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1. Introduction

The subject of this paper is the solvability of the
quasilinear parabolic system

J o LT I
prih Z Vi(aij (z, t, @) Vu) +b(z, t, 4, Vi)

ij=1,00l

defined on R' x [0, T], | > 2 with elliptic matrix
a(z, t, @) and N-dimension singular vector b.

The existence of solutions to boundary problems
for quasilinear parabolic equations has been intensively
studied during the last decades, see list of references [1
- 37]. These studies produce several universal meth-
ods such as methods of the fixed point introduced in
the works of Leray and Schauder [6], the perturbation
method, and the method of a priory estimation and
their combinations. In the linear case, fundamental re-
sults were obtained in the works of Nash, Degiorgi [8, 9],
Moser, and Aronson with further development produced
by Zhang, Qian, Xi [34 - 37], and many others. The
quasilinear case is less explored and presents great inter-
est due to the plethora of applications in signal process-
ing and quantum physics. Some foundational questions
were explored in [6] by Ladyzenskaja and Solonnikov.

The main progress in linear parabolic theory is the
extension to general linear parabolic equation contain-
ing lower order term Nash-Degiorgi results, so the con-
ditions on the coefficient, which guarantee certain reg-
ularity of solutions were formulated in terms of form-
boundary functions and Kato functional classes. In col-
loquial terms, a function f R\ = R, f € L?,. is
said to be form-bounded if there are positive constants
B, ¢ (B) such that inequality
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[fellz < BlIVelly +c(8) llell
holds for all ¢ € C§°; the Kato class K, v > 0 consists
of all functions f such that H(/\ —-A)7! \f|” <wv. We

consider a simple linear equation

ot

then the heat kernel of this simple linear equation sat-
isfies two Gaussian bounds if the coefficient f is form-
bounded and diverges of f belongs to some Kato class.

In the present article, we consider a more complex
case of the quasilinear parabolic system with singular co-
efficients given in the specific form , we establish suf-
ficient conditions for the initial-boundary value problem
iy = Ol 6 € C2 ({(, 1) : zed, te (o, T}
for quasilinear parabolic system has a unique solu-
tion @ € H* 2 (clos (D7)). The Heinz example

Oput — Opput = ul (6$u1)2 + (8zu2)2
Opu? — Oppu? = u? (agcul)2 + (8Iu2)2 ,

<8Vav+f~v>u(:z:, t) =0, (x, t)€ R'%[0, o)

with the solution u! = cos (mx) and u? = sin (mx) that

does not satisfy the condition max] |Vii|, this shows the

0, 27
necessity of some additional growth conditions for a non-
linear system with an unknown vector in contrast to the
case of a single equation, in this work such conditions
are

8aij k aaij N o
; i<
\W Vit S < () (14 Vi)
8] < e qan +oqval, la)) (1 + [va))?
with ‘vljlnl 0(|Vi|, |i]) = 0 and e(M;) is small
u|—o0o
enough.
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2. Problem formalization

Consider a quasilinear parabolic system in the specific
divergent form

in the domain (z, t) € Dr
(u' (2, t), ..., u™ (z, t)) is an unknown N-dimensional
vector in clos (Dr), | > 3; b Q x [0, T] x RN x
R' x RN — RY is a known vector-function. Functions
a;; comprise a symmetric { x [-matrix uniformly elliptic,
namely,

= Qx[0,T), @z, t) =

v (i) € < ai;&&5 < p () &2 (2)
for all (z, t) € R' x [0, T] and all ¢ € R'.
We formulate the restrictions on the measurable
structural coefficients of the system as

.l 2
a;j (x, t, ) kik; > v (|d]) ‘If‘ — 0 (z, t) (3)

ai; (z, ¢, @) Ej’ < u(|a@) ]1‘5‘ Yz, t) ()

‘E(z, t, i, E)’gﬂ(

where v (1), u (7) and [i (7) are given positive continuous
functions.

Definition 1. A function f Dr — RV is
satid to be form-boundary or belongs to the class
PK (8) if there exist some positive constants 3
and ¢ (B8) such that the inequality

@F 4@y 6

fo 7] Jo ‘fgp‘ dxdt <
< B Joo. 1y Jo IVE dxdt + ¢ (8B) [ig. 7y Jo |61 dwdt
(6)
holds all functions G : R' x [0, T] = RN, g€ Cg°.
Definition 2. We call real-valued wvector-
function @ (z, t) a weak bounded solution to sys-
tem (1) if @ € V2, (Dr), essmax |ii(z, t)| < oo and
’ (z, t)eDr
. - T
Jot(z, t) go_’(x,_'t) dx|, =
= f[07 7) Jo WOy Bdxdt— )
- f[O, ] fQ Qij (JJ, t, 12) Vja'Vl@'dde—

+ f[O’ T Jo, b@dxdt
for all g e Cg°.
We assume the function 4 is a weak bounded solution

to system so that from , we obtain an integral
inequality

fQ (z, t) dm‘o
+f0, ] fQ aij (x, t, 4) V;juV;@drdt <

< f[O, 71 Jo @Orpdadt (8)
+ f[o, T] Jo (/1 Vill* + 72 (z, t)) | Z| dxdt,

where g € C5° (Dr) NW?, (Dr).
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We  construct N;  functions @™ (z, t) =

o™ (ul (x, 1), ooy ul (, t))7 m = 1,..., Ny, where
o (ul . uN), NYOLE (ul . uN) are continuously
differentiable over their domains, and such that func-
tions @™ (z, t) = ¢™ (ul (z, 1), ..., uV (z, t)) , m=
1, ..., N satisfy the following conditions:
1)essmax |@™ (z, t)| < My, @™ € V2, (Dr);
(z, t)eDr ’
2) for an arbitrary cylinder Dy, = B (2p) x

[tN, t+ T] C D7 and a point t; € (t~, t+ 7') there is a
number m such that
osc{w™ (w, t), Dy} >
>4 max osc{uk (z, t),
k=1,.., N

Rt IRT]

Dy, 9)

and

x€B(p) : wM(x, t1) <

<essmax{w™ (z, t)} —
p < essmax (=" (z, 1)) >
—bg0sc{w™ (z, t), Das,}

> (1—4d3)c(l)

where B (p) is a ball, of radius p, concentric with B (2p);
01, 02, 03 are positive constants;

3) we denote the Lebesgue measure by p; for each
function @™, m =1,..., N1, we have

max

2

o, (-t <
te[t t+7—] || 77/(’ )||2’B(p7191p) —
< max Hw n(

2
, t
te[t t+T] ~)H2,B(p) +

+e ((19 10)2 2 |=™n (- i)”;,B(p)x[ﬂ i+7] +eé(p (Anp))> ;
(11)

and

m 2
||w n('a t)HH 2, B(p— ﬁlp)x[f f+1927] =

o 2
SC(( )2"‘(1927_ )H(JJW n(; £)||2,B(p)><[t~,t~+7']+

e (Anp)),s
(12)
Il is the Holder norm, we denote @™, (z, t) =

max {@w™ (z, t) —n, 0} and A, , is a set of all z €

B (p) such that minN w™ (x) > n for natural number
=1,...,N1

n.

Since 0, 7%, 72 € PK () we obtain the estimation
| (2, £+ 7)€ (x P+ s
tv ||§an||2 p, <
< || (2, 1) € (x D5 5 +
+c (fD,, |wn| (|Vf| +£ |8t€|) dxdt
+c (H (Amp))a

where we used

+

(13)

/ / |/l dudt <
O,T Q

<5/0 T/|vg| dadt + ¢ (8 / T]/|g| dudt,

where ¢ € C§° (Dr).
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3. A priori estimations

We denote
i (z, t) = w(z, 7)dr (14)
b Jin g
and )
Uy (z, t) = f/ i (x, T7)dr. (15)
R Jie, t4m)

By taking ¢ = (ﬁeXp ()\ |Uh|2) & (x

))E in , then
taking the limit & — 0, we obtain
% fB(zp) exp ()\ |17|2) £ () dm‘zj +
X o o Spiap 0 (M) € (V (|m2'))2 dadt+
2 Jir 11 J(2p) €XP ()\ |a\2) €2 |V dedt <
<2 St 1) JB2n P (/\ |11'\2) odzdt+
 ion, e Jiapy ex0 (Aal*) €290dadt+

+2 f[tl, ta] fB(Qp) exp ()\ |{[|2)
(V] + ) [d] £ | VE] ddi+
i ) opy (197 +72) [l exp (A |af”) dodt
(16)
and further we have

1 ~2Y 2 t2
35 JB(2p) €XP (A | ) £ () dm‘tl +

2
¥ f iy Spop o0 (M) € (v (1°)) dede+
v f[tl, ta] fB(Qp) exp ()\ |ﬁ2|2) &2 |\Vil® dedt <
< f[tl, to] fB(2p) €xp ()‘Ml )
(3 + 1) 70 +17 + Mine) Edudt+
+2uMyexp (AM) [, o1 [y |vu\§|vg|d:cdt+
+iMyexp (AM2) [, o1 [y |Vl €2dadt <
< uMiexp (AM?) [ S Ve dadi+
+(p+ o) Myexp (AM2) [, 0 [, [Vl 2dadi+
+ec1 exp (AM;?) (5 Jo. 7y Jo IVEI” dadi+

+e(8) fio. 1y Jo \f|2dxdt> :

Thus, we obtain

f[tl, t5] fB(zp) & |Vill® dadt < ¢ p'+
+eg (ty — 1) p! (max Vel + max§2) .

If n (x, t) <1 and equals zero on the boundary then

max
teli—r, 1

+ ft—r, i fB(zp) V™ n| n?dxdt <
Sa f[f—r, 1B o™ (IVn\2 +17 \am|) dzxdt+
o1 (fio, r) Jo |VEP dedt + [y 1) Jo €I dudt)

fB )|w ,,77| dx+

(17)
The Holder estimation of @ follows from

osc{w™, D,}< (18)
< (1 =9)osc{w™, Daq,}+D2p”,
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where constants 9, ¥, 92 are depending on the struc-
tural coefficients.

Proposition 1. Let function @ € C*! (Dr) be
a solution to the system and let function u
equals zero on the boundary. Let structural coef-
ficients of the system satisfy conditions (2)-(5)
and

8@7:' k — (9 1
GVl G T < (i) (014 (),
(19)
3aij k 8(1,']‘ . N
; — | < 1 2
vt + 58] < pgapa+van, o
8] < @y +oqval, 1)+ vap?, (1)
where ‘vlglrn o(\vil, |a) = 0 and e(M)
U|—r 00
s a small number. Then, the wvalue
max |V (z, t)] estimates by
{(z, t) : z€0Q, t€[0, T}

nlljaXW(x, t)] = M; and functions of structural
T

coeffictents, mgx\Vﬁ (z, 0)] and boundary.

Proof. We denote v* (z, t) = u* (z, t) + |@ (z, t)]?,

then we equality

o M= a;;V;V0k—

Z QCLijviUmv]‘um -
N

_ Z c*,

i,j=1,.lm=1,...

ijjvk -

daij
Ouk

where we denote B ViuF + da” and CF =
>, 20mu™ + bR

We change the function @ on the function v* = ¢ (w*)
where the function v given by

Y (z) =constv(My)In(z+1).
So, applying the standard arguments we obtain

9wk . NV wk—
W —a;jV;Vjw

_% D it Zm:21
<c (ﬁ + ‘Vwk’ )

N @i Viw™Vw™ <

where the constant c is strictly positive. Therefore, there
are some positive constants ‘¢ such that

0 —~
—wk — aijViijk < c,

ot
both functions W and ¥ equal zero on the boundary
{(z, t) : z€0Q, tel0, T]} and
duwk =
O | {(@, 1) : weoQ, telo, T}
= 1 % =
YWh) O | rp 1y zeon,  telo, T))
c ouP
v O (2, 1) s 209, telo, T]}

reaches its maximum on {(z, t) : = € 99, elo, 71}

in the same point (&, £) that %Lﬁk.
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Next, we take the function 1[) such that
—ay;ViVjh < — ¢
for all z € Q and
max {w* (z, 0) + ¥ (2) } = w* (3, 0) + ¥ (@),

e

[, 1) 200, tel0, 7)) {1/J (x)} =¥ ().

Then, we have

0

gi (" +9) <0995 (' +9)

so that
mas {wt (2, 0) 49 (2) } = w* (2, 0) +9 (2) = §(2).

€

thus
. -
ow” (z, tl—i—z/}(x) >0
on T
T=T
therefore, there is an estimation
o (x) B owk (z, t)
on i - on (@, t)=(#, ©) ’
finally, we obtain the value
ur

S| is bounded.

max max
k=1,....N{(z, t) : z€08, t€[0, T]}

Theorem 1. Let functions a;; and b satisfy con-

ditions (2)-({) and

Oay;j - A -
]'z VZ’U U J U
ou o0x;

‘ < p(|) (1 + Va2,
(22)

< u(a) L+ |val),  (23)

Baij k 8
‘61/“ Vit By 896

5] < 0@y +oqval, 1a)) (1 + vy,
lim 9(|V1_[|,
Vi|—oo

(24)

where |@]) =0 and (M) is a small

number. Let the boundary be smooth enough.
Then, the value HlljaX|V1_[ (x, t)] = M; can be esti-
T

mated by functions of structural coefficients and
9 (Ml), 0.

Proof. In inequality , we take ¢ =
(Uexp (/\ |a’h|2> €2 (x))ﬁ and proceed as we obtain
an estimation [, [, €2 \Vil|* dedt < const; next, we
take g = V,, (5 Vmﬂ'z), we have

%«IOTfﬁfa*(Zk 1. 7sz 1o (Vi
— Jio. 71 Jo €04 Vi Vit V.V ukdxdt—

2 f[o T] fsz Qij

Vi€V (Shctn St (Tont?) ) dadt—
—Jio, 11 Ja 3?; §V PV, V ukda:dt—

- f[o, ] Jo dg: V€V ubV uF dadt+

+ f[o, T] Jo UF (AuFE — Vi ub V3 €) dadt,

u*)?) ddt =

(25)
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where we denote Vo ttF V& _
St (Vi) (VimuF). We take
§=2{ X Z n* (x)

k=1,....N m=1,.

where 7 is the cutoff for the ball B (p) C €,
Applying conditions, for small p, we have

s > 0.

T}rs fB(p) (Zk:l,...,N Zm:l,...,l (vm“k)2> "
77de|§—|—

+ve1 [0, 7y [ IV Vil S

(Zk:l N Dot (vm“k)2> 7 dadt+

s+2
ey f[o ] fB(p) (Zk 1,..N > 1., ( muk)Q)

n?dxdt <
< &Jio, 11 J(s)

s+1
(1 + (Zk:l,...,N D=1, (vm“k)Q) ) \Vn|? dadt,

therefore, we obtain

max
tejo, 7] Blp) \—~k=1. .V e2m=1,...,
<ec.

Finally, if Z(z, t) _
Vm§ (177 t) ) £|{($7 t) : z€d, tefo, T)} = 0 then
we obtain

f[o, T] Jo EVmOuFdadt =
== Jio. 7y Jo aij ViV, V juk dedt+
+ Jio, 1 Jo O Vikdadt,
where O, = 524 Vju¥ + Gt Vo Vjuk + 06, We

_ k
denote w = V,,u",

tion to the system

m=1,..,1; k=1,...,N a solu-

dyw = V; (a;;Viw + OF,)

applying linear theory, we are proving the theorem.
Remark. If the cylinder intersects the boundary
then we assume that rglgx|Vﬁ (z, t)| has already been
T

estimated. For a domain that intersects we take in

2 (Zkzl,“.,N Zm:l,u.,l (vmuk)2>s n? (x)
&= for (Zk:l,..,,N Zm:l,,,,,l (Vmuk)z) > M,
0, (Zkzl,‘..,N Yot (V Uk)2) < M3,

so that we are going to obtain the following estimation

s+1

Z (Vmuk)Q dz <

max/
0TI BN \ b1 N et

<ec.
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Existence of the solution
We consider a boundary problem for the system ,
namely, the function « that satisfies

0

5= > Vilay (@, t, @) Vd) +b(, t, @, Vi)

iyj=1,...,1
over the closure of Dy and on the boundary coincides
with the given function ¢ € H% % (clos (D7)).
Theorem 2. Let functions a;; and b satisfy

conditions 1' with v, v, v € PK(B)

and (22)-(4) with lim o(|Vval, |4@) = 0
|Vi|—o0

and ¢(M;) is a small number. Let

) € C*' ({(z, t) : z€09, tel0, T]}),

m3§<|v¢(x, 0)] < oo, ¢ € H% % (clos(Dr)); and
x
let

% = Z Vi (aij (:17, t ¢) VJQI)) + b(l‘, t ¢7 V¢) .
Gyj=1,...,1
Let function a;; satisfy the Lipschitz condition at
i on any compact.
Then, there exists a wunique solution u €
H® % (clos (Dr)) to the problem

ﬁ|{(z,t):xean, telo, T)}n{(z, t) : z€Q, =0} —

= ¢|{(w, t) :xz€dQ, t€0, T]}N{(z, t) : z€Q, ¢=0}

for the system ().

This theorem can be proven by the Leray—Schauder
method with the application estimations obtained in pre-
vious chapters. A linearized system is given as

24 = (tag (z, t, U) + (1 —7) 8;5) ViV i+
—7B(z, t, ¥, V) + (1=7) (Z¢— A¢), 7T€]0, 1],

where we denote
B (z, t, U, V)

aaij ({E, t, ’l_j)

—b(x, t, ¥, VV) — Dok

ijivk—
_8aij (ZE, t, 17)

Vv
8(Ei 7

and we consider function w to be unknown and v to be
given.

The linearized system defines the nonlinear operator
® (1) : U W given by @ = ® (¥, 7), where the func-
tion 0 is a solution to the linearized system for each given
parameter 7 € [0, 1]. The fixed point of the operator ®
at the point 7 = 1 is a solution to the boundary problem
for system . The existence of such a fixed point is
guaranteed by the Leray—Schauder theorem, uniqueness
follows from the Lipschitz condition straightforwardly by
the contradiction method.
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