Twisted dynamical systems, Schrodinger representations

MYKOLA YAREMENKO Department of Partial Differential Equations, The National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, UKRAINE

Abstract: - Assume G is a locally compact Hausdorff group, A is a C^* -algebra, and (A, G, ω) is a that states the isomorphism consider Takai theorem dynamical system, we а $\Phi: (\mathsf{A} \times_{\omega} G) \times_{\hat{\omega}} \hat{G} \to \mathsf{A} \otimes LK(L^2(G))$ $\hat{\hat{\omega}}: G \to (\mathsf{A} \times_{\omega} G) \times_{\hat{\omega}} \hat{G}$ is equivariant for and for $\hat{\hat{\omega}} \otimes Ad(\rho): G \to \mathsf{A} \otimes LK(L^2(G)).$ Also, *-surjective show that mapping we $\Upsilon : C_C(G, \mathsf{A}) \to C_C(G, \mathsf{A}, \tau)$ can be extended to quotient mapping $\tilde{\Upsilon}$: $A \times_{\omega} G \to A \times_{\omega}^{\tau} G = A \times_{\omega} G / (I \cap A \times_{\omega} G)$ for the twisted dynamical system (A, G, ω, τ) .

We establish that there exists an isomorphism of the Schrodinger C^* -algebra $Sch^{\tau}_{\Lambda}(A \times^{\tau}_{\omega} G)$ to the reduced crossed product $[A \times^{\tau}_{\omega} G]_{red}$; and show the representation $B^{\tau}(A) \mapsto Sch^{\tau}_{\Lambda}(A \times^{\tau}_{\omega} G) \subset LB(L^2(G))$ is faithful for each amenable group G.

Key-Words: - Takai Duality, γ -duality, Wigner function, C^* -algebra, Pontryagin duality, induced representation, cross product.

Received: September 15, 2022. Revised: May 16, 2023. Accepted: Jane 11, 2023. Published: July 20, 2023.

1 Introduction (dynamic systems)

Let G be a locally compact Hausdorff group and let μ be a Radon measure on G. Assume that N is a locally compact subgroup of G then G/N is locally compact Hausdorff group.

Definition. The group G is called an extension of the group N by the group H if the short group sequence

$$e \to N \xrightarrow{j} G \xrightarrow{k} H \to e \tag{1}$$

is exact, where j is a continuous homeomorphism onto the range of j and k is a continuous open surjective mapping. If we assume that N a normal subgroup of G then H is a quotient group G/N. So, symbolically we can write a short exact sequence of groups

$$e \rightarrow N \xrightarrow{j} N \times G / N \xrightarrow{k} G / N \rightarrow e.$$
 (2)

Definition 2. Let A be a C^* -algebra and G locally compact Hausdorff group then the triplet (A, G, ω) is called a dynamical system where $\omega: G \rightarrow Aut(A)$ is a strongly continuous representation.

Definition 3. Let (A, G, ω) be a dynamic system on the Hilbert space H. Let ρ be unitary representation $\rho: G \rightarrow U(H)$ and $\pi: A \rightarrow LB(H)$ representation on the Hilbert space H, such that

$$\pi(\omega(g,a)) = \rho(g)\pi(a)\rho^*(g). \quad (3)$$

Then, the pair (π, ρ) is called a covariant representation of (A, G, ω) .

Definition 4. Let (π, ρ) be a covariant representation of the dynamic system (A, G, ω) on the Hilbert space H. The L^1 -norm-decreasing *-representation $C_C(G, A)$ on H is given by

$$(\pi \times \rho)(\psi) = \int_{G} \pi(\psi(h)) \rho(h) d\mu(h) \quad (4)$$

for all $\psi \in C_{C}(G)$.

We denote a continuous homomorphism $\Delta: G \to R_+$ such that the equality

$$\Delta(g) \int_{G} \psi(hg) d\mu(h) = \int_{G} \psi(h) d\mu(h)$$
 (5)

holds for all $\psi \in C_C(G)$.

To show that mapping $\pi \times \rho$ is *-homomorphism, we compute

$$\pi \times \rho(\psi)^* = \int_G (\pi(\psi(h))\rho(h))^* d\mu(h) =$$

$$= \int_G \rho(h^{-1})\pi(\psi(h)^*)d\mu(h) =$$

$$= \int_G \pi(\omega(h,\psi(h^{-1})^*\Delta(h^{-1})))\rho(h)d\mu(h) =$$

$$= \pi \times \rho(\psi^*).$$
(6)

Applying the Fubini theorem, we write

$$\pi \times \rho(\psi \ast \varphi) =$$

$$= \iint_{G \ G \ G} \pi \left(\psi(h) \omega(h, \varphi(h^{-1}g)) \right)_{g \ G \ G} =$$

$$= \iint_{G \ G \ G} \pi \left(\psi(h) \rho(h) d\mu(g) \right)_{g \ G} =$$

$$= \iint_{G \ G \ G} \pi \left(\psi(h) \rho(h) \pi \left(\varphi(h^{-1}g) \right) \right)_{g \ G \ G} =$$

$$= \pi \times \rho(\psi) \circ \pi \times \rho(\varphi),$$
(7)

so $\pi \times \rho$ is *-homomorphism.

`

Definition 5. Let (A, G, ω) be a dynamic system (A, G, ω) . The norm on $C_C(G, A)$, of the function $\psi \in C_C(G, A)$ given by

$$\|\psi\| = \sup \begin{cases} \|\pi \times \rho(\psi)\| : (\pi, \rho) \text{ is} \\ \text{cov ariant representation of } (\mathsf{A}, G, \omega) \end{cases}$$
(8)

is called the universal norm.

Definition 6. The completion of the set $C_C(G, A)$ in the universal norm is called the cross product $A \times_{\omega} G$ of A by G and present a Banach C^* -algebra. The cross-product $A \times_{\omega} G$ is said to be associated with the dynamic system (A, G, ω) .

Definition 7. Let N and H be a pair of locally compact groups and let mapping $\gamma: H \to Aut(N)$ be continuous homomorphism maps as $(h, n) \mapsto \gamma(h)(n)$ for all $n \in N$, $h \in H$, and let the short sequence

$$e \to N \xrightarrow{\alpha} G \xrightarrow{\beta} H \to e$$
 (9)

be exact, where $\gamma(h)(n) = \alpha^{-1}(\tau(h)\alpha(n)\tau(h^{-1})),$ homomorphism $\tau: H \to G$ satisfies $\beta \circ \tau = id(H)$ (identity map on H), then the

2. The Takai dynamical system

Let *G* be an Abelian locally compact group and let (A, G, ω) be a dynamical system. A homomorphism $\hat{\omega}: \hat{G} \to Aut(A \times_{\omega} G)$ is given by extending of the mapping $\hat{\omega}(\chi): C_C(G, A) \to C_C(G, A),$ $\hat{\omega}(\chi)(\psi)(g) \mapsto \overline{\chi(g)}\psi(g).$

We denote the space of all linear compact operators on the Hilbert space $L^{2}(G)$ by $LK(L^{2}(G))$.

The Takai duality theorem states that if assume (A, G, ω) is a dynamical system then the isomorphism

$$\Phi: (A \times_{\omega} G) \times_{\hat{\omega}} \hat{G} \to A \otimes LK(L^{2}(G)) \qquad is$$

equivariant for $\hat{\omega}: G \to (A \times_{\omega} G) \times_{\hat{\omega}} \hat{G}$ and for $\hat{\omega} \otimes Ad(\rho): G \to A \otimes LK(L^2(G))$, where the mapping $\rho: G \to A \otimes LK(L^2(G))$ is the right regular representation.

We remind our reader two statements of the Peter-Weyl theorem: the first statement, the collection of matrix coefficients of the group G is dense in C(G) relevant to the uniform topology; the second statement, assume $\varpi: G \to H$ is a unitary representation of G in Hilbert space $H = L^2(G)$, then $H = L^2(G)$ can be presented in the form of the direct sum of irreducible finite-dimensional unitary representation of G. Let G be compact, the Peter-Weyl theorem implies that each $\hat{\chi} \in \hat{G}$ equals a subrepresentation of the left-regular representation λ : $G \to U(L^2(G))$.

The proof of the Takai theorem is based on the following sequence of isomorphisms

$$(\mathsf{A} \times_{\omega} G) \times_{\hat{\omega}} \hat{G} \xrightarrow{\Phi_{1}} (\mathsf{A} \times_{id} \hat{G}) \times_{\lambda^{-1} \otimes \omega} G \xrightarrow{\Phi_{2}}$$

$$\xrightarrow{\Phi_{2}} C_{0}(G, \mathsf{A}) \times_{\lambda \otimes \omega} G \xrightarrow{\Phi_{3}}$$

$$\xrightarrow{\Phi_{3}} C_{0}(G, \mathsf{A}) \times_{\lambda \otimes id} G \xrightarrow{\Phi_{4}} C_{0}(G) \times_{\lambda} G \otimes \mathsf{A}$$

$$\xrightarrow{\Phi_{5}} \mathsf{A} \otimes LK(L^{2}(G)).$$

$$(10)$$

The subalgebras $C_C(\hat{G} \times G, A)$ and and $(A \times_{id} \hat{G}) \times_{\lambda^{-1} \otimes \omega} G$, respectively. The isomorphism $\Phi_1: C_C(\hat{G} \times G, \mathsf{A}) \to C_C(G \times \hat{G}, \mathsf{A})$ is given by $\Phi_1(f)(g,\chi) = \chi(g)f(\chi,g)$ for all $f \in C_{c}(\hat{G} \times G, \mathsf{A})$ next extends to $\Phi_1: (\mathsf{A} \times_{\omega} G) \times_{\hat{\omega}} \hat{G} \to (\mathsf{A} \times_{id} \hat{G}) \times_{\lambda^{-1} \otimes \omega} G.$ The mapping Φ_1 is continuous in the inductive limit topology.

The second isomorphism $\Phi_2: C_C(G \times \hat{G}, A) \rightarrow C_C(G, C_0(G, A))$ is a Fourier transform given by

$$\Phi_{2}(f)(g,h) = \int_{\hat{G}} f(g,\chi) \overline{\chi(h)} \, d\hat{\mu}(\chi) \qquad (11)$$

for all $f \in C_C(G \times \hat{G}, A)$.

The third isomorphism Φ_3 is defined as $\Phi_3(f)(g,h) = \omega^{-1}(h)(f(g,h))$ for all $f \in C_C(G, C_0(G, A))$. Next, we need the following lemma.

Lemma (Raeburn) 1. Let (Λ, G, α) be a dynamical system and let Θ be a C^* -algebra, then

$$\left(\Lambda \otimes_{\max} \Theta\right) \times_{\alpha \otimes id} G \cong \Lambda \times_{\alpha} G \otimes_{\max} \Theta \qquad (12)$$

is equal in the isomorphic sense.

The proof is based on the Raeburn theorem.

We define an isomorphism

$$\check{\Phi}$$
 : $C_0(G) \times_{\lambda} G \to LK(L^2(G))$ by

$$\breve{\Phi}(f)(g,h) = \int_{G} f(k,h)\phi(k^{-1}g)d\mu(k) \quad (13)$$

for $f \in C_{C}(G \times G)C_{0}(G) \times_{\lambda} G$ and $\phi \in C_{C}(G) \subset L^{2}(G)$. Thus, by Raeburn lemma, there exists an equivariant isomorphism $C_{0}(G, A) \times_{\lambda \otimes id} G \xrightarrow{\tilde{\Phi}_{4}} A \otimes LK(L^{2}(G)).$

The necessary isomorphism $\Phi: (A \times_{\omega} G) \times_{\hat{\omega}} \hat{G} \to A \otimes LK(L^2(G))$ can be written as a combination $\Phi = \tilde{\Phi}_4 \circ \Phi_3 \circ \Phi_2 \circ \Phi_1$.

3. Twisted dynamical system

Let (A, G, ω) be a dynamic system. Let N be a normal subgroup of G. Let UM(A) be a unitary group of multiplier algebra of A.

Definition 8. A continuous homomorphism $\tau: N \to UM(A)$ such that $\tau(n)a\tau(n)^* = \omega(n,a)$ and $\overline{\omega}(g,\tau(n)) = \tau(gng^{-1})$ for all $n \in N$, $g \in G$, $a \in A$, is called a twisting map. The covariant representation (π, ρ) of the dynamic system (A, G, ω) is called preserving $\tau: N \to UM(A)$ if equality $\overline{\pi}(\tau(n)) = \rho(n)$ holds for all $n \in N$. The quartet (A, G, ω, τ) is called a twisted dynamical system.

Definition 9. Let (i_A, i_G) be a canonical covariant homomorphism from (A, G, ω) to $M(A \times_{\omega} G)$. Let I be the ideal of multiplier algebra $M(A \times_{\omega} G)$ of the cross product $A \times_{\omega} G$ generated by a set consisting of $\{i_G(n) - \overline{i_A}(\tau(n)): n \in N\}$.

We define the twisted crossed product by

$$\mathsf{A} \times_{\omega}^{\tau} G \stackrel{def}{=} \mathsf{A} \times_{\omega} G / (I \cap \mathsf{A} \times_{\omega} G).$$
(14)

Definition 10. We denote by $C_C(G, A, \tau)$ the subclass of continuous functions from G to A and satisfy the conditions: first, there exists a compact subset $K \subset G$ such that $\operatorname{supp}(\psi) \subset KN$; second, for all $\psi \in C_C(G, A, \tau)$ the equality $\psi(ng) = \psi(g)\tau(n)^*$ holds for all $n \in N$ and $g \in G$.

Let μ_N and $\mu_{G/N}$ be Haar measure on Nand G/N, respectively, then there the equality

$$\int_{G} \psi(g) d\mu(g) = \int_{G/N} \int_{N} \psi(hn) d\mu_{N}(n) d\mu_{G/N}(h)$$
(15)

holds for all $\psi \in C_C(G)$.

The convolution product $\psi * \varphi \in C_C(G, A, \tau)$ is given by

$$\psi * \varphi(h) = \int_{G/N} \psi(k) \omega(k, \varphi(k^{-1}h)) d\mu_{G/N}(k) ,$$
(16)

and function

$$\psi^{*}(h) = \Delta \left(G / N, \quad h^{-1} \right) \omega \left(h, \left(\psi \left(h^{-1} \right)^{*} \right) \right),$$
$$\psi^{*} \in C_{C} \left(G, \mathsf{A}, \tau \right). \tag{17}$$

So, we obtain that the set $C_C(G, A, \tau)$ is a *-algebra with the convolution operations given by (16) and (17).

Lemma 2. For every function $\psi \in C_c(G, A)$, we define a function $\Upsilon(\psi) \in C_c(G, A, \tau)$ by

$$\Upsilon(\psi)(g) = \int_{N} \psi(gn) \tau(gng^{-1}) d\mu_{N}(n) , \quad (18)$$

thus, there exists a structure-preserving *surjective mapping Υ : $C_C(G, A) \rightarrow C_C(G, A, \tau)$.

Proof. Let *N* be a normal subgroup of a locally compact group *G*. A continuous function $B : G \to R_+$ is called the Bruhat approximate cross-section of *G* by *N* if the equality

$$\int_{N} \mathsf{B}(gn) d\mu_{N}(n) = 1$$

holds for all $g \in G$, and condition that $\operatorname{supp}(\mathsf{B}) \cap \operatorname{satur}(K)$ is compact for any compact $K \subset G$. Let $\mathsf{B} : G \to R_+$ be Bruhat approximate cross-section of G by N so we have that $\psi(g) = \mathsf{B}(g)\varphi(g) \in C_C(G, \mathsf{A})$ for any fixed function $\varphi \in C_C(G, \mathsf{A}, \tau)$ and the equality

$$\Upsilon(\psi)(g) = \int_{N} \psi(gn) \varphi(gn) \tau(gng^{-1}) d\mu_{N}(n) = \varphi(g)$$

holds, and so Υ is a surjection.

Now, we show that $\Upsilon(\psi^*) = \Upsilon(\psi)^*$ so we write

$$\begin{split} &\Upsilon(\psi)^{*}(g) = \\ &\Delta(G/N, h^{-1})\omega\left(h, \left(\Upsilon(\psi)(g^{-1})^{*}\right)\right) = \\ &= \Delta(G/N, h^{-1}) \times \\ &\omega\left(h, \int_{N} \psi(g^{-1}n)\tau(g^{-1}ng)d\mu_{N}(n)\right)^{*} = \\ &= \Delta(G/N, h^{-1}) \times \\ &\int_{N} \omega\left(h, \tau(g^{-1}n^{-1}g)\psi(g^{-1}n)^{*}\right)d\mu_{N}(n) = \\ &= \Delta(G/N, h^{-1}) \times \\ &\int_{N} \omega\left(n^{-1}h, \psi(g^{-1}n)^{*}\tau(n)^{*}\right)d\mu_{N}(n) = \end{split}$$

$$= \Delta \left(G / N, h^{-1} \right) \Delta \left(GN, (h^{-1}) \right) \times$$
$$\int_{N} \omega \left(hn^{-1}, \psi \left(ng^{-1} \right)^{*} \tau \left(gn^{-1}g^{-1} \right)^{*} \right) d\mu_{N} \left(n \right) =$$
$$= \Delta \left(G, h^{-1} \right) \int_{N} \psi^{*} \left(gn \right) \tau \left(gng^{-1} \right) d\mu_{N} \left(n \right)$$
$$= \Upsilon \left(\psi \right)^{*} \left(g \right).$$

Similarly, since

$$\begin{split} &\Upsilon(\psi * \varphi)(g) = \\ &\int_{NG} \psi(k) \omega(k, \varphi(k^{-1}gn)\tau(gng^{-1})) d\mu(k) d\mu_N(n) \\ &= \int_{G/N} \Upsilon(\psi)(k) \omega(k, \Upsilon(\varphi)(k^{-1}g)) d\mu_{G/N}(k) = \\ &= \Upsilon(\psi) * \Upsilon(\varphi)(g), \end{split}$$

we have $\Upsilon(\psi * \varphi) = \Upsilon(\psi) * \Upsilon(\varphi)$.

Assume covariant representation (π, ρ) preserves τ , so that $\pi(e, nI_H) = nI_H$ for all $n \in N$, we define a norm

$$\|\varphi\|_{\tau} = \sup \{ \|\pi \times^{\tau} \rho(\varphi)\| : (\pi, \rho) \text{ preserves } \tau \}$$

for all $\varphi \in C_C(G, A, \tau)$.

The norm of the quotient product $A \times_{\omega}^{\tau} G$ is given as $\|\Upsilon(\psi)\|_{\tau}$. Thus, we obtain the following theorem.

Theorem 1. Let (A, G, ω, τ) be a twisted dynamical system. Then, the completion of the set $C_C(G, A, \tau)$ with respect to the norm defined as

$$\left\|\varphi\right\|_{\tau} = \sup\left\{\left\|\pi \times^{\tau} \rho(\varphi)\right\| : (\pi, \rho) \text{ preserves } \tau\right\}$$

coincides with the crossed-product $A \times_{\omega}^{\tau} G \stackrel{def}{=} A \times_{\omega} G / (I \cap A \times_{\omega} G), \text{ and } *$ surjective mapping $\Upsilon : C_C(G, A) \rightarrow C_C(G, A, \tau)$ can be extended to quotient mapping $\tilde{\Upsilon}$: $A \times_{a} G \rightarrow A \times_{a}^{\tau} G$.

4. An example of the Schrodinger representation

Let G be a locally compact group and let set A(G) be a C^{*}-algebra of all bounded left translation invariant and left uniformly continuous functions such that $\omega(h, \psi)(g) = \psi(h^{-1}g)$.

Definition. Let $\tau: G \to G$ be a measurable mapping, then we define a binal operation given by

$$(\psi_{1} \Box^{\tau} \psi_{2})(p, x) =$$

$$= \int_{G}^{\psi_{1}} (\tau(z)^{-1} \tau(x) p, z)$$

$$= \int_{G}^{\psi_{2}} (\tau(z^{-1}x)^{-1} z^{-1} \tau(x) p, z^{-1}x) d\mu(z)$$

for all functions $\psi_1, \psi_2 \in L^1(G, A)$; and the involution define by

$$\Psi_1^{\Box^{-r}}(p, x) = \Psi_2(\tau(x^{-1})^{-1}x^{-1}\tau(x)p, x^{-1}).$$

We define a crossed product $A \times_{\omega}^{\tau} G$ as the enveloping C^* -algebra of the Banach *algebra $L^1(G, A)$ with the convolution product \Box^{τ} and completion in the universal norm

$$\|\psi\| = \sup_{P} \left\{ \|P(\psi)\| : P : L^{1}(G, \mathsf{A}) \to LB(H, H) \right\}.$$

The space $C_C(G, A)$ of all continuous functions $G \mapsto A$ with compact support is a dense subalgebra of $A \times_{\omega}^{\tau} G$, where $\tau: G \to G$ is a measurable function.

The Schrödinger representation $(\pi, \Lambda, L^2(G))$ is given by

$$(\Lambda(z)\phi)(x) = \phi(z^{-1}x)$$

and

Mvkola Yaremenko

$$\pi(\psi)\phi = \psi\phi,$$

for any bounded function ϕ , so that $\pi(\psi)$ is a multiplication operator.

The covariant representation is given by the integral

$$(\pi \times^{\tau} \Lambda)(\psi) = \int_{G} \pi (\omega(\tau(z), \psi(z))) \Lambda(z) d\mu(z) = = \int_{G} \psi (\tau(xz^{-1})^{-1} x, xz^{-1}) \phi(z) d\mu(z) \stackrel{def}{=} = Sch_{\Lambda}^{\tau}(\psi)(x)$$

defined for $\psi \in L^1(G, \mathsf{A})$ and $\phi \in L^2(G)$.

Let $B^{\tau}(A)$ be an enveloping C^* -algebra of $(id(A) \otimes_{pr} F)(A \otimes_{pr} L^1(G))$ where operation \otimes_{pr} means the projective tensor product and F is a Fourier transform. Then, there exists an extension $F^{\tau}(A)$ of $id(A) \otimes_{pr} F$ such that $F^{\tau}(A):A \times_{\omega}^{\tau} G \to B^{\tau}(A)$.

There are well-known statements that: for the locally compact group G to be amenable it is necessary and sufficient that the left-regular representation was faithful representation in $C^*(G)$; assuming G is a locally compact amenable group then the reduced crossed product coincides with the universal crossed product.

Theorem 2. The C^* -algebra $Sch^{\tau}_{\Lambda}(A \times^{\tau}_{\omega} G)$ is isomorphic the reduced crossed product $[A \times^{\tau}_{\omega} G]_{red}$. Assume that the group G is amenable then the representation $B^{\tau}(A) \mapsto Sch^{\tau}_{\Lambda}(A \times^{\tau}_{\omega} G) \subset LB(L^2(G))$ define by

$$Sch_{\Lambda}^{\tau}(\psi)(x) = \int_{G} \psi\left(\tau\left(xz^{-1}\right)^{-1}x, xz^{-1}\right)\phi(z)d\mu(z)$$

is faithful.

Proof. The Fourier transform is an isomorphic mapping. The reduced crossed product $\lfloor A \times_{\omega}^{\tau} G \rfloor_{red}$ can be defined as the range of the left regular *-representation in $LB(L^2(G \times G))$. The faithfulness of representation $B^{\tau}(A) \mapsto Sch_{\Lambda}^{\tau}(A \times_{\omega}^{\tau} G) \subset LB(L^2(G))$ follows from the equality of universal and reduced crossed products for the amenable locally compact groups.

References

[1]. B. Abadie, Takai duality for crossed products by Hilbert C * -bimodules, J. Operator Theory 64 (2010), 19–34.

[2]. S. Albandik and R. Meyer, Product systems over Ore monodies Doc. Math. 20 (2015) 1331–1402.

[3]. A. Alldridge, C. Max, M. R. Zirnbauer, Bulk-Boundary Correspondence for Disordered Free-Fermion Topological Phases, Commun. Math. Phys. 377, 1761–1821 (2020).

[4]. E. Bedos, S. Kaliszewski, J. Quigg, and D. Robertson, A new look at crossed product correspondences and associated C * –algebras, J. Math. Anal. Appl. 426 (2015), 1080–1098.

[5]. N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. Pawlowski, M. Tissier, and N. Wschebor. The nonperturbative functional renormalization group and its applications, Physics Reports 910, 1–114 (2021).

[6]. V. Deaconu, Group actions on graphs and C * -correspondences, Houston J. Math. 44 (2018), 147–168.

[7]. V. Deaconu, A. Kumjian, and J. Quigg, Group actions on topological graphs, Ergodic Theory Dynam. Systems 32 (2012),1527–1566.

[8]. A. Carey, G. C. Thiang, The Fermi gerbe of Weyl semimetals, Letters Math. Phys. 111, 1-16 (2021).

[9]. S. Kaliszewski, J. Quigg and D. Robertson, Coactions on Cuntz-Pimsner algebras, Math. Scand. 116 (2015), 222–249.

[10]. E. Katsoulis, Non-selfadjoint operator algebras: dynamics, classification, and C * - envelopes, Recent advances in operator theory and

operator algebras, 27-81, CRC Press, Boca Raton, FL, (2018).

[11]. E. Katsoulis, C* -envelopes and the Hao-Ng Isomorphism for discrete groups, International Mathematics Research Notices, Volume 2017, Issue 18 (2017), 5751–5768.

[12]. I. Raeburn. Dynamical systems and operator algebras. In National Symposium on Functional Analysis, Optimization and Applications, 109–119. Australian National University, Mathematical Sciences Institute, (1999).

[13]. S. Sundar, C*-algebras associated to topological Ore semigroups, M⁻⁻unster J. of Math. 9 (2016), no. 1, 155–185.

[14]. M.I. Yaremenko Calderon-Zygmund Operators and Singular Integrals, Applied Mathematics & Information Sciences: Vol. 15: Iss. 1, Article 13, (2021).

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The author contributed in the present research, at all stages from the formulation of the problem to the final findings and solution.

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself No funding was received for conducting this study.

Conflict of Interest

The author has no conflict of interest to declare that is relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en _US