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Abstract: - Assume G  is a locally compact Hausdorff group,  A  is a C -algebra, and  ,G A,  is a 

dynamical system, we consider a Takai theorem that states the isomorphism 

    ˆ
ˆ: G G LK L G      2A A  is equivariant for   ˆ

ˆ ˆˆ :G G G    A  and for 

    ˆ̂ :Ad G LK L G    2A . Also, we show that  -surjective mapping 

   : , ,C CC G C G  A A,  can be extended to quotient mapping 

 : /G G G G

         A A A AI  for the twisted dynamical system  , ,G  A, . 

We establish that there exists an isomorphism of the Schrodinger C -algebra   Sch G 

 A  to the 

reduced crossed product 
red

G


  A ;  and show the representation 

      Sch G LB L G  

   2A A  is faithful for each amenable group G . 

Key-Words: - Takai Duality,  -duality, Wigner function, C -algebra, Pontryagin duality, induced 

representation, cross product.  

 

1 Introduction (dynamic systems) 

Let G  be a locally compact Hausdorff 

group and let   be a Radon measure on G . 

Assume that N  is a locally compact subgroup of 

G  then /G N  is locally compact Hausdorff group. 

Definition. The group G  is called an 

extension of the group N  by the group H  if the 

short group sequence  

j ke N G H e                      (1) 

is exact, where j  is a continuous homeomorphism 

onto the range of j  and  k  is a continuous open 

surjective mapping. 

If we assume that N  a normal subgroup 

of G  then H  is a quotient group /G N . So, 

symbolically we can write a short exact sequence 

of groups   

/ /j ke N N G N G N e     .    (2) 

Definition 2. Let A  be a C
-algebra and 

G  locally compact Hausdorff group then the 

triplet  ,G A,  is called a dynamical system 

where  :G Aut  A  is a strongly continuous 

representation. 
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Definition 3.  Let  ,G A,  be a dynamic 

system on the Hilbert space H . Let    be unitary 

representation  :G U H   and 

 : LB H A representation on the Hilbert 

space H , such that 

        ,g a g a g     .     (3) 

Then, the pair   ,   is called a 

covariant representation of  ,G A, . 

Definition 4. Let  ,   be a covariant 

representation of the dynamic system  ,G A,  

on the Hilbert space H . The L1
-norm-decreasing 

 -representation  ,CC G A  on H  is given by  

         
G

h h d h             (4) 

for all  CC G  . 

We denote a continuous homomorphism 

:G R   such that the equality  

         
G G

g hg d h h d h           (5) 

holds for all   CC G  . 

To show that mapping    is  -

homomorphism,  we compute  

         

      

         

 

,

.

G

G

G

h h d h

h h d h

h h h h d h

      

   

    

  






 



  

 

  

 







1

1 1

(6) 

Applying the Fubini theorem, we write   

 

     
     

       
     

   

,

,

G G

G G

h h h g

g d h d g

h h h g

h g d g d h

   

   

  

    

  

     







  

 

 

  

 

 

1

1

1

           (7) 

so    is  -homomorphism. 

Definition 5. Let  ,G A,  be a dynamic 

system  ,G A, . The norm on  ,CC G A , of 

the function  ,CC G  A   given by  

   

 

: ,
sup

cov ,

is

ariant representation of G



    





  
 
  A ,

 (8) 

is called the universal norm.   

Definition 6. The completion of the set  

 ,CC G A  in the universal norm is called the 

cross product GA  of A  by G  and present a 

Banach C
-algebra.  The cross-product GA  

is said to be associated with the dynamic system 

 ,G A, . 

Definition 7.  Let N  and H  be a pair of 

locally compact groups and let mapping 

 : H Aut N   be continuous homomorphism 

maps as     ,h n h n  for all 

,n N h H  , and let the short sequence  

e N G H e                      (9) 

be exact, where 

         h n h n h      1 1
, 

homomorphism : H G   satisfies 

 id H    (identity map on H ), then the 
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group G  is called a semi-direct product N H  

of pair of groups  N  and H .  

2. The Takai dynamical system  

Let G  be an Abelian locally compact group 

and let  ,G A,  be a dynamical system. A 

homomorphism  ˆˆ :G Aut G  A  is given by 

extending of the mapping 

     ˆ : , ,C CC G C G  A A , 

       ˆ g g g     .  

We denote the space of all linear compact 

operators on the Hilbert space  L G2
 by 

  LK L G2
.  

The Takai duality theorem states that if 

assume  ,G A,  is a dynamical system then the 

isomorphism 

    ˆ
ˆ: G G LK L G      2A A  is 

equivariant for   ˆ
ˆ ˆˆ :G G G    A  and for 

    ˆ̂ :Ad G LK L G    2A , where the 

mapping   :G LK L G   2A  is the right 

regular representation. 

We remind our reader two statements of the 

Peter-Weyl theorem: the first statement, the 

collection of matrix coefficients of the group  G  is 

dense in  C G  relevant to the uniform topology; 

the second statement, assume :G H   is a 

unitary representation of G  in Hilbert space 

 H L G 2
, then  H L G 2

 can be presented in 

the form of the direct sum of irreducible finite-

dimensional unitary representation of G . Let G  be 

compact, the Peter-Weyl theorem implies that each 

ˆˆ G   equals a subrepresentation of the left-regular 

representation   : G U L G  2
. 

The proof of the Takai theorem is based on 

the following sequence of isomorphisms 

   
 

   

  

ˆ
ˆ ˆ

,

,

.

id

id

G G G G

C G G

C G G C G G

LK L G

   

 

 



 







 





     

  

    

 

1 2
1

32

3 4

5

0

0 0

2

A A

A

A A

A

           (10) 

The subalgebras  ˆ ,CC G G A  and 

 ˆ ,CC G G A  are dense in the   ˆ
ˆG G  A  

and  ˆid G G
  

  1A , respectively. The 

isomorphism 

   ˆ ˆ: , ,C CC G G C G G   
1

A A  is given by 

      , ,f g g f g   1  for all 

 ˆ ,Cf C G G  A  next extends to 

   ˆ
ˆ ˆ: idG G G G    

      11
A A . The 

mapping 
1
 is continuous in the inductive limit 

topology. 

The second isomorphism 

    ˆ: , , ,C CC G G C G C G  
2 0

A A  is a 

Fourier transform given by  

        
ˆ

ˆ, ,
G

f g h f g h d     2      (11) 

for all  ˆ ,Cf C G G  A .  

The third isomorphism 
3

 is defined as 

       , ,f g h h f g h  1

3  for all 

  , ,Cf C G C G 0 A . Next, we need the 

following lemma.   

Lemma (Raeburn) 1. Let  , ,G   be a 

dynamical system and let   be a C
-algebra, 

then  

 max maxid G G              (12) 

is equal in the isomorphic sense.  

The proof is based on the Raeburn theorem. 
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We define an isomorphism 

    : C G G LK L G   2

0
 by  

        , ,
G

f g h f k h k g d k   
1

  (13) 

for    Cf C G G C G G  0  and 

   CC G L G  2
. Thus, by Raeburn lemma, 

there exists an equivariant isomorphism 

    , idC G G LK L G



  4 2

0 A A . 

The necessary isomorphism 

    ˆ
ˆ: G G LK L G      2A A  can be 

written as a combination     4 3 2 1
. 

3. Twisted dynamical system 

Let  ,G A,  be a dynamic system. Let 

N  be a normal subgroup of G . Let  UM A  be a 

unitary group of multiplier algebra of A .  

Definition 8. A continuous homomorphism 

 : N UM  A  such that 

     ,n a n n a  

  and 

    ,g n gng    1
 for all n N , g G , 

aA , is called a twisting map. The covariant 

representation  ,   of the dynamic system 

 ,G A,  is called preserving  : N UM  A  

if equality      n n    holds for all n N .  

The quartet  , ,G  A,  is called a twisted 

dynamical system. 

Definition 9. Let  , Gi iA  be a canonical 

covariant homomorphism from   ,G A,  to 

 M GA . Let I be the ideal of multiplier 

algebra  M GA   of the cross product 

GA  generated by a set consisting of  

     :Gi n i n n N A .  

We define the twisted crossed product by  

  /
def

G G G

     A A AI .       (14) 

Definition 10. We denote by  ,CC G A,  

the subclass of continuous functions from G  to 

A  and satisfy the conditions: first, there exists a 

compact subset K G  such that  supp KN 

;  second, for all  ,CC G  A,  the equality 

     ng g n  


  holds for all n N  and 

g G . 

Let 
N  and  

/G N  be Haar measure on N  

and /G N , respectively, then there the equality  

         /

/

N G N

G G N N

g d g hn d n d h      

                               (15) 

holds for all  CC G  . 

The convolution product 

 ,CC G    A,  is given by  

        /

/

, G N

G N

h k k k h d k       
1

,                                                    

(16) 

and  function 

       / , ,h G N h h h  


    1 1
, 

 ,CC G  A, .                       (17) 

So, we obtain that the set  ,CC G A,  is a 

 -algebra with the convolution operations given 

by (16) and (17). 

Lemma 2. For every function  

 ,CC G  A , we define a function 

   ,CC G   A,  by 

        N

N

g gn gng d n     
1

,   (18) 
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thus, there exists a structure-preserving  -

surjective mapping 

   : , ,C CC G C G  A A, . 

Proof. Let N  be a normal subgroup of a 

locally compact group G . A continuous function 

: G RB  is called the Bruhat approximate 

cross-section of G by N  if the equality  

    1N

N

gn d n B  

holds for all g G , and condition that 

   supp satur KB  is compact for any compact 

K G  . Let : G RB  be Bruhat 

approximate cross-section of G by N  so we have 

that        ,Cg g g C G  B A  for any 

fixed function  ,CC G  A,  and the equality  

  

         N

N

g

gn gn gng d n g



    

 


1  

holds, and so   is a surjection.  

Now, we show that     
    so we 

write 

   

      
 

     

 

      

/ , ,

/ ,

,

/ ,

,

N

N

N

N

g

G N h h g

G N h

h g n g ng d n

G N h

h g n g g n d n



 

   

   




 





 




  

 

  

  

 
 

 

  







1 1

1

1 1

1

1 1 1

 

 

      

/ ,

, N

N

G N h

n h g n n d n   



  

  



1

1 1
 

    

      

       

   

/ , ,

,

,

.

N

N

N

N

G N h GN h

hn ng gn g d n

G h gn gng d n

g

   

  



 

 
   

  



   



 

 





1 1

1 1 1 1

1 1

 

Similarly, since  

  

          

        

    

/

/

,

,

,

N

N G

G N

G N

g

k k k gn gng d k d n

k k k g d k

g

 

     

   

 

 



  

   

  

 



1 1

1

 

we have              . 

Assume covariant representation  ,   

preserves  , so that  , H He nI nI   for all 

n N , we define a norm  

    sup : , preserves


         

for all  ,CC G  A, . 

The norm of the quotient product G

A  

is given as  


 . Thus, we obtain the following 

theorem.  

Theorem 1.  Let  , ,G  A,  be a twisted 

dynamical system. Then, the completion of the set 

 ,CC G A,  with respect to the norm defined as  

    sup : , preserves


         

coincides with the crossed-product 

 /
def

G G G

     A A AI , and  -

surjective mapping 

   : , ,C CC G C G  A A,  can be 
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extended to quotient mapping 

: G G

    A A . 

4. An example of the Schrodinger 

representation 

Let G  be a locally compact group and let 

set  GA  be a C
-algebra of all bounded left 

translation invariant and left uniformly continuous 

functions such that     ,h g h g    1
.  

Definition. Let :G G   be a 

measurable mapping, then we define a binal 

operation given by  

  

    

      

,

,

,G

p x

z x p z

z x z x p z x d z

 

  

   




  



 

1 2

1

1

1
1 1 1

2

 

for all functions  , ,L G   1

1 2 A ; and the 

involution define by 

      , ,p x x x x p x


   


  
1

1 1 1

1 2
. 

We define a crossed product G

A  as 

the enveloping C
-algebra of the Banach  -

algebra  ,L G1 A  with the convolution product 


 and completion in the universal norm 

    sup : : , ( , ) .
P

P P L G LB H H  1 A   

The space  ,CC G A  of all continuous 

functions G A  with compact support is a dense 

subalgebra of G

A , where :G G   is a 

measurable function. 

The Schrodinger representation 

  , , L G  2
 is given by  

     z x z x    1
 

and  

     , 

for any bounded function  , so that     is a 

multiplication operator.  

The covariant representation is given by the 

integral 

  

         

      

  

,

,

G

def

G

z z z d z

xz x xz z d z

Sch x





 

    

   




 



  

 

 






1

1 1

 

defined for  ,L G  1 A  and  L G 2
. 

Let   A  be an enveloping C
-algebra 

of      pr prid F L G  1A A  where operation 

pr  means the projective tensor product and F  is 

a Fourier transform. Then, there exists an extension 

 F A  of   prid FA  such that 

   : G  

 F A A A . 

There are well-known statements that: for 

the locally compact group  G  to be amenable it is 

necessary and sufficient that the left-regular 

representation was faithful representation in  C G

; assuming  G  is a locally compact amenable group 

then the reduced crossed product coincides with the 

universal crossed product. 

Theorem 2.  The C
-algebra 

 Sch G 

 A  is isomorphic the reduced crossed 

product 
red

G


  A . Assume that the group G  is 

amenable then the representation 

      Sch G LB L G  

   2A A  define 

by  

  

      ,
G

Sch x

xz x xz z d z

 

   




 




1

1 1  
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is faithful. 

Proof. The Fourier transform is an 

isomorphic mapping. The reduced crossed product 

red
G


  A  can be defined as the range of the left 

regular  -representation in   LB L G G2
. The 

faithfulness of representation 

      Sch G LB L G  

   2A A  follows 

from the equality of universal and reduced crossed 

products for the amenable locally compact groups. 
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