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Abstract: - Reports published by the World Health Organization (WHO) indicate that noncommunicable 
diseases (NCDs) including chronic kidney disease (CKD) are among the top ten causes of mortality worldwide. 
Accurate and early diagnosis of chronic kidney disease could save lives, ameliorate deleterious effects and 
dramatically improve quality of life. This paper presents a system that harnesses convolutional neural networks 
(CNNs) that could be incorporated into a comprehensive artificial intelligence (AI)-driven healthcare system 
for the automated diagnosis of chronic kidney disease. Utilizing publicly available image datasets featuring 
images representing normal kidney states, cysts, tumors and kidney stones split into training and validation 
samples, the system achieves an accuracy approximating 97% on the training and validation datasets. 
 
Key-Words: - Chronic Kidney Disease (CKD), Artificial Intelligence (AI), Deep Learning (DL), Convolutional 
Neural Network (CNN), Two-dimensional (2D) Convolutional Neural Network (2D CNN), Healthcare System, 
CT Image 

Received: March 29, 2024. Revised: Agust 25, 2024. Accepted: September 29, 2024. Published: November 14, 2024.     
 

 
1 Introduction 

In addition to the high mortality rate measured in 
millions per annum globally, chronic kidney disease 
exerts an enormous toll in terms of lost economic 
opportunities and physical and psychological 
suffering [1] – [2]. Accurate and early diagnosis 
could be leveraged to create more efficacious 
therapies and management strategies and 
consequently save lives and enhance quality of life 
indicators and achieve improved health outcomes 
across board. Ekpar [3] introduced a comprehensive 
artificial intelligence (AI)-driven healthcare system 
with a modular design that could accommodate AI 
models for the diagnosis of chronic kidney disease. 

Previous work has been reported in the literature 
featuring the utilization of AI models for the 
diagnosis of a wide range of health conditions 
including chronic kidney disease [4] – [29] with 
varying degrees of success.  

This paper presents a system built on 
convolutional neural networks (CNNs) trained to 

classify diagnostic images. The system employs 
publicly available diagnostic CT-radiography 
images indicating the normal kidney state as well as 
the presence of kidney cysts, stones and tumors [4] 
with the possibility of incorporating the resulting 
system into a comprehensive artificial intelligence 
(AI)-driven healthcare system. 

Further integration of genetic and environmental 
factors could enhance the utility of the system with 
more accurate representations of the circumstances 
of the participants. Additionally, locally aggregated 
datasets could augment and/or replace the publicly 
available datasets currently harnessed to reduce bias 
and promote the global relevance of the decisions 
that could be supported by the inferences drawn 
from the system. 

The modular design makes the system amenable 
to the incorporation of new modules for the 
diagnosis, prediction and management of additional 
health conditions and the enhancement of existing 
modules on the basis of fresh data. 
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2 Materials and Methods 
This section outlines how participants could be 
recruited for experiments on the basis of ethical 
clearances obtained as well as the methods pursued 
for the actualization of the system. 
 
2.1 Participant Recruitment 
Participants willingly took part in the studies 
focused on developing a comprehensive AI-driven 
healthcare system, each providing informed consent 
for their participation. 
 
2.2 Ethical Clearance 
The Health Research Ethics Committee at the 
Institute of Biomedical Research, University of 
Uyo, approved the studies ethically. All research 
complied with relevant ethical and regulatory 
standards, and publicly available data was utilized in 
line with the licensing terms established by its 
creators. 
 
2.3 Methodology 
Publicly accessible healthcare datasets can be 
improved by integrating data collected from local 
experiments and data collection initiatives, which 
can be used to train AI models for actionable 
predictions based on new data. Sources of public 
healthcare datasets include the Centers for Disease 
Control, the University of California Irvine Machine 
Learning Repository, the American Epilepsy 
Society, and Kaggle. 
 
 Incorporating local data enhances robustness, 
minimizes bias, and fosters inclusivity and global 
relevance. 
 
 One innovative approach in this project is 
combining diagnostic measurements, including 
electrocardiographic results, from local experiments 
with EEG data from both traditional and novel 
advanced three-dimensional multilayer EEG 
systems. 
 
 For local data collection efforts, the research 
has received ethical approval from the relevant 
ethics committees overseeing the regions where the 
experiments take place. Furthermore, partnerships 
have been established with licensed medical doctors 
experienced in these areas, who have direct access 
to patients and other clinicians in the community. 
These doctors will collaborate with the project to 
provide anonymized clinical measurements for 
validating the AI models. 

  
 The trained AI models could be integrated into 
a comprehensive healthcare system that offers 
clinical decision support to medical practitioners 
and facilitates the generation of brain-computer 
interfaces (BCIs). This support will be based on 
actionable insights derived from new clinical data 
provided by medical professionals, aiding in the 
early detection, diagnosis, treatment, prediction, and 
prevention of various conditions, including diabetes 
mellitus, heart disease, stroke, autism, and epilepsy. 
  
 This project is dedicated to advancing open 
science, reproducibility, and collaboration. As such, 
the generated data will be made available in public 
repositories like GitHub and Kaggle. 
 
 
 

3 Systemic Solution 
 

3.1 System Design and Implementation 

The comprehensive healthcare system outlined in 
this paper features a modular design, with each 
condition (such as chronic kidney disease, heart 
disease, diabetes mellitus, stroke, epilepsy, and 
autism) assigned to its own module. This structure 
allows for future applicability in diagnosing and 
predicting additional conditions and facilitates 
efficient updates to existing modules with new data. 
Brain-computer interface (BCI) modules, such as 
those using the motor imagery paradigm, can 
process EEG data to generate actionable commands 
and other appropriate responses. 

The system includes guidelines for adapting 
traditional EEG systems to innovative three-
dimensional multilayer EEG systems. These novel 
systems, developed by Ekpar [30] – [31], are based 
on a conceptual framework that employs 
approximations of carefully chosen representative 
features of bio-signal sources for characterizing or 
manipulating the underlying biological systems. 

For each module, robust AI models are 
developed and trained using appropriately formatted 
data collected as described. These AI models can 
integrate genetic, environmental, lifestyle, and other 
relevant factors to provide more accurate 
representations of participants' circumstances. 
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Fig. 1 depicts the design of the system with a 
simplified graphical representation of the modules 
and other key components of the system. 

 

 

 

Fig. 1: System Schematic Design Diagram for the Comprehensive AI-Driven Healthcare Solution and Brain 
Computer Interface System. The New Conditions component represents additional health conditions that can be 

incorporated into the solution via new modules. 

The AI models are developed using the four distinct 
approaches listed below. Note that in addition to the 
four distinct approaches highlighted herein, 
additional approaches (possibly incorporating 
modern topological and algebraic methods) could be 
adopted and the results (in terms of performance 
metrics) compared and contrasted for possible 
integration of the models into the system. 

1. Direct Use of Large Language Models 

(LLMs): Leveraging large language models 
(LLMs) like GPT-4 as inference engines, 
utilizing the collected data formatted as 
multidimensional input vectors. This 
process may include fine-tuning the LLM. 

2. Prompt Engineering with LLMs: 
Applying prompt engineering techniques to 
LLMs like Bard and GPT-4 (and their 
future iterations) to outline a series of steps 
for constructing the AI-based system. The 
proposed steps are executed using the 
creator's deep expertise in AI, neural 
networks, and deep learning, along with 
programming in Python and using tools like 
TensorFlow, Keras, and other machine 
learning and visualization libraries such as 
Scikit-learn and Matplotlib. 

3. Automated Model Generation: Creating 
specific AI models by harnessing the 
features of LLMs like Bard and GPT-4 
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through an automated model generation 
pipeline. 

4. Direct Synthesis of AI Architecture: 
Synthesizing a suitable AI architecture 
based on the creator's substantial experience 
in AI, neural networks, and deep learning, 
employing Python, TensorFlow, Keras, and 
additional machine learning and 
visualization tools. 

All processes and tools used in developing the 
solution are thoroughly documented to ensure 
smooth transfer and reuse of the system. The 
performance of the generated AI models is 
evaluated and compared using metrics such as 

specificity and sensitivity, assessing their suitability 
for the challenges presented. 

3.2 Convolutional Neural Network 

Architecture and Data Processing 

Custom-synthesized two-dimensional (2D) 
convolutional neural networks (CNNs) were 
harnessed in the AI models of the system and 
leveraged for multiclass (four-class: normal, cyst, 
tumor, stone) image classification for the purpose of 
diagnosis of chronic kidney disease from CT-
radiography. Figure 2 illustrates a generalized 
depiction of the CNN architecture. The CNNs were 
realized via toolsets provided by the TensorFlow 
framework coupled with the Keras API in the 
Python programming language [32] - [33].   

Fig. 2: Generalized Illustration of the Convolutional Neural Network (CNN) Architecture. 

 

 
 
The 2D CNN comprised three separate 2D 

convolutional blocks each coupled with a 2D max 
pooling layer. ReLU activation was utilized. The 
first 2D convolutional layer featured 16 filters, the 
second featured 32 filters while the third layer 
featured 64 filters. The kernel size used was 3.  A 
preprocessing data augmentation layer 
implementing rotation of the images by 18 degrees 
was added to prevent overfitting. Z-normalization 
was applied via the batch normalization function. 
Before flattening and connection to the fully 
connected layers, a dropout layer with a dropout rate 
of 0.2 was added to the AI model. 

Public CT-radiography image datasets [4] were 
utilized in training and validation of the AI model. 
The dataset comprised a total of 12,446 clinically 

validated images spread across four distinct classes 
representing normal kidney function (5,077 images), 
presence of kidney cyst (3,709 images), presence of 
kidney stone (1,377 images) and presence of kidney 
tumor (2,283 images). First, the images were 
shuffled to ensure balance and then split into 
training and validation datasets with the training 
dataset being allocated 80% of the data and the 
validation dataset being allocated 20% of the data. 
Furthermore, a new data partition containing 20% of 
the data was generated after random shuffling for 
evaluation of the CNN after training and validation. 
The images were resized to a width of 180 pixels 
and a height of 180 pixels before processing. 
Processing proceeded with a batch size of 32. 

Figure 3 shows a randomly selected sample of 
images from the dataset representing all four 
classes: Normal, Cyst, Tumor and Stone. 
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Fig. 3: Sample Images from the Dataset Representing All Four Classes: Normal, Cyst, Stone and Tumor. 

 

3.3 Data Availability 
The data utilized in this study are available from 
Kaggle at 
https://www.kaggle.com/datasets/nazmul0087/ct-kidney-
dataset-normal-cyst-tumor-and-stone. 

 

4 Results 

The CNN was trained on the training dataset (9957 
images or 80% of the original 12,446 images) and 
validated on the validation dataset (2,489 images or 
20% of the original 12,446 images) over 10 epochs. 
Sparse categorical cross entropy loss function was 

utilized. The AI model was optimized via the Adam 
Optimizer [34] – [35] with a learning rate of 0.001. 
Figure 4 illustrates the performance of the AI model 
on the training and validation datasets. 

As can be seen from Fig. 4, the performance of 
the CNN improved over the training and validation 
cycles until an accuracy of approximately 97% was 
achieved for the training and validation datasets. 
Evaluation of the resulting AI model after training 
and validation on a randomly selected test dataset 
comprising 20% of the original data yielded 
comparable results.  
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Fig. 4: Performance of the Convolutional Neural Network (CNN) on Training and Validation Datasets. 

 

Implementing the comprehensive AI system 
outlined here will provide valuable insights for 
clinical decision-making, ultimately saving lives and 
enhancing quality of life. It aims to alleviate the 
economic, social, psychological, and physical 
burdens associated with conditions that can be 
predicted, potentially prevented, detected early, 
diagnosed, and managed more effectively. 

 
Participating medical doctors and their 

colleagues can generate Electronic Health Records 
(EHR) that include clinical diagnostic 
measurements and EEG data. EEG data may also be 
collected during experiments with Brain-Computer 
Interfaces (BCIs). This data is gathered in 
compliance with ethical approvals and is 
anonymized prior to being published in publicly 
accessible repositories alongside academic research 
articles. 
 

5 Conclusion 

Convolutional neural networks were harnessed for 
the classification of medical images representing 
kidney states indicating normal function, the 
presence of cysts, the presence of tumors as well as 
the presence of kidney stones. The resulting AI 
model could be integrated into a chronic kidney 

disease diagnosis module within the context of a 
comprehensive AI-driven healthcare system. The 
system exhibited excellent performance, achieving 
an accuracy approximating 97% for the training and 
validation datasets. Adopting the comprehensive AI-
powered healthcare system in resource-limited 
settings such as low- and middle-income countries 
(LMIC) with low doctor-to-patient ratios and 
limited healthcare funding could permit a single 
medical doctor or healthcare worker to serve up to 
ten or more times the usual number of patients, 
effectively increasing the doctor-to-patient ratio and 
dramatically improving health outcomes and saving 
lives without significant additional investments. 
Generally, the high accuracy of the system 
encourages adoption and utilization of the system 
for improved health outcomes in both developed 
and developing countries and regions. In the future, 
the system could incorporate genetic and lifestyle 
factors for a more accurate reflection of the patient’s 
circumstances and to facilitate recommendations for  
lifestyle modifications that could help prevent 
disease. 
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