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Abstract: - The modeling of a plane film flow affected by alternating electromagnetic field (running EM 
wave) is considered in the paper. Basic parameters of film flow and specific peculiarities of parametrically 
excited oscillations in a film flow are studied and discussed for the theory, as well as for the diverse 
engineering and technological applications. The main attention is focused on the film flow spreading on a solid 
surface or in another liquid medium with comparably high velocities when inertia forces are playing together 
with capillary and electromagnetic ones (gravity forces are of lower impact due to high flow velocity). 
Scientific novelty of present study consists in the revealed new phenomena of the film flow oscillations and 
available decay or stabilization under appropriate practical statement.  
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1 Plane film flow and the problem 

statement  
Example of the plane film flow is formed by vertical 
plane jet spreading on a horizontal surface. It is 
supposed that jet is divided into two equal film 
flows to the right and to the left symmetrically as 
shown in Fig. 1, where b is a half-width of a jet, u00 
is the speed of a jet in front of horizontal plate. For a 
flat jet it is easily established the connection of a 
film flow velocity u0 with other parameters (b, u00), 
considering an axis 0z of the Cartesian coordinate 
system as an axis of symmetry of the studied 
physical system.  

 
 

1.1 Marvelous phenomenon of the film flows 
It is not so simple question about radially spreading 
film formed by round vertical jet, which reveals 
decreasing of its thickness with a distance from 
origin starting from analysis of the conservation 
equation for mass flow rate. Actually the question 
about forming the film flow is not solved yet despite 
its seeming simplicity.  

Everyone can experiment with a spoon put under 
water jet to see that jet transforms into a thin film 
flow abruptly forming from thick jet the very thin 
film. The process looks like a shock of the jet on a 
solid surface. Probably the problem has been not 
solved yet due to its mathematical complexity 
though phenomenon looks simple. Horizontal solid 
plate creates bifurcation in a jet flow, which 
transforms the jet into horizontal supersonic thin 

film flow. Despite both, jet and film flow are 
studied well, the transformation process from jet to 
film flow is unknown yet. 

 
Fig. 1 Creation of the plane film flow: 

00,b u - half-width of vertical jet and flow velocity, 
l- distance from the nozzle to the horizontal plate 

 
 

1.2 Physical and mathematical models for the 

plane film flow 
For example, in case of jet freely falling from height 
l over the horizontal plane it is possible to use 
approximate dependence for the jet velocity in the 
form of u00= 2gl  and to determine the average 
film flow velocity from the integral correlations of 
the mass and impulse conservation: 
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where ( )u z  is an instant flow velocity profile. 
Dissipation of the mechanical energy due to shock 
of a jet on a plate is neglected. The equations (1) 
give: 

0
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(1/ ) ( )
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u a u z dz  , 02
00
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1 ( ) ( 1)z

b v u x

a u z b



  


,   (2) 

where 0 00 / ./u u b a  For many real fluids 
including the liquid metals the value of kinematic 
viscosity coefficient v  is small, and the attainable 
for engineering practice approximation is: 

22 ,u z z  0( / ) 2
z

u z


   , so that the model of 
unperturbed system becomes simple. 

In film flows the ratio of various forces 
significantly depends on the film thickness, physical 
properties of fluid and medium, type of intensity of 
external influences that defines big variety of the 
flow modes. Noticeable (sometimes - the main) role 
belongs to the capillary, viscous, electromagnetic (if 
the fluid is electro-conductive) forces [1]. And at a 
thickness of about the molecular sizes - also the 
Van-der-Waals force is substantial, which is not 
considered here since the film thickness 
considerably exceeds the molecular sizes that 
correspond to the applications considered by us.  

Problems by parametric excitation and 
suppression of oscillations in film flows 
(stabilization of flows) due to periodic external 
influences were considered in connection with 
requirements of the MHD-granulation of metals [1-
8], space technology and many other fields [9-11]. 
The main attention was paid by us to the phenomena 
of disintegration of film flows into the drops under 
influence of electromagnetic waves or vibrations, 
which have been taken as the basis for creation of 
the most perspective film MHD- [12] and 
vibrational [13] granulators having no analogs in the 
world. Thus, especially important are the regimes of 
a parametric resonance of the system giving the 
maximum technological effect at the minimum 
expenses of energy.  

 
 

1.3 Description of the problem statement 
According to the accepted physical model (Fig. 1) 
and the assumptions made about character of the 
studied physical system, the mathematical model for 
the plane film flow in a horizontal alternating 
electromagnetic field is built later on. And the 
statement for parametric oscillations on surface of 
the plainly film flow is the following. The continua 
(film flow and surrounding medium) are supposed 
viscous incompressible and film flow is electro 

conductive. Let consider that characteristics of the 
unperturbed system don't depend on у (flat system), 
the revolting force is caused by an electromagnetic 
wave of a form  

( , )exp ( )z mH H z t i kx my  .
           

(3) 

The electromagnetic field is supposed to be 
solenoid, therefore 0divH   and a vertical 
electromagnetic wave can exist only under condition

/ 0zH z   , when in expression (3) there is no 
dependence of a field from z . It is carried out if 
thickness of a film is significantly less than 
thickness of a skin-layer; otherwise the field has 
also the other components. At strong conductivity of 
the medium the alternating electromagnetic field in 
it spreads as a flat wave [14].  

The characteristic thickness of the skin-layer was 
estimated for average values of magnetic viscosity 
coefficient m , and corresponding   were 
computed for 6 different liquid metals using the 
formula 2 /m   . A number of such values m  
near the melting temperatures of metals are given in 
the Table 1, where from it is seen that with a 
frequency of a field which isn't exceeding 1 kHz, the 
thickness a skin-layer is over 22 10

 m that 
substantially prevails an average thickness of the 
films investigated by us.  

 

Table 1 Thickness skin-layer against frequency 

 , 
Гц 

Al Ga Au Sn Hg Fe 

1.0 

50 

103  

106 

109 

 

0,570       0,65         0,71          0,89           1,26         1,48 

0,080       0,09        0,10           0,13           0,18         0,21 

0,018       0,02        0,022        0,028         0,040       0,047 

5,7
410

 6,5
410

  7,1
410

 8,9
410

 1,3
310

 1,5
310

  

1,8
510

 2,0
510

  2,2
510

 2,8
510

   4,0
510

  4,7
510

  

m  0,16 0,21 0,25 0,40 0,80 1,1 

 
In the range of the frequencies 103-109 Hz the 

thickness of a film and a skin-layer can be of the 
same order, and then there is a need of the 
accounting of field’s components by coordinates x 
and y that significantly complicates the 
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mathematical model. At  >109 Hz the skin-layer is 
much thinner than a film, as a first approximation it 
is possible to model it as a surface of zero thickness 
coinciding with interfacial boundary.  

Now we are interested in the peculiarities of the 
film flow under alternating electromagnetic field 
and possibilities for the film surface control. 

 
 

2 Mathematical models for surface 

oscillations in the plane film flow 
Taking into account the stated above, the MHD-
equations of the perturbed film flow including the 
known parameters of the unperturbed system, which 
can be set approximately by expressions (2) or more 
precise  [10,15,16], in a linear approach are: 

0
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j
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
   
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0

0 2 2
z z z z

z m

uH H H H
u H

t x x x y


    
    

     

. 

Assuming the low-amplitude perturbations one 
can perform linearization of the equation array with 
respect to the above-mentioned unperturbed state of 
a system. The equations (4) are used for the 
description of the perturbed isothermal film flow 
and its parametric oscillations at the constant 
densities and viscosities of media (

j ,
j ).  

The revolting force is created by a vertical 
electromagnetic wave (3), which spreading 
regularities are influenced, in turn, by unperturbed 
film flow. Thus, perturbation of pressure р and 
velocity components u1, v1 are defined by energy 
pumping from an electromagnetic field to the 
conductive medium, and perturbation of vertical 
velocity component w1 of a film flow is caused by 
changes of pressure. All this leads to oscillations of 
a film flow surface, which can be operated by means 
of the electromagnetic fields alternating by the 
regime stated. Therefore research of the main 

features of the electromagnetic field and media 
interaction is necessary.  

The picture of the induced electric current in a 
film flow prone to an action of electromagnetic 
wave of the above-described form looks like 
presented in Fig. 2:  

 
Fig. 2 Picture of induced current in a film flow 

 
where the free ribs are cylinders of unloading the 
film from surface forces [16], which are the lines of 
minimal electric resistance. The last leads to a 
physical situation when the lines of the induced 
current are displaced to external borders of a film. 
Therefore the picture of spreading current is 
symmetric only in a middle part of a film flow 
where influence of regional effects is weakened. On 
sufficient distance from an initial section х=0 the 
lines of spreading current are almost parallel to an 
axis 0y and thereof the electromagnetic forces affect 
a film flow in the direction of an axis 0x.  

Thus, fluid in a film flow is either accelerated or 
decelerated by coordinate x that causes the 
depression-compression wave by this coordinate 
leading to the corresponding deformation of a film 
flow surface. The analysis of practical cases shows 
[1,12,17] that for film flows the magnetic Reynolds 
numbers Rem are small, therefore the induced 
electromagnetic field can be neglected and excluded 
from analysis. It allows solving independently the 
hydrodynamic equation array containing in their 
right hands the intensity of an electromagnetic field 
defined from the equations of field induction, which 
only contains the component of average film flow 
velocity for unperturbed state. This means that the 
equation for electromagnetic field is considered as 
the autonomous one.  

For low-amplitude parametric oscillations of a 
surface of film flow in a linear approach, the task is 
reduced to a system of two differential equations 
describing distribution of an electromagnetic wave 
in the conductive medium and caused by it 
oscillations on a film surface (boundary separating 
the conductive and non-conductive media) [1,18-
22]. For a further specification of physical and 
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mathematical model by parametric fluctuations of 
the plainly spreading conductive film flow in the 
field of a progressive electromagnetic wave, it is 
required to stipulate a type of boundary and initial 
conditions satisfying the considered above physical 
situation.  
 
 
2.1 Boundary conditions 
Taking into account the above-stated in a linear 
approach by small perturbations one can seek for a 
system response to external influence in the form 
similar to (3) avoiding the statement of the initial 
conditions if only the behavior of a surface 
perturbations is of interest but not absolute value of 
perturbations’ amplitude. Then for a full 
specification of mathematical model it is enough to 
set conditions on the boundaries of media using as 
an illustration of physical situation in Fig. 3, which 
on , ,x yn    are the instant normal and tangent unit 
vectors of the accompanying Cartesian coordinate 
system at a point  , ,x y a   on a film boundary 
with the surrounding medium. 

 
Fig. 3 Boundary perturbation between two fluids 

 
On the lower boundary of a film flow the conditions 
by contact of viscous fluid with a solid surface or 
with the non-conductive surroundings is considered. 
The most widespread on a solid surface is the 
sticking condition though it not always adequately 
reflects a physical picture of the phenomena, 
especially in case of unmoisten surfaces (unwetting 
liquids). The correctness of this condition for 
tangent velocity components was being permanently 
raised since Stokes (1845), Lamb (1947), 
Zhukovsky (1948).  
 
2.1.1 Slipping boundary condition 

In the review [23] it is shown that on unmoisten 
solid surface the noticeable slipping of liquid is 
possible. J. Happel and G. Brenner [24] assumed 

that the most reasonable is the following hypothesis: 
the tangential velocity component of a liquid related 
to a solid body at a point on its surface is 
proportional to tangent tension at this point from the 
constant    called by slipping friction coefficient. 
It was supposed that    depends only on the nature 
of liquid and solid surface. Later on at different 
times J. Serrin [25], I.B. Bogoryad [26] and other 
researchers also disputed about applicability of 
slipping conditions on a wall in various problems of 
the viscous liquid. For example, Bogoryad has given 
mathematical substantiation of the condition of 
partial slipping.   

Generally speaking, a question by calculation of 
liquid slipping on a solid surface is difficult, and 
recently the attempts by slipping definition in 
different physical situations were made:  
• with use of a two-moment boundary condition in 
approach, linear on Knudsen's number, the speed of 
slipping for non-uniform by temperature and mass 
speed of the rarefied gas along a solid spherical 
surface has been calculated [27], 
• the aerodynamic drag of a car was defined 
numerically solving the Navier-Stokes equations 
with a slipping boundary condition instead of a 
sticking condition [28], 
• survey works on micro-hydrodynamics by a 
sticking condition and experimental studies of 
slipping on the boundary of solid surface. 
 
2.1.2 Hysteresis of contact angle on solid surface 

The flat film flow on a solid surface is unstable, 
even in a linear approach it is impossible to 
construct the correct theory due to hysteresis of a 
contact angle, possible flow separation on a surface, 
etc. [29].  
 
2.1.3 Kinematic and dynamic conditions on a free 

film surface. Formula L.D. Landau 
On the top film surface the following boundary 
conditions are considered. In absence of the media 
slipping we suppose on the unperturbed surface 

 , ,z a x y t  : 

   1 2u u ,  1 2v v ,   1 2 1 1 .w w u v
t x y

    
   

  
         (5) 

In this kinematic condition 0v v v  , where 0v  is 
unperturbed velocity, v - its perturbation.  

The dynamic condition on the interfacial 
boundary includes a balance of tangential and 
normal stresses, and at considerable curvature of the 
deformed interface it is necessary to consider the 
capillary pressure cpp K


  [30]:  
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It is determined with use of the formulas of 
differential geometry for average curvature 

cpK  of a 

surface  , ,z a x y t   at the point  , ,x y t . 
In linear approach expression (6) coincides with 

solution of the variation task on a minimum of total 
free energy done by L.D. Landau [31] for a case of 
small deviations of boundary from equilibrium 
situation. It is easy to be convinced that this 
expression doesn't contain terms of even orders by 
small-amplitude perturbation of a free surface. 
Therefore it is possible to interpret as a reason of 
successful application of linear approach at solution 
of the weakly non-linear tasks. At formulation of 
dynamic balance condition on a surface of boundary 
media in a linear approach it is possible to project 
all forces on the unperturbed surface z=а.  

 
 

2.2 Non-linear boundary conditions 
If a value of perturbation amplitude must be 
accounted when the normal and tangential vectors to 
an interface of media significantly deviate from 
their unperturbed position, it is necessary to project 
the acting stresses on the normal and tangent plane 
in a considered point.  

The unit tangential and normal vectors of the 
instant accompanying Cartesian coordinate system 
are presented in the form [30]: 
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Using the (7), we determine the instant forces 
operating on an elementary plane with a normal n . 
For this purpose, first the expressions for 
components of hydrodynamic stresses are written: 

pnn= nx pnx+ ny pny+ nzpnz ,  pτx= τxxpnx+ τxypny+ τxzpnz, 

          pτy= τyx pnx+ τyypny+ τyz pnz ,                    (8) 

where are: 
pnx = nxpxx + nypyx + nzpzx ,    n = {nx, ny, nz} , 

pny = nxpxy + nypyy + nzpzy ,     x = {τxx, τxy, τxz}, 
pnz = nxpxz + nypyz + nzpzz ,    y = {τyx, τyy, τyz}. 

Also the following expressions for the components 
of stress tensor are taken into account: 
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where indexes j=1,2 and tildes are omitted for 
simplicity. Here p is static pressure, μ- dynamic 
viscosity coefficient. With the equations thus 
obtained and accounting electromagnetic and 
gravity forces, the dynamic equilibrium conditions 
of the interfacial boundary are  
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1 1 1
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2
 mean a jump of corresponding parameter 

on the boundary, e.g.  
1

1 22
p p p  .  

Taking into account expressions (6)-( 9) we can 
present a condition of local dynamic balance of the 
perturbed interfacial boundary in rather general 
view. In a projection on the normal to an interface 
of media, on the tangent plane in the direction x and 
in a projection to the tangent plane in the direction 
of y, respectively:  
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The equations (10) become significantly simpler for 
two-dimensional perturbations, when / 0y    or 

0/  x . In the equations obtained for local 
dynamic balance of the perturbed interface of 
media, the terms containing 0jv  and not containing 

jv  can be excluded if consider the following 
boundary conditions imposed on unperturbed 
system:  
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Apparently from the aforesaid, the mathematical 
model of physical process in a general view is 
cumbersome and thereof is not so much suitable for 
practical calculations. Therefore various simplified 
linear and rather simple non-linear mathematical 
models are used in most cases [32-35], and the 
systems of type (10) serve as initial ones by 
derivation of simple equation arrays based on use of 
the additional data or hypotheses of physical 
character of the phenomena.  

 
 

2.3 The linearized boundary conditions 

In case of low-amplitude perturbations of system the 
linearization procedure for the boundary conditions 
and equations gives considerable simplification of 
its mathematical model. So, for linearization of 
boundary conditions (5), (10) it is necessary to 
expand the presented functions in the vicinity of z=a 

by small parameter (as such   can be taken), omit 
in the received expressions the terms of the second 
and higher orders, and then it yields:  

z=a,   1 2 ,v v   
y
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ww jj
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
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Similarly the equation array (4) is linearized too: 

2
0 0

2(2 )( )
2

j

j j j j m j j

v j
j v v v v p H v

t
  

  
         

  
, 

0jdivv  ,     
00 m

H
v H H

t



  


.            (2.1.12) 

The equation array (12) and conditions (11) give 
the linearized boundary-value task for definition of 
parametric oscillations of a conductive film flow 
under the vertical electromagnetic wave. Thus, as 
far as follows from (4), in the last two equations of 
system (11) the components of electromagnetic 
force have the second order by perturbation, they 
can be omitted. Then boundary conditions for the 
conductive and non-conductive media are identical. 

Conditions on the other interfacial boundaries 
have been already partly discussed. Further they are 
concretized more in detail in relation to the 
considered physical situations. For the solid 
boundary z=0 conditions of the perturbation 
attenuation are set. If z=0 is a free surface, where 
the conditions of type (11) ought to state. Similar 
boundary conditions are on the top surface of the 
non-conductive medium: by considerable thickness 
of layer the perturbations in it are extinguished 
completely. By small thickness of a layer this 
condition is at contact of the non-conductive 
medium with a solid surface. 

In tasks about spreading of perturbations (waves) 
the adequate treatment of initial conditions isn't 
always possible and, besides, it is often important to 
know not an absolute value of perturbation but the 
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rate of its increase in time and (or) in space. As a 
rule the uniform initial conditions are used:  

  0, 0, 0, 0.j jt v p               (13) 

Non-uniform initial conditions usually lead to 
more cumbersome results, which, however, have no 
essential qualitative distinction in comparison with a 
case of uniform conditions; therefore their use by 
many researchers admits inexpedient. 

The equilibrium state of a number of the real 
physical systems is described with a sufficient 
accuracy by rather simple approximate functions, 
therefore the mathematical model (1)-(13) type is 
done significantly simpler and non-linear problems 
are successfully solved on computer. The examples 
of such tasks are considered further. 
 

 
3 Excitation of surface oscillations by 

vertical electromagnetic wave 
The problem by excitation of low-amplitude 
perturbations on a film flow surface by means of 
vertical progressive electromagnetic wave (3) using 
the above-stated linearized equations and boundary 
conditions is considered. For convenience of the 
task solution and increase of its generality the 
boundary task is transformed to dimensionless form.  

Choose the characteristic scales of length, 
velocity, time, pressure and intensity of an 
electromagnetic field, respectively 2

0 0 1 0 0, , ,, / Hb u b u u

and put for simplicity 
0 constu  . Then (11)-(13) are 

presented as   
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

                  
(14) 

Boundary conditions are:  
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t x

  
 
 

;       (15) 

  
1 2;v v    

      z =0,   
1 0v  ;     z =  ,   2 0v  ;

             
(16) 

 
00, 0, 0, 0, ,j jt v p H H        (17) 

where  2 2
0 1 0/ ,mAl H u   

0 / ,gbFr u  
2

1 0 / ,We bu   
0 / ,Re j ju b  0 /Rem mu b   are the Alfven, Froude, 

Weber, Reynolds and magnetic  Reynolds numbers, 
respectively; 

0 ,(0)H H  and  - dimensionless total 
thickness of the layers of conductive and non-
conductive media, ,/a b   /ij i j   , 

1 1/j j   , 
j=1,2. For simplification, the dimensionless values 
keep the same view as the dimension ones. 

The first boundary condition (16) corresponds 
to a film spreading on a solid surface. For free film 
flow instead of this condition by z=0 should be 
considered also boundary condition of (15) type. 
Because 

0 1/a mu H    is a velocity of spreading 
the Alfven waves, the Alfven number can be 
presented as a ratio of characteristic velocities: 

2 2
0/aAl u u .  

 
 

4 Parameters of electromagnetic wave 
With account of the above and equations (3), from 
the last equation of the system (14) results 

         2 2
0 /exp Rem m mkH H ik m t 

 
   ,

     
(18) 

where  0 0m mH H , 
r ik k ik  , 

r iim m m . With 
account the expression  0 expz mH H i kx my t    
and (18), yields the dispersive equation of the form 

 2 2 / Remkk i m   , where from:  

2 ,
Re

r i r i
r r

m

m m k k
k




 

2 2 2 2

,
Re

i i r r
i i

m

m k m k
k

  


 
(19) 

and then expression for the real part of the strength 
of magnetic field follows in the form 

   0 cos .expr m i i i r r rt m y k x k x m y tH H       
 
(20) 

In general case the formula (20) describes 
progressive electromagnetic waves spreading in 
two-dimensional space (by each coordinate with its 
own speed) and exponentially growing (or 
decreasing) by amplitude in a space and (or) time. If

2 2 2 2Rei i i m r rk k km m     , then 0i   by 

   2 2 2 2/Re Rem i i i m i i r rm y k x k m k m kt      . 

If 2 2 2 2Rei i i m r rk k km m     , then 0i   by 

   2 2 2 2/Re Rem i i i m i i r rm y k x k m k m kt      . 
The phase and group spreading speeds of the 

progressing by x and y waves, with account of (19), 
(20) are, respectively:  

1 ,j j

j

w u
idem

x z


  
  
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1 ,j j

j

w v
idem

y z


  
  
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Important characteristics of the progressive 
magnetic field is slipping   /H H Hs c v c , where 

 ,H H H

x yc c c , as far as mutual influence of the 
electromagnetic and hydrodynamic fields is 
determined by magnetic Reynolds number 
Re Re H

ms m s  . Analysis shows that by 0r rmk   the 
waves by x and y are spreading in positive direction 
if 2 /Rem i r r im m k k   . If 0i im k  , then for 

0t   the wave amplitude decreases, and ,1H

xc   
/ ,H

y r rmc k  2 2 / ,Rei r r mkm   where from follows 

that with decrease of wave length (increase ,r rm k ) 
the rate of amplitude decrease is strongly growing 
by time, and wave energy is transferred only by x.  

Similar influence is done by magnetic Reynolds 
number: the lower is Rem

, the higher is phase speed 
of the electromagnetic wave spreading, and in case 
of infinitely high conductivity of it becomes infinite 
too. Then the wave group speed (the speed of 
energy transfer) is infinitely growing as well. The 
components of running speed of the electromagnetic 
wave in a space are interconnected as 

               / / .H H

y i i x i ik m mv v                       (21) 

From the equations (19)-(21) can be shown that in 
case of spreading of the short waves by x and y their 
decrease in time is identical while in a first case the 
speed of wave spreading differ on the value of 
velocity of unperturbed film flow (here it is 1). 

The phase speeds of the long waves are 
substantially higher than the ones of the short 
waves: ,H

x rmc  .H

y rc k  For example, for short 

waves by 
r rk m  it is got 

, 1 2
Re

H i i
x y

m

m k
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
  and 

decrement of such wave decrease in time is twice 
bigger than corresponding value in a previous case.  

By 11,i im k  yields, correspondingly:  
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where from follows that spreading velocity of the 
constant crest amplitude is twice less then phase 
speed of the waves, and a group speed by one 
coordinate coincides with the phase speed being 
substantially higher the one by other coordinate. 
Thus, the wave energy has preferable spreading 
direction despite the waves’ phase speeds by х and у 
are of the same order. 

The established parameters of electromagnetic 
waves are important for analysis of their action on 
conductive medium and selection of the control 
fields, which supply an achievement of the 
requested behavior of the controlled continua, e.g. 
liquid metal film flow. The analysis performed has 
shown that short electromagnetic wave with 
constant by х, у amplitude is available if and only if 
magnetic field is rapidly decreasing in time, so that 
it is similar to the impulse packet having abrupt 
back front of type  2 /exp Rer mk t . 

 
 

5 Solution of the boundary problem 
Assuming the small-amplitude perturbations, we 
seek solution of the boundary problem (14)-(17) as a 
linear response of the system to an external action. 
Following the superposition principle, the excited 
by electromagnetic wave (3) surface waves in a film 
flow are considered as proportional to the function 

 exp 2i kx my  with corresponding amplitudes – 
functions of time. Statement of the boundary 
conditions by х,у is not needed, parameters of 
medium are prone to similar perturbations differing 
with additional amplitude dependence of coordinate 
z. This approach is attainable when the wave 
amplitude reaches substantial value so that the non-
linear effects become playing.  

Solution of the boundary problem (14)-(17) was 
convenient to search with use of the integral 
transformation methods [36]. The averaging of 
highly-oscillating terms under integrals was 
performed by the second scheme [37]. The 
approximate solution obtained is close enough to the 
exact solution on the infinite interval of time and its 
fidelity grows with increase of rk  (according to the 
assumptions made 1/rk  ). It has the form: 

   

2 2
21

12 2

2 2
21

1 2

.

18 8 4exp Re exp Re
1 82 Re 1 exp 2Re

m

m

k k k
Ha Al k t t

Fr We

k
k i k ikt

Fr We





 

      
        

     

  
    

  








   

(22) 
Analysis of the solution (22) shows that vertical 

electromagnetic wave (18) causes perturbation of 
the film flow surface, which has a part similar to the 
exciting wave force and the other one, different. By 
real k  (speed of the wave spreading is equal to the 
velocity of film flow, Re 0ms  ) the surface wave is 
alone (similar by form to the exciting force). By 

2

21 2 2

81 k

Oh Ga
  


 the exponential growing of the 

amplitude of film surface oscillations in time is 
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available, by 2

21 2 2

81 k

Oh Ga
  



 the influence of the 

second medium is only the quantitative one.  
The amplitude of film surface oscillations 

excited by electromagnetic field is proportional to 
Ha Al , and parametric resonance of the system is 
achieved by (for simplicity a case of real value k  is 
taken):  

  

  

22 2 2
21

1 2 2 2 2
21

/
.

/

8 1 8
Re

/ 8 1 8
Be Ga k Oh

k Be Ga k Oh



  

  

  




    

(23) 

where , ,Be Ga Oh  are the Batchelor, Galileo and 
Ohnesorge numbers, respectively. Ought to account 
that (23) is correct by 

1Re 1. In condition obtained 
the single dynamic criterion 

1Re  is expressed 
through the parameters of system and wave number
k , / ,mBe    / ,Ga gbb   /Oh b g  . 

Examples of computations by (23) for aluminum 
melt: 3

1 2, 4 10  kg/m3, 61, 21 10


  m2/s, 0,164m 

m2/s, 0,5  N/m, 3
1 2,4 10   kg/m3, 3

2 10  kg/m3, 
g =9,8m/s2,  =1, Be =7,4 610 , 

21 =0,42 are given 
in Figs 4, 5:  

 
Fig. 4 Region of the film flow instability: 

Ohnesorge number depending on the Reynolds number 
 

 
Fig. 5 The characteristics of parametric resonance 
for conductive film flow by 1/Ga Oh: curves 1, 2 

bifurcate from 10 (non-conductive liquid) 

 
where from follows that for conductive liquid the 
both sets of curves are bifurcating from the one 
corresponding to the non-conductive liquid. 

The Eigen oscillations from (22) have the form  
  0 exp 1 i t     
     , 2

21
12 2 ,18 8Rek k

k
Fr We






 
  

 

  

they are available growing and falling with time. 
The increase (decrease) of oscillations is strengthen 
with increase of k  and 

1Re . Here is  0 0  . 
 

 

6 Conclusions by the results obtained 
 by electromagnetic excitation the short 

electromagnetic wave has to be like a pack of 
impulses with the steep back front 

 2 ;exp / Rer mk t  

 vertical progressive electromagnetic wave 
causes two waves on a film surface, one of 
which is similar to a wave of the exciting force;  

 amplitude of surface oscillations is Ha Al , 
and a parametric resonance (film decay) is 
reached at Re Re  determined by a formula 
obtained depending of ,k 21, , ,Be Ga Oh ;  

 for the conductive liquid two families of curves 
for the film decay are bifurcating from the one 
corresponding to non-conductive liquid. 
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