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Abstract: This paper presents an analysis of the number of zeros in the binary representation of natural numbers.
The primary method of analysis involves the use of the concept of the fractional part of a number, which naturally
emerges in the determination of binary representation. This idea is grounded in the fundamental property of the
Riemann zeta function, constructed using the fractional part of a number. Understanding that the ratio between
the fractional and integer parts of a number, analogous to the Riemann zeta function, reflects the profound laws
of numbers becomes the key insight of this work. The findings suggest a new perspective on the interrelation
between elementary properties of numbers and more complex mathematical concepts, potentially opening new
directions in number theory and analysis.This analysis has allowed to understand that the Collatz sequence initially
tends towards a balanced symmetric arrangement of zeros and ones, and then it collapses, realizing the scenario
of the Collatz conjecture.
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1 Introduction
We will use the following well-known fact: if, for
the members of the Collatz sequence, zeros predom-
inate in their binary representation, then these mem-
bers will lead to a decrease in the subsequent mem-
bers according to the Collatz rule. A striking example
is when the initial number in the Collatz sequence is
equal to 2n. Let’s write the solution of the equation
n = 2x in the form x = {x} + [x] and note that the
smaller x, the more zeros in the corresponding binary
representation for n. Developing this idea, we come
to the following steps.

• Analysis of the binary representation of simple
cases of natural numbers.

• Creation of a process for decomposing an arbi-
trary natural number into powers of two.

• Analysis of the proximity of the process to binary
decomposition at the completion of decomposi-
tion at each stage.

• Calculation of the number of zeros in the binary
decomposition of a natural number.

• Estimation of the Collatz sequence members de-
pending on the number of ones in the binary de-
composition.

2 Problem Formulation
This document reveals a comprehensive solution to
the Collatz Conjecture, as first proposed in [1]. The
Collatz Conjecture, a well-known unsolved problem

in mathematics, questions whether iterative applica-
tion of two basic arithmetic operations can invariably
convert any positive integer into 1. It deals with in-
teger sequences generated by the following rule: if
a term is even, the subsequent term is half of it; if
odd, the next term is the previous term tripled plus
one. The conjecture posits that all such sequences cul-
minate in 1, regardless of the initial positive integer.
Named after mathematician Lothar Collatz, who in-
troduced the concept in 1937, this conjecture is also
known as the 3n + 1 problem, the Ulam conjecture,
Kakutani’s problem, the Thwaites conjecture, Hasse’s
algorithm, or the Syracuse problem. The sequence is
often termed the hailstone sequence due to its fluctu-
ating nature, resembling the movement of hailstones.
Paul Erdős and Jeffrey Lagarias have commented on
the complexity and mathematical depth of the Collatz
Conjecture, highlighting its challenging nature.

3 Results
Consider an operation applied to any positive integer:

• Divide it by two if it’s even.

• Triple it and add one if it’s odd.

A sequence is formed by continuously apply-
ing this operation, starting with any positive integer,
where each step’s result becomes the next input. The
Collatz Conjecture asserts that this sequence will al-
ways reach 1 Recent substantial advancements in ad-
dressing the Collatz problem have been documented
in works [2]. Now let’s move on to our research,
which we will conduct according to the announced
plan. For this, we will start with the following
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Theorem 1. Let

M ∈ N,
[αj ]− [αj+1] = δj > 0,

ϵ1 < 0.45,

|Fj(x)| < |x|,
αj = [αj ] + ϵj ,

ϵj < 1,

σj = 1− ϵj .

Then for δj = 1

σj = 2−1σj+1

(
1− σj+1 ln 2

2

)
+ Fj

(
σ3
j+1

12

)
,

(1)
and for δj > 1

σj = 2−δjσj+1 + 1− 2−δj − 2−2δj+1

ln 2
−

2
σ2
j+1 ln 2

4 + 2−2δjRj

(
ln2 2σ3

j+1

8

)
. (2)

Proof. Consider

M −M = 0 =

j∑
i=1

2[αi] + 2αj+1 −

[
j−1∑
i=1

2[αi] + 2αj

]
= 2[αj ] + 2αj+1 − 2αj

2αj = 2[αj ] + 2αj+1 = 2[αj ] + 2[αj+1]−[αj ]+[αj ]+ϵj+1 .

Then, we proceed to functional relations between σj
and σj+1:

2ϵj = 2−δj+ϵj+1 + 1

⇒ 21−σj = 2−δj+1−σj+1 + 1

⇒ ln(21−σj ) = ln 2− σj ln 2 = ln(2−δj+1−σj+1 + 1).

Evaluating for δj = 1, we get:

ln(2−δj+1−σj+1 + 1)

∣∣∣∣
δj=1

ln(2−σj+1 + 1)

= ln 2 + ln
(
1− σj+1 ln 2

2
+

σ2
j+1 ln

2 2

4
+ Fj

(
σ3
j+1

12

))
. (3)

Continuing the computations for δj > 1, we obtain:

ln(2−δj+1−σj+1 + 1)

= ln
(
1 + 2−δj+1 − 2−δj+1σj+1 ln 2

2
+

2−δj+1Fj

(
σ2
j+1 + 2−δj+1

))

= 2−δj−2−2δj+1−2−δj σj+1 ln 2
2

+2−2δjFj

(
σ2
j+1

)
.

(4)

Thus, we obtain the final formulas.

Theorem 2. Let

M = 3n = 2[α]+{α} =

n∗∑
i=1

γi2
i,

1− {α} > 0.55, n∗ =

[
n
ln(3)
ln(2)

]
, (5)

then ∑
γi=0

1 ≥ n∗

2
.

Proof. Let

3n = 2α ⇒ α =
n

ln 3/ ln 2
⇒ 3n = 2[α]+{α}.

Using Theorem 1, we construct the sequence

ϵi, mi, ϵ1 = {α},

2ϵ1 =

i−1∑
k=0

2[αk]−α1 + 2αi−α1 .

Suppose the binary decomposition process, according
to formula (1), stops at the j-th step. It immediately
follows that the remaining terms of the decomposition
are zeros, and we immediately achieve the truth of the
Theorem’s statement. Therefore, we consider the case
when the generation of the decomposition according
to formula (1) does not stop, and j reaches n. This
means that all σj > 0, j < n.

Let’s conduct a more detailed analysis of the num-
ber of zeros and ones in our binary representation. In-
troduce the following notation:
l- the number of zeros in the binary representation.
m- the number of ones in the binary representation.
n- the binary decomposition bit size, then
n=l+m.

δj = 1, αj = 0,

βj =

(
(1− ln 2σj+1

2
)/2 + Fj

(
σ2
j+1

12

)
)

)−1
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δj > 1, αj =

− 2δj
(
1− 2−δj − 2−2δj+1

ln 2
+ 2−δjRj

( ln2 2σ3
j+1

8
+

2−2δj+1

ln 2

))
, βj = 2δj (6)

To solve the following equations
σj+1 = αj + βjσj

we introduce the notation λm- the number of ones af-
ter the appearance of αm > 0 and before the next
appearance of zero in the binary decomposition and

γm =

m+λm−1∏
k=m

βk, αm+λm+1 > 0

Consider the set λ1, λ2, ....λn, . by definition λ1 ≥ 1
Define:

m(λ∗, i) = inf
k
{k|λk > 1 + i}

m(λ∗, i) = inf
k
{k|λk > 1 + i}

if the set k satisfying the condition is not empty. Let’s
perform a series of transformations to understand the
next steps.

σn+1 = αn + β1γ1
α1

β1γ1

n−2∏
k=0

γn−kβn−k+

n−2∑
m=1

γn−mβn−m
αn−m

βn−mγn−m

m−1∏
k=0

βn−kγn−k+

σ1

n−1∏
k=0

βn−kγn−k (7)

σn+1 = αn +
α1

β1γ1

n−1∏
k=0

βn−kγn−k+

n−2∑
m=1

αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k

+ σ1

n−1∏
k=0

βn−kγn−k (8)

With the consideration of the definition of m(λ∗, i),
in case of existence λi > 1

σn+1 = αn +
α1

β1γ1

n−1∏
k=0

βn−kγn−k+

m(λ∗,i)−1∑
m=1

αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k+ (9)

n−2∑
m=m(λ∗,i)

αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k+σ1

n−1∏
k=0

βn−kγn−k

σn+1 = αn +

m(λ∗,i)−1∑
m=1

αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k+

n−1∑
m=m(λ∗,i)

αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k+σ1

n−1∏
k=0

βn−kγn−k

n−1∑
m=m(λ∗,i)

γn−m(λ∗,i)αn−m

βn−mγn−m

m∏
k=0

βn−kγn−k+

σ1γn−m(λ∗,i)

m(λ∗,i)−1∏
k=0

βn−kγn−k (10)

Introduce the notation

α∗ = inf
δi

|αi|
βi

, α∗ = sup
0≤i≤n

|αi|
βi

β∗ = inf
0≤i≤n, δi=1

βi, β∗ = sup
0≤i≤n, δi=1

βi

A(m) =

m∑
k=1,δj=1

ln2(βj)+

m∑
k=1,δj>1

ln2(βj) = A1(m) +A2(m) (11)

by definition αi, γi

1 < α∗ < α∗ < 1.3

2 < β∗ < β∗ < 2/(1− ln 2/2)
Rewrite equation (6) using i, m(λ∗, i) and assum-

ing that we have only one zero

σ1 ≤
( σn

β∗i2A(n−1)
− α∗

β∗i2A(n−1)

m=m(λ∗,i)∑
m=1

2A(m)
)
+

( σn

β∗i2A(n−1)
− α∗

(β∗i2A(n−1)

m=n−1∑
m=m(λ∗,i)

2A(m)
)

σ1 < 2
1.3

βi

It follows that after zero there cannot be more than
three ones. Suppose that between two zeros there are
two ones, using Theorem 1 and denoting

x(k) = 2−σi+k , k ∈ {1, 2, 3, 4, 5}
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we get the system of equations

Ax = b (12)

where A,A−1, b are defined below.

A =


2 −s 0 0 0
0 2 −1 0 0
0 0 2 −1 0
0 0 0 2 −t
0 0 0 0 2

 (13)

b =


1
1
1
1
1

 (14)

s = 2−δi , t = 2−δi+3

A−1 =


1/2 s/4 s/8 s/16 s ∗ t/32
0 1/2 1/4 1/8 t/16
0 0 1/2 1/4 t/8
0 0 0 1/2 t/4
0 0 0 0 1/2

 (15)

Using Theorem 1 again

21−σi+4 = 2
[1
2
+

t(t+ 1)

4

]
= 2−δi+4−σi+5 + 1

t(t+ 1)

2
= 2−δi+4−σi+5

2−δi+4 + 1

2
= 2−σi+5

Continuing the calculations, we obtain

σi+4 ≥ 1− 2−δi+4−1/ ln 2
from Theorem 1 and the last estimate implies

δi+4 > 2

By considering three units between zeros, we obtain
the following matrix:

A =



2 −1 0 0 0 0 0
0 2 −s 0 0 0 0
0 0 2 −1 0 0 0
0 0 0 2 −1 0 0
0 0 0 0 2 −1 0
0 0 0 0 0 2 −t
0 0 0 0 0 0 2


The inverse of this matrix is given by:

We can also observe that the number of zeros is greater than
the number of ones, which implies the statement of the theorem.

Theorem 3. Let

an =

n∑
i=0

γi2
i, n > 1000, γi ∈ {0, 1},

then
∃j∗ < 10, and a4n−j∗ < an.

Proof. Introduce operators defined as follows:

Pf =
f

2
, T f = 3f + 1, Zf = 3f,

Ti ∈ {P, T}, Ri ∈ {Z,P}.
Consider all possible Collatz sequence behaviors

that can be written as follows:

an+n = T1T2 . . . Tnan,

Indeed, according to the Collatz rule, the operator
P is applied if the least significant bit in the binary
representation is zero, and after division, this zero dis-
appears. Conversely, the operator T is applied when
the least significant bit is one. The action of operator
T includes multiplication by two, followed by addi-
tion. This multiplication increases the number of ze-
ros by one due to the bits shifting to the left. During
addition, the number of zeros can only increase.

We explore this through three scenarios:

• In the first case, where zeros are interspersedwith
ones, addition results in a series of ones replacing
the interspersed zeros and ones. In the next step,
all but one will turn into zeros.

• In the second case, where zeros and ones occur in
blocks of more than one element, the shift again
adds one more zero. Upon adding to the shifted
number, pairs of ones transform into pairs of ze-
ros, ensuring the number of zeros does not de-
crease.

• In the third case, mixed states are possible, which
also increase the number of zeros after a step.

Using these considerations, we proceed to construct
estimates. We aim to calculate an estimate for every
2n-th member of the Collatz sequence based on the
number of operators P , T , Z applied during n steps.

an+n = TnTn−1 . . . T1an,

Let an havem ones in its binary representation, then
count the number of Z operator applications by the
following formula:

m =
∑

Ri=Z,
i≤n

1,
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and the number of P operator applications by the fol-
lowing formula:∑

Ri=P,
i≤n

1 = m+ n−m = n.

Since each Z application is followed by a P opera-
tor, and the number of P operator applications corre-
sponds to the number of zeros in an, which is n−m.
According to the Collatz rules, after n steps we have:

an+n =
3m

2n
an + TnTn−1 . . . T11 =

3m

2n
an +Bn,

Bn ≤ 2−n+m
m∑
j=1

3j

2j
an <

2−n+m · 3m/2m · an ≤ 2−2n+1 · 3m · an. (16)

According to the last formula, we see that the
growth of each sequence member depends on the
number of ones in its binary representation. Next, we
show that a large number of ones on the 2n-th step
leads to an increase in the number of zeros on the 3n-
th step for the binary representation, according to the
previous theorems, which implies a decrease in sub-
sequent sequence members:

a2n = 3man · 2−n +Bn = 3m + 3m(an − 2n) +Bn,

Repeating the reasoning of Theorem 2, consider
the equation

2x = a2n = 3man · 2−n +Bn =

3m + 3m(an − 2n) · 2−n +Bn, (17)

x ln 2 = m ln(3)+ln
(
1 + (an − 2n) · 2−n +Bn · 3−m

)
,

From the last equation, to apply the results of theorem
2, we need σ1 > 1

2 ln 2 . To satisfy the last inequality,
considermj = m− j, θ = (an − 2n) · 2−n,

{x} = min
j<10

textbfig{(m− j) ln(3)
ln(2)

+

ln(1 + θ)

ln 2
+ Fj

(
1

2n ln 2

)}
, (18)

Consider p = (m − j) ln 3ln 2 = (2k +
l)1.5849625007 . . . , ϵ = 1.5849625007 . . . − 1.5,
we get

p = (2k + l)(1.5 + ϵ+
ln(1 + θ)

ln 2
) =

3k + (2k + l) · ϵ+ ln(1 + θ)

ln 2
, (19)

m∗ number of non-zero γi,

According to theorem 2 we get

m∗ ≤ n/2 + (n− j∗) · ln 3/ ln 2/2,

According to our application of the Collatz rules, we
have an element a4n−j∗ , and the order of its binary
representation is

n2 = n+ (n− j∗) · ln 3/ ln 2/2,

After 3n − j∗ steps of applying the Collatz rules we
have

a4n−j∗ =
3m

∗

22n−j∗
a2n + T3n−j∗T3n−1−j∗ . . . T11 =

3m
∗

22n
a2n +B3n, (20)

a4n−j∗ =
3m

∗

22n
a2n + T3n−j∗T3n−j∗−1 . . . T11 =

3m
∗

22n

(
3m

2n−j∗
an +Bn

)
+B3n−j∗ , (21)

a4n−j∗ = 3m
∗+m·2−3n−j∗an+3m

∗ ·2−2n−j∗Bn+B3n−j∗ ,

a4n−j∗ ≤ q1 · an,

By the definition ofm∗, l∗, Bn we obtain

q1 < 1,

Using n > 1000, it follows that q1 < 1 ⇒ a4n−j∗ <
an.

Theorem 4. Let

an =

n∑
i=0

γi2
i, n > 1000, γi ∈ {0, 1},

then for an the Collatz conjecture holds.

Proof. The proof follows from Theorems 1-3.

Conclusion
Our assertion proves that after 3n − j∗ steps, the se-
quence with an initial binary length of n arrives at a
number strictly less than the initial one, thus resolving
the Collatz conjecture. Since applying this process n
times will inevitably lead us to 1.
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