Fp −→ Fp2 −→ Fp6 −→ Fp18 −→ Fp54

The appropriate choices of irreducible polynomial defined
by:

Fp2 = Fp[u]/(u2 − β), with β a non-square and u2 = 2

Fp6 = Fp2 [v]/(v3 − u), with v a non-cube and v3 = 21/2

Fp18 = Fp6 [t]/(t3 − v), with t a non-cube and t3 = 21/6

Fp54 = Fp18 [w]/(w3−t), with w a non-cube and w3 = 21/18

P 4(x4, y4) = ((a, 0, ..., 0), (0, ..., 0, b)) with x4, y4 ∈ Fp54

P ′′′(x′′′, y′′′) = ((a, 0, ..., 0), (0, ..., 0, b)) with x′′′, y′′′ ∈ Fp18

P ′′(x′′, y′′) = ((a, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, b)) with x′′, y′′ ∈ Fp6

P ′(x′, y′) = ((a, 0), (0, b)) with x′, y′ ∈ Fp2

P (x, y) = (a, b) with x, y ∈ Fp

3. Tower Building Technique for Elliptic 
Curve with Embedding Degree 54 
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The cost of multiplication, squaring and inversion in in the
54th twisted field Fp54 are:

M54 = (M18)Fp3
= (M6)Fp3

)Fp3
= ((M2)Fp3

)Fp3
)Fp3

= ((3m)Fp3
)Fp3

)Fp3
= ((3M3)Fp3

)Fp3
= ((18m)Fp3

)Fp3

= (18M3)Fp3
= (108m)Fp3

= 108M3 = 648m,

S54 = (S18)Fp3
= (S6)Fp3

)Fp3
= ((S2)Fp3

)Fp3
)Fp3

= ((2m)Fp3
)Fp3

)Fp3
= ((2M3)Fp3

)Fp3
= ((12m)Fp3

)Fp3

= (12M3)Fp3
= (72m)Fp3

= 72M3 = 432m,

I54 = (I18)Fp3
= (I6)Fp3

)Fp3
= ((I2)Fp3

)Fp3
)Fp3

= ((4m+ i)Fp3
)Fp3

)Fp3
= ((4M3 + I3)Fp3

)Fp3

= ((33m+ 2s+ i)Fp3
)Fp3

= (33M3 + 2S3 + I3)Fp3

= (207m+ 12s+ i)Fp3
= 207M3 + 12S3 + I3

= 1251m+ 62s+ i,

Exploring the second path

Fp −→ Fp3 −→ Fp6 −→ Fp18 −→ Fp54

The appropriate choices of irreducible polynomial defined
by:

Fp3 = Fp[u]/(u3 − β), with β a non-cube and u3 = 2

Fp6 = Fp3 [v]/(v2 − u), with v a non-square and v2 = 21/3

Fp18 = Fp6 [t]/(t3 − v), with t a non-cube and t3 = 21/6

Fp54 = Fp18 [w]/(w3−t), with w a non-cube and w3 = 21/18

P 4(x4, y4) = ((a, 0, ..., 0), (0, ..., 0, b)) with x4, y4 ∈ Fp54

P ′′′(x′′′, y′′′) = ((a, 0, ...0), (0, ..., 0, b)) with x′′′, y′′′ ∈ Fp18

P ′′(x′′, y′′) = ((a, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, b)) x′′, y′′ ∈ Fp6

P ′(x′, y′) = ((a, 0, 0), (0, 0, b)) with x′, y′ ∈ Fp3

P (x, y) = (a, b) with x, y ∈ Fp

The cost of multiplication, squaring and inversion in in the
54th twisted field Fp54 are:

M54 = (M18)Fp3
= (M6)Fp3

)Fp3
= ((M3)Fp2

)Fp3
)Fp3

= ((6m)Fp2
)Fp3

)Fp3
= ((6M2)Fp3

)Fp3
= ((18m)Fp3

)Fp3

= (18M3)Fp3
= (108m)Fp3

= 108M3 = 648m,

S54 = (S18)Fp3
= (S6)Fp3

)Fp3
= ((S3)Fp2

)Fp3
)Fp3

= ((5s)Fp2
)Fp3

)Fp3

= ((5S2)Fp3
)Fp3

= ((10m)Fp3
)Fp3

= (10M3)Fp3
= (60m)Fp3

= 60M3 = 360m,

I54 = (I18)Fp3
= (I6)Fp3

)Fp3
= ((I3)Fp2

)Fp3
)Fp3

= ((9m+ 2s+ i)Fp2
)Fp3

)Fp3
= ((9M2 + 2S2 + I2)Fp3

)Fp3

= ((35m+ i)Fp3
)Fp3

= (35M3 + I3)Fp3
= (219m+ 2s+ i)Fp3

= 219M3 + 2S3 + I3 = 1323m+ 12s+ i,

Exploring the third path

Fp −→ Fp3 −→ Fp9 −→ Fp18 −→ Fp54

The appropriate choices of irreducible polynomial defined
by:

Fp3 = Fp[u]/(u3 − β), with β a non-cube and u3 = 2

Fp9 = Fp3 [v]/(v3 − u), with v a non-cube and v3 = 21/3

Fp18 = Fp9 [t]/(t2 − v), with t a non-square and t2 = 21/9

Fp54 = Fp18 [w]/(w3−t), with w a non-square and w3 = 21/18

P 4(x4, y4) = ((a, 0, ..., 0), (0, ..., 0, b)) with x4, y4 ∈ Fp54

P ′′′(x′′′, y′′′) = ((a, 0, ..., 0), (0, ..., 0, b)) with x′′′, y′′′ ∈ Fp18

P ′′(x′′, y′′) = ((a, 0, ..., 0), (0, , ..., 0, b)) with x′′, y′′ ∈ Fp9

P ′(x′, y′) = ((a, 0, 0), (0, 0, b)) with x′, y′ ∈ Fp3

P (x, y) = (a, b) with x, y ∈ Fp

The cost of multiplication, squaring and inversion in in the
36th twisted field Fp36 are:

M54 = (M18)Fp3
= (M9)Fp2

)Fp3
= ((M3)Fp3

)Fp2
)Fp3

= ((6m)Fp3
)Fp2

)Fp3
= ((6M3)Fp2

)Fp3
= ((36m)Fp2

)Fp3

= (36M2)Fp3
= (108m)Fp3

= 108M3 = 648m,

S54 = (S18)Fp3
= (S9)Fp2

)Fp3
= ((S3)Fp3

)Fp2
)Fp3

= ((5s)Fp3
)Fp2

)Fp3

= ((5S3)Fp2
)Fp3

= ((25s)Fp2
)Fp3

= (25S2)Fp3
= (50m)Fp3

= 50M3 = 300m,
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I54 = (I18)Fp3
= (I9)Fp2

)Fp3
= ((I3)Fp3

)Fp2
)Fp3

= ((9m+ 2s+ i)Fp3
)Fp2

)Fp3
= ((9M3 + 2S3 + I3)Fp2

)Fp3

= ((63m+ 12s+ i)Fp2
)Fp3

= (63M2 + 12S2 + I2)Fp3

= (227m+ i)Fp3
= 227M3 + I3 = 1371m+ 2s+ i,

Exploring the forth path

Fp −→ Fp3 −→ Fp9 −→ Fp27 −→ Fp54

The appropriate choices of irreducible polynomial defined
by:

Fp3 = Fp[u]/(u3 − β), with β a non-cube and u3 = 2

Fp9 = Fp3 [v]/(v3 − u), with v a non-cube and v3 = 21/3

Fp27 = Fp9 [t]/(t3 − v), with t a non-cube and t3 = 21/9

Fp54 = Fp27 [w]/(w2−t), with w a non-square and w2 = 21/27

P 4(x4, y4) = ((a, 0, ..., 0), (0, ..., 0, b)) with x4, y4 ∈ Fp54

P ′′′(x′′′, y′′′) = ((a, 0, ..., 0), (0, ..., 0, b)) with x′′′, y′′′ ∈ Fp27

P ′′(x′′, y′′) = ((a, 0, ..., 0), (0, ..., 0, b)) with x′′, y′′ ∈ Fp9

P ′(x′, y′) = ((a, 0, 0), (0, 0, b)) with x′, y′ ∈ Fp3

P (x, y) = (a, b) with x, y ∈ Fp

The cost of multiplication, squaring and inversion in in the
54th twisted field Fp54 are:

M54 = (M27)Fp2
= (M9)Fp3

)Fp2
= ((M3)Fp3

)Fp3
)Fp2

= ((6m)Fp3
)Fp3

)Fp2
= ((6M3)Fp3

)Fp2
= ((36m)Fp3

)Fp2

= (36M3)Fp2
= (216m)Fp2

= 216M2 = 648m,

S54 = (S27)Fp2
= (S9)Fp3

)Fp2
= ((S3)Fp3

)Fp3
)Fp2

= ((5s)Fp3
)Fp3

)Fp2
= ((5S3)Fp3

)Fp2
= ((25s)Fp3

)Fp2

= (25S3)Fp2
= (125s)Fp2

= 125S2 = 250m,

I54 = (I27)Fp2
= (I9)Fp3

)Fp2
= ((I3)Fp3

)Fp3
)Fp2

= ((9m+ 2s+ +i)Fp3
)Fp3

)Fp2
= ((9M3 + 2S3 + I3)Fp3

)Fp2

= ((63m+ 12s+ i)Fp3
)Fp2

= (63M3 + 12S3 + I3)Fp2

= (387m+ 62s+ i)Fp2
= 387M2 + 62S2 + I2

= 1289m+ i,

TABLE I
COST OF OPERATIONS IN EACH THE TOWER FIELDS

Path O Cost
1 M54 648m

S54 432m
I54 1251m+62s+i

2 M54 648m
S54 360m
I54 1323m+12s+i

3 M54 648m
S54 300m
I54 1371m+2s+i

4 M54 648m
S54 250m
I54 1289m+i

The table above give the overall cost of operations in each
the tower fields.
We found that the cost of multiplication and squaring is the
same for any path chosen, however the cost of inversion
change on the path, so we can see that the minimal cost for
inversion is 1289m+i.

In this paper, we give some methods for tower building of
extension of finite field of embedding degree 54. We show
that there are four efficients paths for constructions of these
extensions of degree 54. We show that by using a degree 2 or 3
twist we handle to perform most of the operations in F6

p, Fp9 ,
Fp18 , Fp27 and Fp54 . By using this tower building technique,
we also improve the arithmetic of Fp54 , in order to get better
results of calculate the cost of their multiplication, squaring
and inversion.
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