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The results of the proposed work are a devel-
opment of the previous studies, including a certain
applied problem from rigid body dynamics [1, 2],
where complete lists of transcendental first integrals
expressed through a finite combination of elemen-
tary functions were obtained. Later on, this circum-
stance allows us to perform a complete analysis of
all phase trajectories and show those their properties
which have a roughness and are preserved for systems
of a more general form. The complete integrability of
such systems are related to symmetries of latent type.

As is known, the concept of integrability is suffi-
ciently fuzzy in general. In its construction, it is nec-
essary to take into account the meaning in which it is
understood(we mean a certain criterion with respect
to which one makes a conclusion that the structure of
trajectories of the dynamical system considered is es-
pecially simple and “attractive and simple”, in which
class of functions, we seek for first integrals, etc. (see
also [2, 3]).

In this work, we accept the approach that as the
class of functions for first integrals, takes transcenden-
tal functions, and, moreover, elementary ones. Here,
the transcendence is understood not in the sense of el-
ementary function theory (for example, trigonometric
functions), but in the sense of existence of essentially
singular points for them (according to the classifica-
tion accepted in the theory of function of one complex
variable). In this case, we need to formally continue
the function considered to the complex domain (see
also [3, 4]).

1 Preliminary Arguments and Re-
sults

Of course, in the general case, it is sufficiently difficult
to construct a certain theory of integrability for non-
conservative systems (even of low dimension). But in
a number of cases where the system studied have addi-
tional symmetries, we succeed in finding first integrals
through finite combinations of elementary functions
[5, 6].

Proposed work appeared from the plane problem
of motion of a rigid body in a resisting medium whose
contact surface with the medium is a part of its ex-
terior surface. In this case, the force field is con-
structed from the reasons of the medium action on the
body under streamline (or separation) flow around un-
der the quasi-stationarity conditions. It turns out that
the study of motion of such classes of bodies reduces
to systems with energy scattering ((purely) dissipative
systems or systems in a dissipative force field) or sys-
tems with energy pumping (the so-called systems with
anti-dissipation, or systems with dispersing forces).
Note that such problems were already appeared in ap-
plied aerodynamics (see also [6]).

The previously considered problems have stimu-
lated (and stimulate) the development of quality tools
for studying, which essentially complement the quali-
tative theory of nonconservative systems with dissipa-
tion of both signs (see also [7]).

Also, we have qualitatively studied nonlinear ef-
fects of motion in plane and spatial rigid body dynam-
ics and have justified on the qualitative level the neces-
sity of introducing the definitions of relative rough-
ness and relative non-roughness of various degrees
(see also [8]).
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The following series of results allowed us to pre-
pare this work in a very definite style.

i) We have elaborated the methods for qualita-
tive studying dissipative systems and systems with
anti-dissipation that allo us to obtain the condition
for bifurcation of birth of stable and unstable auto-
oscillations and also the conditions for absence of any
singular trajectories. We succeeded in generalizing
the method for studying plane topographical Poincarè
systems to higher dimensions. We have obtained suf-
ficient Poisson stability conditions(density near itself)
of certain classes of non-closed trajectories of dynam-
ical systems [8, 9].

ii) In two- and three-dimensional rigid body dy-
namics, we have discovered complete lists of first in-
tegrals of dissipative systems and systems with anti-
dissipation that are transcendental (in the sense of
classification of their singularities) functions that are
expressed through elementary functions in a number
of cases. We have introduced new definitions of rela-
tive roughness and relative non-roughness of various
degrees, which have the integrated systems [9, 10].

iii) We have obtained multiparameter families of
topologically non-equivalent phase portraits arising in
purely dissipative systems (i.e., systems with variable
dissipation and nonzero (positive) mean). Almost ev-
ery portrait of such families is (absolutely) rough [10,
11].

iv) We have discovered new qualitative analogs
between the properties of motion of free bodies in a
resisting medium that is fixed at infinity, and bodies in
the run-of medium flow [12].

Many results of this work were regularly reported
at numerous workshops, including the workshop “Ac-
tual Problems of Geometry and Mechanics” named af-
ter professor V. V. Trofimov led by D. V. Georgievskii
and M. V. Shamolin.

2 Variable Dissipation Dynamical
Systems as a Class of Systems Ad-
mitting a Complete Integration

2.1 Visual characteristic of variable dissipa-
tion dynamical systems

Since, in the initial modelling of the medium action
on a rigid body, we have used the experimental infor-
mation about the properties of streamline flow, it be-
comes necessary to study the class of dynamical sys-
tems that has the property of (relative) structural sta-
bility (relative roughness). Therefore, it is quite natu-
ral to introduce these definitions for such systems. In
this case, many of the systems considered are (abso-
lutely) rough in the Andronov–Pontryagin sense [13,

14].
After some simplifications (for example, in the

two-dimensional dynamics), the dynamical part of the
general system of equations of plane-parallel motion
can be reduced to a pendulum-like second-order sys-
tem in which there is a linear nonconservative (sign-
alternating) force with coefficients that have different
signs for different values of the periodic phase coordi-
nate in the system.

Therefore, in this case, we will speak of systems
with the so-called variable dissipation, where the term
“variable” refers not to the value of the dissipation
coefficient, but to the possible alternation of its sign
(therefore, it is more reasonable to use the term “sign-
alternating”).

On the average, for the period of the existing peri-
odic coordinate, the dissipation can be either positive
(“purely” dissipative systems), or negative (systems
with dispersing forces), and also it can be equal to zero
(but not identically in this case). In the latter case, we
speak of the zero mean variable dissipation systems
(such systems can be associated with “almost” con-
servative systems).

As was already mentioned previously, we have
detected important mechanical analogs arising in the
comparison of qualitative properties of the stationary
motion of a free body and the equilibrium of a pen-
dulum in a medium flow. Such analogs have a deep
support meaning since they allow us to extend the
properties of nonlinear dynamical systems for a pen-
dulum to dynamical systems for a free body. Both
these systems belong to the class of the so-called zero
mean variable dissipation pendulum-like dynamical
systems.

Under additional conditions, the equivalence de-
scribed above is extended to the case of spatial mo-
tion, which allows us to speak of the common charac-
ter of symmetries in a zero mean variable dissipation
system under the plane-parallel and spatial motions
(for the plane and spatial variants of a pendulum in
the medium flow, see also [1–3]).

In this connection, previously, we have intro-
duced the definitions of relative structural stability
(relative roughness), and relative structural instability
(relative nonroughness) of various degrees. The latter
properties were proved for systems that arise, e.g., in
[4, 6].

The purely dissipative systems (as well as
(purely) anti-dissipative ones), which in our case can
belong to nonzero zero mean variable dissipation sys-
tems, are, as a rule, structurally stable ((absolutely)
rough), whereas zero mean variable dissipation sys-
tems (which, as a rule, have additional symmetries)
are either structurally unstable (nonrough) or only rel-
atively structurally stable (relatively nonrough). In the
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general case, it is difficult to prove the latter assertion.
For example, a dynamical system of the form

α̇ = Ω+ β sinα,

Ω̇ = −β sinα cosα
(1)

is relatively structurally stable (relatively rough) and
is topologically equivalent to the system describing a
clamped pendulum in an over-run medium flow [7, 8].

Below we present its first integral, which is a tran-
scendental (in the sense of the theory of functions
of one complex variable having essentially singular
points after its continuation to the complex domain)
function of phase variables expressed through a fi-
nite combination of elementary functions. The phase
cylinder R2{α,Ω} of quasi-velocities of the system
considered has an interesting topological structure of
partition into trajectories (for more detail, see [9]).

Although the dynamical system considered is not
conservative, in the rotation domain (and only in it) of
the phase plane R2{α,Ω}, it admits the preservation
of an invariant measure with variable density. This
property characterizes the system considered as a zero
mean variable dissipation system.

2.2 One of the definitions of a zero mean
variable dissipation system

We will study systems of ordinary differential equa-
tions having a periodic phase coordinate. The systems
under study have those symmetries under which, on
the average, for the period in the periodic coordinates,
their phase volume is preserved. So, for example, the
following pendulum-like system with smooth and pe-
riodic in α of period T right-hand side V(α, ω) of the
form

α̇ = −ω + f(α),
ω̇ = g(α),

f(α+ T ) = f(α), g(α+ T ) = g(α),
(2)

preserves its phase area on the phase cylinder over the
period T : ∫ T

0
divV(α, ω)dα =

=

∫ T

0

(
∂

∂α
(−ω + f(α)) +

∂

∂ω
g(α)

)
dα = (3)

=

∫ T

0
f ′(α)dα = 0.

The system considered is equivalent to the pendu-
lum equation

α̈− f ′(α)α̇+ g(α) = 0, (4)

in which the integral of the coefficient f ′(α) standing
by the dissipative term α̇ is equal to zero on the aver-
age for the period.

It is seen that the system considered has those
symmetries under which it becomes the so-called zero
mean variable dissipation system in the sense of the
following definition.

Definition 1 Consider a smooth autonomous system
of the (n + 1)th order of normal form given on the
cylinder Rn{x} × S1{α mod 2π}, where α is a pe-
riodic coordinate of period T > 0. The divergence
of the right-hand side V(x, α) (which, in general, is a
function of all phase variables and is not identically
equal to zero) of this system is denoted by divV(x, α).
This system is called a zero (nonzero) mean variable
dissipation system if the function∫ T

0
divV(x, α)dα (5)

is equal (not equal) to zero identically. Moreover, in
some cases (for example, when singularities arise at
separate points of the circle S1{α mod 2π}), this in-
tegral is understood in the sense of principal value.

It should be noted that giving a general definition
of a zero (nonzero) mean variable dissipation system
is not simple. The definition just presented uses the
concept of divergence (as is known, the divergence of
the right-hand side of a system in normal form charac-
terizes the variation of the phase volume in the phase
space of this system).

3 Systems with Symmetries and Zero
Mean Variable Dissipation

Let us consider systems of the form (the dot denotes
the derivative in time)

α̇ = fα(ω, sinα, cosα),
ω̇k = fk(ω, sinα, cosα), k = 1, . . . , n,

(6)

given on the set

S1{α mod 2π}\K ×Rn{ω}, (7)

ω = (ω1, . . . , ωn), where the smooth functions
fλ(u1, u2, u3), λ = α, 1, . . . , n, of three variables
u1, u2, u3 are as follows:

fλ(−u1,−u2, u3) = −fλ(u1, u2, u3),
fα(u1, u2,−u3) = fα(u1, u2, u3),
fk(u1, u2,−u3) = −fk(u1, u2, u3),

(8)
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herewith, the functions fk(u1, u2, u3) are defined for
u3 = 0 for any k = 1, . . . , n.

The set K is either empty or consists of finitely
many points of the circle S1{α mod 2π}.

The latter two variables u2 and u3 in the functions
fλ(u1, u2, u3) depend on one parameter α, but they
are allocated into different groups because of the fol-
lowing reasons. First, not in the whole domain, they
are one-to-one expressed through each other, and, sec-
ond, the first of them is an odd function and the second
is an even function of α, which influences the symme-
tries of system (6) in different ways.

To the system (6), let us put in correspondence the
following nonautonomous system

dωk
dα

=
fk(ω, sinα, cosα)

fα(ω, sinα, cosα)
, k = 1, . . . , n, (9)

which via the substitution τ = sinα, reduces to the
form

dωk
dτ

=
fk(ω, τ, φk(τ))

fα(ω, τ, φα(τ))
, k = 1, . . . , n, (10)

φλ(−τ) = φλ(τ), λ = α, 1, . . . , n.

The latter system can have in particular an alge-
braic right-hand side (i.e., it can be the ratio of two
polynomials); sometimes this helps us to find its first
integrals in explicit form.

The following assertion embeds the class of sys-
tems (6) in the class of zero mean variable dissipation
systems. The inverse embedding does not hold in gen-
eral.

Theorem 2 Systems of the form (6) are zero mean
variable dissipation dynamical systems.

This theorem is proved by using the certain sym-
metries (8) of system (6) only, listed above, and uses
the periodicity of the right-hand side of the system on
α.

Indeed, let calculate the specified divergence of
the vector field of system (6). It equals to

∂fα(ω, sinα, cosα)

∂u2
cosα−

−∂fα(ω, sinα, cosα)
∂u3

sinα+

+
n∑
k=1

∂fk(ω, sinα, cosα)

∂u1
. (11)

The following integral on two first summands
(11) is equal to zero:∫ 2π

0

{
∂fα(ω, sinα, cosα)

∂u2
d sinα+

+
∂fα(ω, sinα, cosα)

∂u3
d cosα

}
=

=

∫ 2π

0

∂fα(ω, sinα, cosα)

∂α
dα = hα(ω) ≡ 0, (12)

since the function fα(ω, sinα, cosα) is periodic one
on α.

So, by virtue of the third equation (8), the follow-
ing property holds for any k = 1, . . . , n:

∂fk(ω, sinα, cosα)

∂u1
= cosα · ∂gk(ω, sinα)

∂u1
, (13)

herewith, the function gk(u1, u2) is rather smooth for
any number k = 1, . . . , n.

Then the integral on period 2π from the right-
hand side of the equation (13) gives∫ 2π

0

∂gk(ω, sinα)

∂u1
d sinα = hk(ω) ≡ 0 (14)

for any k = 1, . . . , n. And we get the assertion of the
theorem 2 from the equalities (12), (14).

The converse assertion is not true in general since
we can present a set of dynamical systems on the two-
dimensional cylinder, being zero mean variable dissi-
pation systems that have none of the above-listed sym-
metries.

In this work, we are mainly concerned with
the case where the functions fλ(ω, τ, φk(τ)) (λ =
α, 1, . . . , n) are polynomials in ω, τ .

Example 1. We consider, in particular,
pendulum-like systems on the two-dimensional cylin-
der S1{α mod 2π} × R1{ω} with parameter b > 0
from rigid body dynamics:

α̇ = −ω + b sinα,
ω̇ = sinα cosα,

(15)

and

α̇ = −ω + b sinα cos2 α+ bω2 sinα,
ω̇ = sinα cosα− bω sin2 α cosα+

+bω3 cosα,
(16)

in the variables (ω, τ), to these systems we can put
in correspondence the following equations with alge-
braic right-hand sides:

dω

dτ
=

τ

−ω + bτ
, (17)

and
dω

dτ
=

τ + bω[ω2 − τ2]

−ω + bτ + bτ [ω2 − τ2]
(18)

which have the form (4.2). Moreover, these systems
are zero mean variable dissipation dynamical systems,
which is easily directly verified.
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Indeed, the divergences of its right-hand sides are
equal to

b cosα

and
b cosα[4ω2 + cos2 α− 3 sin2 α],

respectively. It is easy to verify that they belong to the
class of systems (6).

Moreover, each of these systems has a first inte-
gral that is a transcendental (in the sense of the the-
ory of functions of one complex variable) function
expressed through a finite combination of elementary
functions.

Let us present one more important example of a
higher-order system having the listed properties.

Example 2. To the following system

α̇ = −z2 + b sinα,
ż2 = sinα cosα− z21

cosα
sinα ,

ż1 = z1z2
cosα
sinα ,

(19)

with parameter b, considered in the three-dimensional
domain

S1{α mod 2π}\{α = 0, α = π}×R2{z1, z2} (20)

(such a system can also be reduced to an equiva-
lent system on the tangent bundle T∗S2 of the two-
dimensional sphere S2) and describing the spatial mo-
tion of a rigid body in a resisting medium, we put in
correspondence the following nonautonomous system
with algebraic right-hand side: (τ = sinα):

dz2
dτ

=
τ − z21/τ

−z2 + bτ
,
dz1
dτ

=
z1z2/τ

−z2 + bτ
. (21)

It is seen that system (19) is a zero mean vari-
able dissipation system; in order to achieve complete
correspondence with the definition, it suffices to intro-
duce a new phase variable

z∗1 = ln |z1|. (22)

If we calculate the divergence of the right-hand
side of the system (19) in Cartesian coordinates
α, z∗1 , z2, then we shall get that it is equal to b cosα.
Herewith, if we consider (20), we shall have in the
sense of principal value:

lim
ε→0

∫ π−ε

ε
b cosα+ lim

ε→0

∫ 2π−ε

π+ε
b cosα = 0. (23)

Moreover, the system (19) has two first integrals
(i.e., a complete list) that are transcendental functions
and we expressed through a finite combination of el-
ementary functions, which, as was mentioned above,

becomes possible after putting in correspondence to
it a (nonautonomous in general) system of equations
with algebraic (polynomial) right-hand (21).

The above-presented systems (15), (16), and (19),
along with the property that they belong to the class
of systems (6) and are zero mean variable dissipation
systems, also have a complete list of transcendental
first integrals expressed through a finite combination
of elementary functions.

Therefore, to search for the first integrals of the
system considered, it is better to reduce systems of
the form (6) to systems (10) with polynomial right-
hand sides, on whose form the possibility of integra-
tion in elementary functions of the initial system de-
pends. Therefore, we proceed as follows: we seek suf-
ficient conditions for integrability in elementary func-
tions of systems of equations with polynomial right-
hand sides studying systems of the most general form
in this process.

4 Systems on Tangent Bundle of
Two-Dimensional Sphere

Let consider the following dynamic system

θ̈ + bθ̇ cos θ + sin θ cos θ − ψ̇2 sin θ
cos θ = 0,

ψ̈ + bψ̇ cos θ + θ̇ψ̇
[
1+cos2 θ
sin θ cos θ

]
= 0

(24)

on tangent bundle T∗S2 of two-dimensional sphere
S2{θ, ψ}. This system describes the spherical pendu-
lum, placed in the accumulating medium flow. Here-
with, both conservative moment is present in the sys-
tem

sin θ cos θ, (25)

and the force moment depending on the velocity as
linear one with the variable coefficient:

b

(
θ̇

ψ̇

)
cos θ. (26)

The coefficients remaining in the equations are
the coefficients of connectedness, i.e.,

Γθψψ = − sin θ

cos θ
, Γψθψ =

1 + cos2 θ

sin θ cos θ
. (27)

The system (24) has an order 3 practically, since
the variable ψ is a cyclic, herewith, the derivative ψ̇ is
present in the system only.

Proposition 3 The equation

ψ̇ = 0 (28)

define the family of integral planes for the system (24).
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Furthermore, the equation (28) reduces the sys-
tem (24) to an equation describing the cylindric pen-
dulum which placed in the accumulating medium
flow.

Proposition 4 The system (24) is equivalent to the
following system:

θ̇ = −z2 + b sin θ,

ż2 = sin θ cos θ − z21
cos θ
sin θ ,

ż1 = z1z2
cos θ
sin θ ,

ψ̇ = z1
cos θ
sin θ

(29)

on the tangent bundle T∗S
2{z1, z2, θ, ψ} of two-

dimensional sphere S2{θ, ψ}.

Moreover, the first three equations of the system
(29) form the closed three order system and coincide
with the equations of the system (19) (if we denote
α = θ). The separation of fourth equation of the sys-
tem (29) has also occurred by the reason of cyclicity
of the variable ψ.

On the construction of phase pattern of the system
(24), expressed in Pic. ??, see [9, 10].

Example 3. Let us study a system of the form
(19), which reduces to (21), and also the system

α̇ = −z2 + b(z21 + z22) sinα+
+b sinα cos2 α,

ż2 = sinα cosα+ bz2(z
2
1 + z22) cosα−

−bz2 sin2 α cosα− z21
cosα
sinα ,

ż1 = bz1(z
2
1 + z22) cosα−

−bz1 sin2 α cosα+ z1z2
cosα
sinα ,

(30)

which also arises in the three-dimensional dynamics
of a rigid body interacting with a medium and which
corresponds to the following system with algebraic
right-hand side:

dz2
dτ =

τ+bz2(z21+z
2
2)−bz2τ

2−z21/τ
−z2+bτ(z21+z

2
2)+bτ(1−τ2)

,

dz1
dτ =

bz1(z21+z
2
2)−bz1τ

2+z1z2/τ

−z2+bτ(z21+z
2
2)+bτ(1−τ2)

.
(31)

Therefore, as before, we consider a pair of sys-
tems: the initial system (30) and the algebraic system
(31) corresponding to it.

In a similar way, we pass to homogeneous coor-
dinates uk, k = 1, 2, by the formulas

zk = ukτ. (32)

Using the latter change, we reduce system (21) to
the form

τ du2dτ + u2 =
τ−u21τ

−u2τ+bτ ,

τ du1dτ + u1 =
u1u2τ

−u2τ+bτ ,
(33)

corresponding to the equation

du2
du1

=
1− bu2 + u22 − u21

2u1u2 − bu1
. (34)

This equation is integrated in elementary functions
since the identity

d

(
1− βu2 + u22

u1

)
+ du1 = 0, (35)

is integrated, and in the coordinates (τ, z1, z2), it has
a first integral of the form (compare with [10])

z21 + z22 − βz2τ + τ2

z1τ
= const.

System (30) after its reduction corresponds to the
system

τ du2dτ + u2 =
τ+bu2τ3(u21+u

2
2)−bu2τ

3−u21τ
−u2τ+bτ3(u21+u

2
2)+bτ(1−τ2)

,

τ du1dτ + u1 =
bu1τ3(u21+u

2
2)−bu1τ

3+u1u2τ

−u2τ+bτ3(u21+u
2
2)+bτ(1−τ2)

,
(36)

which also reduces to the form (34).

5 Certain Generalizations
Let us pose the following question: What are the pos-
sibilities of integrating in elementary functions the
system

dz
dx = ax+by+cz+c1z2/x+c2zy/x+c3y2/x

d1x+ey+fz
,

dy
dx = gx+hy+iz+i1z2/x+i2zy/x+i3y2/x

d1x+ey+fz
,

(37)

of a more general form, which includes the systems
(21) and (31) considered above in three-dimensional
phase domains and which has a singularity of the form
1/x?

Previously, a number of results concerning this
question were already obtained (see also [5, 6]). Let
us present these results and complement them by orig-
inal arguments.

As previously, introducing the substitutions

y = ux, z = vx, (38)

we obtain that system (37) reduces to the following
system

x dvdx + v = ax+bux+cvx+c1v2x+c2vux+c3u2x
d1x+eux+fvx

, (39)

xdudx + u = gx+hux+ivx+i1v2x+i2vux+i3u2x
d1x+eux+fvx

, (40)

PROOF 
DOI: 10.37394/232020.2024.4.6 Maxim V. Shamolin

E-ISSN: 2732-9941 80 Volume 4, 2024



which is equivalent to

x dvdx =

= ax+bux+(c−d1)vx+(c1−f)v2x+(c2−e)vux+c3u2x
d1x+eux+fvx

,

(41)
xdudx =

= gx+(h−d1)ux+ivx+i1v2x+(i2−f)vux+(i3−e)u2x
d1x+eux+fvx

,

(42)
we put in correspondence the following equation with
algebraic right-hand side:

dv
du = a+bu+cv+c1v2+c2vu+c3u2−v[d1+eu+fv]

g+hu+iv+i1v2+i2vu+i3u2−u[d1+eu+fv] . (43)

The integration of the latter equation reduces to
that of the following equation in total differentials:

[g+hu+iv+i1v
2+i2vu+i3u

2−d1u−eu2−fuv]dv =

= [a+ bu+ cv + c1v
2+

+c2vu+ c3u
2 − d1v − euv − fv2]du.

(44)

We have (in general) a 15-parameter family of
equations of the form (44). To integrate the latter iden-
tity in elementary functions as a homogeneous equa-
tion, it suffices to impose seven relations

g = 0, i = 0, i1 = 0,
e = c2, h = c, i2 = 2c1 − f.

(45)

Introduce nine parameters β1, . . . , β9 and con-
sider them as independent parameters:

β1 = a, β2 = b, β3 = c, β4 = c1, β5 = c2,
β6 = c3, β7 = d1, β8 = f, β9 = i3.

(46)

Therefore, under the group of conditions (45),
and (46), Eq. (44) reduces to the form

dv
du = β1+β2u+(β3−β7)v+(β4−β8)v2+β6u2

(β3−β7)u+2(β4−β8)vu+(β9−β5)u2 , (47)

and the system (41), (42), respectively, to the form

x dvdx = β1+β2u+(β3−β7)v+(β4−β8)v2+β6u2
β7+β5u+β8v

, (48)

xdudx = (β3−β7)u+2(β4−β8)vu+(β9−β5)u2
β7+β5u+β8v

, (49)

after that, the equation (47) is integrated in finite com-
bination of elementary functions.

Indeed, integrating the identity (44), we obtain the
relation

d

[
(β3 − β7)v

u

]
+

+d

[
(β4 − β8)v

2

u

]
+ d[(β9 − β5)v] + d

[
β1
u

]
−

−d[β2 ln |u|]− d[β6u] = 0, (50)

which for the beginning allows us to obtain the fol-
lowing invariant relation:

(β3 − β7)v

u
+

(β4 − β8)v
2

u
+ (β9 − β5)v +

β1
u
−

−β2 ln |u| − β6u = C1 = const, (51)

and in the coordinates (x, y, z), it allows us to obtain
the first integral in the form

A

yx
− β2 ln

∣∣∣∣yx
∣∣∣∣ = const, (52)

A = (β4 − β8)z
2−

−β6y2 + (β3 − β7)zx+ (β9 − β5)zy + β1x
2.

Therefore, we can make a conclusion about the
integrability in elementary functions of the follow-
ing, in general, nonconservative third-order system
depending on nine parameters:

dz
dx = β1x+β2y+β3z+β4z2/x+β5zy/x+β6y2/x

β7x+β5y+β8z
,

dy
dx = β3y+(2β4−β8)zy/x+β9y2/x

β7x+β5y+β8z
.

(53)

Corollary 5 The third-order system

α̇ = β7 sinα+ β5z1 + β8z2,
ż2 = β1 sinα cosα+ β2z1 cosα+

+β3z2 cosα+
+β4z

2
2
cosα
sinα + β5z1z2

cosα
sinα + β6z

2
1
cosα
sinα ,

ż1 = β3z1 cosα+ (2β4 − β8)z1z2
cosα
sinα+

+β9z
2
1
cosα
sinα ,

(54)

on the set

S1{α mod 2π}\{α = 0, α = π}×R2{z1, z2}, (55)

which depends on nine parameters, has a first inte-
gral, which is in general transcendental and expressed
through elementary functions:

B

z1 sinα
− β2 ln

∣∣∣∣ z1sinα

∣∣∣∣ = const, (56)

B = (β4 − β8)z
2
2 − β6z

2
1+

+(β3 − β7)z2 sinα+ (β9 − β5)z2z1 + β1 sin
2 α2.

In particular, for β1 = 1, β2 = β3 = β4 = β5 =
β9 = 0, β6 = β8 = −1, β7 = b system (54) reduces
to system (19).

To find the additional first integral of the nonau-
tonomous system (37), we use the found first integral
(52), which is expressed through a finite combination
of elementary functions.
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For the beginning let transform the relation (51)
as follows:

(β4 − β8)v
2+

+ [(β9 − β5)u+ (β3 − β7)] v + f1(u) = 0, (57)

where

f1(u) = β1 − β6u
2 − β2u ln |u| − C1u.

Herewith, the value v formally can be found from
the equality

v1,2(u) =
1

2(β4 − β8)
×

×
{
(β5 − β9)u+ (β7 − β3)±

√
f2(u)

}
, (58)

where

f2(u) = A1 +A2u+A3u
2 +A4u ln |u|,

A1 = (β3 − β7)
2 − 4β1(β4 − β8),

A2 = 2(β9 − β5)(β3 − β7) + 4C1(β4 − β8),

A3 = (β9 − β5)
2 + 4β6(β4 − β8),

A4 = 4β2(β4 − β8).

Then the quadrature studied for the search of ad-
ditional (in general) transcendental first integral (for
example, of the system (48), (49) or (41), (42), here-
with, the equation (49) is used) has the following form∫

dx

x
=

∫
[β7 + β5u+ β8v1,2(u)]du

C
=

=

∫
[B1 +B2u+B3

√
f2(u)]du

B4u
√
f2(u)

, (59)

Bk = const, k = 1, . . . , 4,

C = (β3−β7)u+(β9−β5)u2+2(β4−β8)uv1,2(u).

And the quadrature studied for the search of ad-
ditional (in general) transcendental first integral (for
example, of the system (48), (49) or (41), (42), here-
with, the equation (48) is used) has the following form∫

dx

x
=

∫
[β7 + β5u(v) + β8v]dv

D
, (60)

D = β1+β2u(v)+(β3−β7)v+(β4−β8)v2+β6u2(v).

herewith, the function u(v) should be obtain as a re-
sult of resolving of implicit equation (51) respectively
to u (that, in general case, is not always evident).

The following lemma gives the necessary condi-
tions of the expression of integrals in (60) through the
finite combination of elementary functions.

Lemma 6 The indefinite integral in (60) is expressed
through the finite combination of elementary functions
for A4 = 0, i.e., either

β2 = 0 (61)

or
β4 = β8. (62)

Theorem 7 The system (54) under assumption of
necessary conditions of lemma 6 (the property (61)
holds in given case), has the compete set of first inte-
grals, which expressing through the finite combination
of elementary functions.

Therefore, the dynamical systems considered in
this work refer to zero mean variable dissipation sys-
tems in the existing periodic coordinate. Moreover,
such systems often have a complete list of first inte-
grals expressed through elementary functions.

So, it was shown above the certain cases of com-
plete integrability in spatial dynamics of a rigid body
motion in a nonconservative field. Herewith, we dealt
with with three properties, which are independent for
the first glance:

i) the distinguished class of systems (6) with the
symmetries above;

ii) the fact that this class of systems consists of
systems with zero mean variable dissipation (in the
variable α), which allows us to consider them as “al-
most” conservative systems;

iii) in certain (although lower-dimensional) cases,
these systems have the complete tuple of first inte-
grals, which are transcendental in general (from the
viewpoint of complex analysis).

The method for reducing the initial systems of
equations with right-hand sides containing polynomi-
als in trigonometric functions to systems with polyno-
mial right-hand sides allows us to search for the first
integrals (or to prove their absence) for systems of a
more general form, but not only for systems that have
the above symmetries (see also [10, 11]).

6 Conclusion
The results of the presented work were appeared ow-
ing to the study the applied problem of the rigid body
motion in a resisting medium, where we have ob-
tained complete lists of transcendental first integrals
expressed through a finite combination of elemen-
tary functions. This circumstance allows the author
to carry out the analysis of all phase trajectories and
show those their properties which have the roughness
and are preserved for systems of a more general form.
The complete integrability of such system is related
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to their symmetries of latent type. Therefore, it is of
interest to study a sufficiently wide class of dynamical
systems having analogous latent symmetries [12, 13].

So, for example, the instability of the simplest
body motion, the rectilinear translational drag, is used
for methodological purposes, precisely, for finding the
unknown parameters of the medium action on a rigid
body under the quasi-stationarity conditions.

The experiment on the motion of homogeneous
circular cylinders in the water carried out in Institute
of Mechanics of M. V. Lomonosov State University
justified that in modelling the medium action on the
rigid body, it is also necessary to take into account an
additional parameter that brings a dissipation to the
system.

In studying the class of body drags with finite an-
gle of attack, the principal problem is finding those
conditions under which there exist auto-oscillations in
a finite neighborhood of the rectilinear translational
drag. Therefore, there arises the necessity of a com-
plete nonlinear study [14, 15].

Generally speaking, the dynamics of a rigid body
interacting with a medium is just the field where there
arise either nonzero mean variable dissipation systems
or systems in which the energy loss in the mean dur-
ing a period can vanish. In the work, we have obtained
such a methodology owing to which it becomes possi-
ble to finally and analytically study a number of plane
and spatial model problems.

In qualitative describing the body interaction with
a medium, because of using the experimental infor-
mation about the properties of the streamline flow
around, there arises a definite dispersion in modelling
the force-model characteristics. This makes it natural
to introduce the definitions of relative roughness (rela-
tive structural stability) and to prove such a roughness
for the system studied. Moreover, many systems con-
sidered are merely (absolutely) Andronov–Pontryagin
rough [15, 16].
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