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MEXICO

Abstract: The copy number variations (CNVs) are a form of structural genetic changes which are recognized
to have an importance for diagnosing human disease. Therefore, accurate estimation of the CNVs using high
resolution technologies has been under peer attention in both research and clinical applications during last decades.
We propose a more accurate approximation for jitter distribution in the CNVs breakpoints based on the modif ed
Bessel function of the second kind and zeroth order. We show that the modif ed distribution allows improving the
estimates of the CNVs when the segmental signal-to-noise ratio is small and extremely small.
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1 Introduction
It is well-known that structural genetic variations
[1, 2], called genome copy number variations(CNVs)
[3, 4], are associated with disease such as cancer
[5]. To measure the genome chromosomal structure
the single nucleotide polymorphism (SNP) technol-
ogy was developed in [9] and applied in [10] to high
resolution measurements of the CNVs. But noise in
the SNP measurements still remains at a high level
[10] and eff cient estimators are required in order to
extract information with suff cient accuracy. Unfortu-
nately, no one estimator (optimal or robust) is able to
detect the CNVs accurately in large noise [11]. The
inability of providing multiple probing in short time
[12] complicates the problem. Accordingly, some
small changes may be diagnosed as unlikely existing
if to test the estimates by the conf dence masks [13].

The SNP data are typically represented in SNP
Index with the nth probe, nl ∈ [1,M ], where M is the
number of probes [14]. Figure 1a shows the CNVs
picture, in which the nlth discrete point corresponds
to the ith edge or breakpoint. The CNVs are often nor-
malized and plotted as log2R/G = log2Ratio, where
R and G are the f uorescent Red and Green intensities,
respectively [15]. The CNVs function demonstrates
the following fundamental properties [16] which are
of importance for the estimator design:
◦ It is piecewise constant (PWC) and sparse with a

small number of alterations on a long base-pair
length.

◦ Its constant values are integer, although this prop-
erty is not survived in the log 2 Ratio.

◦ The measurement noise in the log R Ratio is highly
intensive and can be modeled as additive white
Gaussian.

In Fig. 1a, the lth segment al and (l + 1)th seg-
ment al+1 are represented with the noise standard de-
viations σl and σl+1 and segmental difference ∆l =
al+1−al corresponding to the breakpoint at k = 200.
The signal-to-noise ratios (SNRs) in the lth segment
and (l + 1)th segment can be specif ed as [17],

γ−l =
∆2

l

σ2
l

, γ+l =
∆2

l

σ2
l+1

(1)

for supposedly constant segmental values. Intensive
noise does not allow for an exact detection of the
breakpoints and precise estimates of segmental lev-
els. In fact, the white Gaussian segmental noise [16]
which strongly affects the estimation accuracy [18].
Jitter in the breakpoints complicates the problem as
has been shown in [19] and reproduced in Fig. 1b.

The estimation theory offers many approaches
for signals with the aforementioned properties in or-
der to provide denoising while preserving edges in
such signals. One can employ the wavelet-based
[20, 21, 22], robust smoothers[23, 24, 25, 26], adap-
tive and time-variant smoothers[27, 28, 29, 30] and
forward-backward(FB) smoothers forward-backward
[31, 32].

Although the skew discrete Laplace density
shown as SkL in Fig. 1b [33] [13] can approxi-
matethe jitter distribution [19] in the breakpoints , the
Laplace-based distribution has appeared to be accu-
rate enough only for the SNR values exceeding unity
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n

Figure 1: Simulated CNVs with a single breakpoint at
n = 200 and segmental standard deviations σl and σl+1

corresponding to SNRs γ−

l
= γ+

l
= 0.9: (a) measurement

and (b) jitter distribution. Here, ML (circled) is the jitter
pdf obtained experimentally using a ML estimator via a his-
togram over 50× 103 runs, SkL (solid) is the Laplace dis-
tribution, and MBA (dashed) is the proposed Bassel-based
approximation.

[18]. Otherwise, the Laplace distribution becomes too
rough when the SNR is low, γ±l < 1, and when it is
extremely low, γ±l ≪ 1.

Accordingly, the conf dence masks created based
on the Laplace distribution narrow possible bounds of
the estimated chromosomal changes and cannot eff -
ciently be used to improve the estimates. A more cor-
rect probabilistic model of jitter in the breakpoints is
thus required.

2 Jitter Distribution in the Break-
points

In this section we propose and analyse a new approx-
imation to f t measurement data equally well for arbi-
trary segmental SNRs.

2.1 Approximation with discrete skew
Laplace distribution

In order to derive the jitter distribution, the following
supposition was made in [34, 11]. Suppose that all of
the probes to the left of the breakpoint belong to the
segment al and all of the probes to the right from the
breakpoint belong to the segment al+1. Otherwise, the
probability that one or more probes belong to another
segment represents the jitter probability. It has been
shown in [34, 11] that, under such a supposition, jit-
ter in the breakpoints of the CNVs measured in white

Gaussian noise can be approximated with the discrete
skew Laplace probability density function (pdf) re-
cently derived in [35],

p(k|dl, ql) =
(1− dl)(1− ql)

1− dlql

{

dkl , k > 0 ,

q
|k|
l , k 6 0 .

(2)
Several properties have been reveled with an ex-

tensive investigation of pdf (2) in applications to the
CNVs-like signals measured in white Gaussian noise
in [34] as the following:

• Density (2) is reasonably accurate if the SNRs
exceed unity, γ−l , γ

+

l > 1, and highly accuracy
for γ−l , γ

+

l ≫ 1.

• It is also reasonably accurate if at least one of the
segmental SNRs exceed unity, γ−l > 1 or γ+l >

1, and highly accuracy if γ−l ≫ 1 or γ−l ≫ 1.

• The approximation error is large when γ−l , γ
+

l <

1 and can be unacceptable if γ−l , γ
+

l ≪ 1.

An overall conclusion which can be made follow-
ing [17, 18] is that only easily seen breakpoints can be
f t with the Laplace distribution (2). The Laplace dis-
tribution can be useless in making any decision about
the CNVs structures via the estimates if the chromo-
somal changes are not brightly pronounces. A more
correct jitter distribution is thus required.

2.2 Approximation based on modified Bessel
functions

Modern technologies such as the SNP still do not
allow for multiply repeated probes of chromosomal
changes in short time that makes it impossible to learn
the jitter distribution experimentally. We therefore
provide extensive long-term simulations of the CNVs
probes in white Gaussian noise environment and learn
their statistical properties. To this end, we generated
several measurements of length M with one break-
point n̂l at k = 200 and two neighboring segments
with known changes al and al+1 as shown in Fig.1a.
The standard deviations σl and σl+1 of the segmental
white Gaussian noise were set for the given SNR (1).

To detect the breakpoint, we use the ML esti-
mator which is based on the Ordinary Least Squares
(OSL). The MSE in the ML estimate is minimized for
the stepwise CNVs signal, in which al, al−1, and the
breakpoint location are used as variables. The break-
point location is detected when the MSE in the ML
estimate reaches a minimum.

In our simulation, detection of the breakpoint lo-
cation was repeated 50×103 times for each generated
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noise sequence with a constant SNR. The histogram
was plotted as a number of the events in the k scale
for each SNR. In order to avoid ripples, such a proce-
dure has been repeated 9 times and the estimates were
averaged. Normalized for a unit area, the histogram
was accepted as the experimentally def ned jitter pdf
as shown in Fig.1b with circles.

A complete picture of the experimentally def ned
one-sided jitter pdf for equal SNRs in each segment is
shown in Fig. 2. As can be concluded by analysing
this f gure, the Laplace-based distribution (2) does not
f t the true histogram over all k and another approach
is required which we will consider next.

2.2.1 Modified Bessel functions
A preliminary analysis has shown that, among avail-
able special functions, the modif ed Bessel function of
the second kind K0(x) and zeroth order is a most good
candidate to f t the experimentally measured densities
shown in Fig. 2. In our approximation, we use the
following form of K0(x),

K0[x(k)] =

∞
∫

0

cos[x(k) sinh t] dt

=

∞
∫

0

cos[x(k)t]√
t2 + 1

dt > 0 , x(k) > 0 ,(3)

in which variable x(k) depends on index k which rep-
resents a discrete departure from the assumed break-
point location (see Fig. 1b). Because K0[x(k)] is
a positive-valued for x(k) > 0 smooth function de-
creasing with x to zero, we use it to approximate the
measured probability densities shown in Fig. 2.

2.2.2 Approximation

In order to use (3) as an approximating function

B(k|γ) = K0[x(k)] (4)

conditioned on γ for the one-sided jitter probability
densities shown in Fig. 2, we represent a variable x
via k as x(k, γ) = ln(Φ(k, γ)) in a way such that
small k > 0 correspond to large values of x and visa
versa. Among several candidates, it has been found
empirically that the following function Φ(k, γ) f ts the
histograms with highest accuracy,

Φ(k, γ) = (|k|+ 1)β+α|k|

[

1 +
√
γ

γ
− ǫ

]

, (5)

if to set γ = γ−l for k < 0, γ =
γ−

l
+γ+

l

2
for k = 0,

and γ = γ+l for k > 0, and represent the coeff cients

α(γ), β(γ), and ǫ(γ) as

α(γ) = a0γ + a1 , (6)
β(γ) = γ(b0γ

b1 + a0) + b2 , (7)
ǫ(γ) = c0γ

c1 + c2 . (8)

where a0 = 0.02737, a1 = −4.5 × 10−3, b0 =
0.3674, b1 = −0.3137, b2 = 0.8066, c0 = 0.8865,
c1 = −1.033 and c2 = −1.233 were found in the
mean square error (MSE) sense. These values were
found in several iterations until the MSE reached a
minimum.

Table 1: MSEs produced by Laplace-based (2) and
Bessel-based (4) approximations.

γ MSE by (2) MSE by (4)

0.1 7.6e−5 1.6e−6

0.2 7.7e−5 8.6e−7

0.3 7.5e−5 4.7e−7

0.5 6.6e−5 3.5e−7

0.7 5.9e−5 2.2e−7

0.9 5.3e−5 1.57e−7

1.37 4.1e−5 1.5e−7

In Table 1, we give the MSEs produced with the
approximation function B(k) in a comparison with
the MSEs produced using the Laplace-based approx-
imation (2). As can be seen in Fig. 1a, the approxi-
mation provided via B(k) is much more accurate than
(2) for any reasonably small γ (see Table 1).

3 Probabilistic Masks

3.1 Masks for Bessel-based approximation
It follows from Fig. 1 that, in view of large noise,
estimates of the CNVs may have low conf dence, es-
pecially with small SNR γ 6 1. Thus, each estimate
requires conf dence boundaries within which it may
exist with a given probability. The problem one faces
here is coupled with the fact that, having a single chro-
mosomal probing, we never know if the estimate is
most probable or less probable regarding an actual un-
known picture. This is well illustrated in Fig. 2 in [33]
to show that the breakpoint can be detected in a wide
range and far from an actual location if to repeat prob-
ing. In other words, some segmental levels and break-
points can be detected by an estimator close to actual
ones, whereas some others not. Even so, with no ad-
ditional information, there is no other way but to f nd
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Figure 2: Experimentally def ned one-sided jitter probability densities (dotted) of the breakpoint location for equal segmental
SNRs γ in the range of M = 400 points with a true breakpoint at n = 200. The experimental density functions were found
using the ML estimator. The histogram was plotted over 50 × 103 runs repeated 9 times and averaged. Approximations
(continuous) are provided using the proposed Bessel-based approximation depicted as MBA.

the conf dence boundaries and probabilistic masks for
these estimates. Below, we will follow this approach
referring to [13, 33].

Given an estimate âl of the lth segmental level in
white Gaussian noise, the probabilistic upper bound-
ary (UB) and lower boundary (LB) can be specif ed
for this estimate for the given conf dence probability
P (ϑ) in the ϑ-sigma sense as [13]

âUB
l

∼= âl + ǫ = âl + ϑ

√

σ2
j

Nl

= âl + ϑσ̂l , (9)

âLBl
∼= âl − ǫ = âl − ϑ

√

σ2
j

Nl

= âl − ϑσ̂l .(10)

where ϑ indicates the boundary wideness in terms of
the segmental noise variance σ̂l on an interval of Nl

points, from n̂l−1 to n̂l − 1.
Assuming that the UB mask BUB

l and LB mask
BLB
l for the Bessel-based approximation can be

formed using the same equations as for the Laplace
distribution. For the jitter probabilistic left boundary
JBL
l and right boundary JBR

l only need be replaced
the Bessel-based approximation instead of Laplace
distribution using the equations def ned in [36]. In
doing so, we f rst suppose that the Laplace pdf (2) is
equal to the approximating function Bl(k) at k = 0,

p(k = 0|dl, ql) = Bl(k = 0) , (11)

that gives us Bl(k = 0) = 1

φl

. Next, we def ne the
probabilities PB(Al) at k = −1 and PB(Bl) at k = 1
as

PB(Al) =
Bl(k = 0)

Bl(k = −1) +Bl(k = 0)
, (12)

PB(Bl) =
Bl(k = 0)

Bl(k = 1) +Bl(k = 0)
. (13)

We then substitute (12) and (13) into ξl,µl, φl, κl
and νl def ned in [35]. That allows us to def ned in the
ϑ-sigma sense if to specify the right-hand jitter kBRl

and left-hand jitter kBLl by , respectively [36],

kBRl =

⌊

νBl
κBl

ln
1

ξBl(k = 0)

⌋

, (14)

kBLl =

⌊

νBl κ
B
l ln

1

ξBl(k = 0)

⌋

. (15)

where ⌊x⌋ means a maximum integer lower than or
equal to x. Note that functions (14) and (15) were ob-
tained in [36] by equating (4) to ξ(Nl) = erfc(ϑ/

√
2)

and solving for kl.
We f nally def ne the jitter left boundary JBL

l and
right boundary JBR

l as, respectively ,

JBL
l

∼= n̂l − kBRl , (16)
JBR
l

∼= n̂l + kBLl , (17)
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Figure 3: Probes of the 1st chromosome taken from
“BLC B1 T45.txt” around the breakpoint i18: (a) Mea-
surements and estimates with segmental SNRs γ−

18 =
0.708 and γ+

19 = 0.789, (b) segmental Gaussian densities
for σ6 and σ7, and (c) Laplace density and Bessel-based
approximation for jitter in the breakpoint.

and use in the algorithm [13] previously designed for
the conf dence masks based on the Laplace distribu-
tion.

By combining (9) and (10) with (16) and (17), the
probabilistic masks can be formed as shown in [13]
to bound the CNV estimates in the ϑ-sigma sense for
the given conf dence probability P (ϑ). An important
property of these masks is that they can be used not
only to bound the estimates and show their possible
locations on a probabilistic f eld [13, 33], but also to
remove supposedly wrong breakpoints. Such situa-
tions occur each time when the masks reveal double
UB and LB uniformities in a gap of three neighbour-
ing detected breakpoints. If so, then the unlikely ex-
isting intermediate breakpoint ought to be removed.

4 Testing Estimates Obtained Using
SNP Array

In order to demonstrate eff ciency of the Bessel-based
probabilistic masks formed in Section 3 and get prac-
tically useful results, in this section we employ the
probes available using the modern SNP array tech-
nology and the CNV estimates obtained by differ-
ent methods. We test the estimates by the proposed
Bessel-based masks and old Laplace-based masks
[13] in order to show a difference for the given conf -
dence probability.

a)

b) c)

Figure 4: Probes of the 1st chromosome taken from
“BLC B1 T45.txt” around the breakpoint i20: (a) Mea-
surements and estimates with segmental SNRs γ−

20 =
0.038 and γ+

21 = 0.034, (b) segmental Gaussian densities
for σ20 and σ21, and (c) Bassel-based approximation of the
breakpoint pdf.

4.1 Confidence of the Detected Breakpoints

To testing practical estimates for the conf dence in the
breakpoint detection, we employ the SNP array chro-
mosomal measurements [10] which are available from
http://bioinfoout.curie.fr/diagup projects/snp−gap/.
First, we test the estimates îl of the breakpoint
locations and segmental levels âl which are obtained
in [37, 38] using the circular binary segmentation
(CBS) algorithm. The database processed correspond
to the 1st chromosome in “BLC−B1−T45”. Figure
3a shows a zoomed sample which represents probing
using the 300K Illumina SNP array.

The measurements are normalized and plotted in
the Log R Ratios (LRRs) scale centered at zero.

We f rst select in Fig. 3a a part of probes around
the breakpoint î18 with two estimated segmental lev-
els â18 and â19. Segmental Gaussian densities are
shown in Fig. 3b and we notice the segmental differ-
ence is ∆ = â19−â18 = −0.2705. Figure 3c sketches
the Laplace density and proposed Bessel-based ap-
proximation computed for the breakpoint î18. As
can be seen, the departure from the breakpoint is ac-
companied with an increasing difference between the
Laplace and Bessel-based densities, especially when
k ≫ 1.

Another example is shown in Fig. 4 for the probes
taken around the breakpoint î20 with two estimated
segmental levels â20 and â21. A specif c of this chro-
mosomal section is that the segmental differences are
very small, ∆ = â20 − â21 = 0.0592, and such that
the Laplace distribution cannot be applied in view of
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imaginary values. In turn, the Bessel-based approxi-
mation serves well as shown in Fig 4c.

4.2 Testing Estimates by Confidence Masks

Our purpose now is to test the complete CNV esti-
mates by the probabilistic masks. Specif cally, we
employ the probes of the 1st chromosome available
from “BLC B1 T45.txt” obtained using the SNP ar-
ray technology.

Inherently, the more accurate Bessel-based ap-
proximation extends the jitter probabilistic boundaries
with respect to the Laplace-based ones, especially for
low SNRs. We illustrate it in Fig. 5, where the es-
timates of the 1st chromosome were tested by BUB

l ,
BLB
l , LUB

l , and LLB
l for ϑ = 3 (conf dence probabil-

ity P = 99.73%).
In Fig. 6, we show masks BUB

l and BLB
l placed

in the vicinity of segment â18 for several conf dence
probabilities: ϑ = 0.6745 (P = 50%), ϑ = 1
(P = 68.27%), ϑ = 2 (P = 95.45%), and ϑ = 3
(P = 99.73%). What the masks suggest here is that
the CNV evidently exists with high probability, but the
segmental levels and the breakpoint locations cannot
be estimated with high accuracy, owing to low SNRs.

It also worth emphasizing on a special case when
the masks LUB

l and LLB
l are not able to conf rm or

deny an existence of segmental changes with high
probability, owing to an inability of computing the
Laplace-based masks for extremely low SNRs. Fig-
ure 7 and Fig. 8 illustrate such situations. Just on the
contrary, the masks BUB

l and BLB
l can be computed

for any reasonable SNR.
A conclusion that can be made based on the re-

sults illustrated in Fig. 5 - Fig. 8 is that the Bessel-
based probabilistic masks can be used to improve es-
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masks placed around the seg-

mental level a18 for several conf dence probabilities [13].
Here, the CNV exists with high probability, but the seg-
mental levels and the breakpoint locations cannot be esti-
mated with high accuracy.
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timates of the chromosomal changes for the required
probability that we do in the next section.

5 Conclusion
The proposed Bessel-based approximation of the jit-
ter distribution in the breakpoints is more accurate
than the Laplace distribution justif ed earlier. For low
and extra low SNR values often observed in probes of
small chromosomal changes this is particularly true.
The conf dence probabilistic masks formed in this pa-
per for the Bessel-based approximation give a more
accurate locations of chromosomal changes on a prob-
abilistic f eld. These masks argue that the CNV esti-
mates may be improved when the SNR reaches values.
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