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Abstract: - Steel frame structures are widely used in the fields of mechanics and construction, such as in 

factories and workshops with many different sizes and structures. Therefore, it is necessary to calculate the 

strength, stiffness, and stability of the frame structure, thereby determining the critical size and critical force 

that a structure can withstand. However, in reality, there are sometimes cyclical loads such as vibrations caused 

by compactors, vibrations caused by impacts, or by machines operating in the factory; in such cases, if the 

oscillation frequency of the load coincides with the free oscillation frequency of the frame, resonance may 

occur, which has a very harmful effect on the structure. Therefore, calculating and determining the oscillation 

frequency and the specific oscillation form of the frame structure will be the basis for avoiding resonance; or 

taking remedial measures when it occurs. In this study, the finite element method is used to determine the 

natural oscillation frequency and draw the corresponding natural oscillation forms of two-roof steel frames. In 

addition, the influence of geometric dimensions on the natural vibration mode of the beam is also calculated in 

this study. The calculation results can be used in the future to design structures with two-roof steel frame 

models. 
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1  Introduction 
Steel frame structures are widely used in the fields of 

mechanics and construction, such as in factories and 

workshops with many different sizes and structures. 

With the characteristics e.g., simple, light, short 

construction time, easy to change, repair, and at the 

same time environmentally friendly while still 

ensuring safety; therefore, steel frame structures are 

quite popular today. Steel frame structures are also 

used to build houses in civil works with many 

outstanding advantages compared to other types of 

structures. To ensure safety in use, the structure 

needs to be durable enough, hard enough, and stable, 

and at the same time, it is necessary to determine the 

frequency and form of their oscillation to avoid 

resonance, [1], [2], [3].  

Metal frame structures are usually made of high-

strength steel or alloy steel, which are common 

materials and easy to buy on the market; therefore, 

they are convenient for repair, maintenance, or 

replacement. Material parameters including elastic 

modulus (E), Poisson's ratio (), and density () are 

usually determined, [4], [5]. Steel frames are usually 

made from shaped steel (I-beams, angle steel, or 

trough steel), manufactured in modules, and 

standardized so that the cross-sectional parameters of 

the structure have been determined, [4], [6].  

These parameters are essential to calculate frame 

structures in order to determine strength, stiffness, 

and stability as well as natural oscillation 

frequencies, [7]. There are many methods to 

calculate frame structures, such as the analytical 

method, [8], experimental method, simulation by 
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software [7], or use of finite element method, [9], 

[10], [11]. Nowadays, with the development of 

computational science, we can use the finite element 

method to calculate in a short time, easily change 

boundary conditions, large number of elements, 

complex structures, and can be used to simulate 

macroscopic structures or nanometer-sized structures 

to produce highly reliable calculation results, [9], 

[10], [11]. The stability of beam structures is studied 

by [12], [13], [14]; Structural vibrations are 

calculated by using the finite element method, [15]. 

The finite element method is used to calculate the 

free vibration of Z-shaped, L-shaped, and C-shaped 

structural beams, [16]; however, this method did not 

research two-roof steel frames. The two-roof steel 

frames are suitable for factories requiring wide 

beams. Therefore, in this study, we use the finite 

element method to determine the frequency and 

natural vibration mode of two-roof steel frames. In 

addition, the influence of geometric dimensions on 

the natural vibration mode of the beam is also 

calculated in this study. 

 

 

2 Finite Element Method for Frame 

 Problems 
The load-bearing characteristics of a flat frame are 

tensile-compressive, and bending, [17]. The axis of 

the frame is a zigzag line, thus the coordinate system 

attached to the cross-section of the frame changes 

depending on each frame section (Figure 1). Due to 

the load-bearing characteristics of the frame at each 

cross-section, there are 3 internal force components 

including axial force, shear force, and bending 

moment that make 3 deformation components such 

as axial force (u), deflection (v) and rotation angle of 

the cross-section (). To calculate the frame by the 

finite element method, using a two-node link 

element, each node will have 3 displacement 

components characterizing the deformation along the 

link axis, deflection, and rotation angle of the cross-

section, then the displacement of a two-node frame 

element    1 1 1 2 2 2, , , , , ,
T

e
u u v u v   is this 

displacement vector attached to the local coordinate 

system. 

Because when subjected to force, the parts of the 

frame are subjected to tension-compression, and also 

bending; therefore, according to the principle of 

additive effects, the frame problem corresponds to 

the central tension-compression problem plus the 

horizontal plane bending problem of the two-node 

link elements (Figure 2); the element stiffness matrix 

of the frame element will be expanded from the 

stiffness matrix of the bending beam element, taking 

into account the influence of the axial force, [10]. 

 

 
Fig. 1: Two-roof steel frames 

 

 
Fig. 2: 2-node frame element model. a) 2-node 

frame element, b) tension link element, c) plane 

transverse bending beam element 

 

The stiffness matrix of the tensile link element is 

determined as follows, [10]: 

                   
1 1

1 1

e e
e KN

e

A E
k

l

 
  

 

  

   
                  (1) 

 

In which, Ae is the cross-sectional area, Ee is the 

elastic modulus, le is the length of the link element. 

The stiffness matrix of the bending beam 

element is determined as follows, [10]: 

 

            
3

12 12

4 2
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2 4

e e

e e e e

e D
e ee

e e e e

l l

l l l lEJ
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 
 
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 
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   6       6

6       -6    

      

6       -6    

               (2) 

 

Because on a frame element, there are 2 nodes, 

each node has 3 displacements, the frame element 

stiffness matrix [ke]6x6 has a size of 6 rows, 6 

columns. Expanding the matrix of tension bar 

elements and bending beam elements and then 

adding them together, we get the frame element 

stiffness matrix, [10]: 
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The stiffness matrix of the frame element is 

calculated according to the formula in Eq. (3) for the 

local coordinate system attached to the element, the 

corresponding elements are shown in Figure 1. In the 

global coordinate system, the degrees of freedom are 

calculated corresponding to the local displacement 

through the rotation matrix [T], which is expressed  

as follows: 

cos sin 0 0 0

sin cos 0 0 0

0 1 0 0
[ ]

0 0 cos sin

0 sin

T

 

  


 



          0                  

                         0

   0                        0             

                     0       0 

             0        0  - cos 0

0 0 0

 
 
 
 
 
 
 
 
  

    

   0                                0     1

                 (4) 

 

In which,   is the angle; it is created by the axis 

of the frame element with the horizontal direction as 

shown in Figure 3. 

 

 
Fig. 3: Frame element in the global coordinate 

system 

 

The frame element stiffness matrix in the global 

coordinate system is: 

                [ ] [ ]T
e eKH KH

k T k T                        (5) 

 

From there, the overall stiffness matrix of the 

frame  
3 3

TT

Nx N
K  is the composite matrix of the 

element stiffness matrices, [9],  [10], where N is the 

total number of divided nodes in the system. The 

overall stiffness matrix is used to solve frame 

problems using the finite element method. 

The finite element equation system of the 

structural dynamics problem is established and 

written in matrix form as follows, [9],  [10]: 

                      [ ]
TTTTK q M q f                   (6) 

In which,        , , ,
TT TT

K M q f  are the overall 

stiffness matrix, overall mass matrix, displacement 

vector, and corresponding nodal force vector of the 

entire frame, respectively. In this research, damping 

is completely ignored. 

For the frame problem, the overall mass matrix 

is established from the frame element mass matrix. 

The method of establishing the element mass matrix 

of the frame element in the local coordinate system 

is similar to establishing the stiffness matrix through 

the tension bar element and the bending beam 

element, [9], [10]: 

  
2
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 (7) 

In which,   is the density; A is the cross-

sectional area of the frame; le is the element length. 

Similarly, for the stiffness matrix, from the 

element mass matrix in local coordinates, calculate 

the element stiffness matrix on the global coordinate 

system through the rotation matrix [T] as follows: 

               *[ ] [ ]T
e KH KH

m T m T   
            (8) 

 

If the right side    0f  , equation (6) is called 

the undamped natural oscillation equation of the 

dynamic system, [9],  [10], the solution in Eq. (8) is 

obtained as: 

     sinq q t    (9) 

 

In which,  q  is the amplitude vector of 

oscillation at the corresponding nodes. 

Calculating derivative (9) and substituting into 

(6) gets: 

              2[ ] 0
TTTTK M q        (10) 

 

Because the existence condition of the solution is not 

trivial; therefore Eq. (10) can be rewritten as: 

      2[ ] 0
TTTTK M          (11) 

 

If set 
2    , equation (11) has the form: 

       [ ] 0
TTTTK M        (12) 

 

The solution of equation (12) is the problem of 

finding the eigenvalues  ; the oscillation angular 
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frequency, calculated as    (rad/s), is the 

oscillation frequency of the system. Corresponding 

to the eigenvalues are the eigenvectors  , which are 

also the largest oscillation amplitudes at the nodes; 

the frames at the corresponding positions are the 

oscillation modes. The results of calculating the 

oscillation frequencies and oscillation modes of 

some frame structures are presented in the following 

section. 

 

 

3  Results and Discussion 
 

3.1   The Natural Vibration of the 

 Structural  Frame    

Problem parameters: A=10x10(mm); =1000kg/m3, 

E=100 GPa, number of frame elements N= 40, [9]. 

The results of determining the free oscillation 

frequency are shown in Table 1, the natural 

oscillation form is shown in Figure 4. 

 

Table 1. Frame oscillation frequency   

No. 

One end clamped, one end 

free,  (rad/s) 

One end 

clamped, 

one end  

supported, 

 (rad/s) 

Two 

clamped 

ends,  

(rad/s) 

Present 

results 

Reference 

[9] 

Error 

with 

[9], 

% 

Present 

results 

Present 

results 

1 34.41 34 1.2  71.55 460.3 

2 93.49 92 1.6  451.89 667.79 

3 460.33 455 2.3  652.5 1491.37 

 

In this study, the natural oscillation frequency of 

the frame was compared with the calculation result, 

[9],  when the frame has one clamped end; in Table 

1, the largest error is 2.3%, which shows that the 

calculation program is reliable. The data in Table 1 

shows that the natural oscillation frequency of the 

frame with two clamped ends is the largest when 

comparing the corresponding natural oscillation 

frequencies. In Figure 4, the first three oscillation 

modes of the frame were drawn corresponding to the 

boundary conditions. From there, we determined the 

regions with the largest free oscillation amplitude, 

specifically for the case of the frame with one free 

end or one end as a support. The free end and the 

support side have the largest oscillation amplitude; in 

contrast to the case of double-end clamps, the largest 

oscillation amplitude occurs on the inside depending 

on the specific oscillation form. If the oscillation 

form has one antinode, the midpoint of the frame 

segments has the largest amplitude. If there are two 

antinodes, the points with the largest amplitude are 

1/4 of the frame length away from the two ends.  

 

 
Fig. 4: Oscillation mode of the frame with different 

boundary conditions. a) One end clamped, one end 

free; b) One end clamped one end supported; c) two 

clamped ends 

 

3.2  Natural Oscillations of Two-Roof Steel 

 Frame  

The two-roof steel frame model is made from I-

shaped cross-section steel (Figure 5), with the 

following material parameters i.e., steel code I40, 

width b=400mm; h1=155mm, cross-sectional area 

A=71.4cm2, moment of inertia Jx= 18930 cm4, 

density =7857kg/m3, elastic modulus 

E=2.1x104kN/cm2, [4]; frame dimensions i.e., height 

H=4m; width B, tilt angle  (degree); frame 

elements are divided into equal lengths le= 0.04m; 

the frame is clamped at both ends. The results of 

calculating the frequency and dynamic form of this 

model are summarized in Table 2 and Figure 5. 

 
Fig. 5:   Oscillation of steel frame model, I-section. 

a) Frame model; b) mode of oscillation 
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The model of a two-roof steel frame made of I40 

steel, the corresponding material parameters, and the 

results of calculating the natural oscillation 

frequency in Table 2 and Table 3 show that the 

oscillation frequency of the frame is quite large. The 

natural oscillation forms of the steel frame are shown 

in Figure 5. From the 3 natural oscillation forms of 

this steel frame, it predicts that the positions or areas 

will have the largest oscillation amplitude when the 

frame oscillates. Corresponding to the first 

oscillation form, the corner point of the frame has 

the largest horizontal oscillation amplitude; with the 

second oscillation form, the top of the frame 

oscillates with the largest amplitude; in the third 

case, the largest oscillation amplitude is in the 

middle of the sloping roof. From that result, in the 

process of manufacturing and assembling the 

structure, it is necessary to have measures to 

strengthen the connection to create solidity for the 

structure. 

 

3.3 Effect of Width on the Natural 

 Frequency of the Beam 
 

Table 2. Effect of width B on the natural frequency 

of two-roof steel frames 

Mode 
H=4m, =150, width B changes 

TH21 

B=9m 

TH22 

B=12m  

TH23 

B=15m  

TH24 

B=20m 

TH25 

B=25m 

TH26 

B=30m 

1 108.58 89.44 75.31 57.78 44.73 34.91 

2 196.09 127.86 92.58 62.32 46.8 37.58 

3 472.51 293.65 202.81 129.17 94.72 75.89 

4 803.23 479.24 314.51 180.3 116.33 81.10 

5 936.93 848.25 588.93 347.03 228.1 161.89 

 

Table 2 shows the results of calculating the 

natural frequency of two-roof steel frames when H is 

fixed (H = 4m) and the tilt angle α is 15°, with the 

width B varying from 9m to 30m. 

Figure 6 shows that when the width B increases, 

the corresponding natural oscillation frequency of 

the frame decreases. This is completely consistent 

with reality. Due to this, when the distance between 

the beams increases, the stiffness of the structure 

decreases. Corresponding to the calculation cases, 

the graph has a large slope when the length of 

structure B changes from 9m to 30m; at this time, the 

width of the frame changes, and the corresponding 

natural frequency changes significantly. Meanwhile, 

when the size changes from 15m to 30m, the graph 

has a small slope; that means the influence of the 

width of the structure on the oscillation frequency is 

not obvious. For each structure, when the first 

natural oscillation frequency is the smallest, the 

value will increase correspondingly with the next 

natural frequency. 

 
Fig. 6: Variation of the first five natural frequencies 

with width B (H=4m, α=15°) 

 

3.4 Effect of Tilt Angle α on Natural 

 Frequency  
Table 3 shows the results of calculating the natural 

frequency of two-roof steel frames when the width B 

and height H are fixed, i.e., B = 9m, H = 4m, with 

the tilt angle α changing from 10° to 30°. 

 

Table 3. Effect of tilt angle α on the natural 

frequency of two-roof steel frames 

Mode  

B=9m; H=4m,  changes 

TH11 

=100 

TH12 

=150 

TH13 

=200 

TH14 

=250 

TH15 

=300 

1 110.94 108.58 105.64 102.10 97.92 

2 190.82 196.09 198.99 199.41 197.28 

3 481.5 472.51 459.99 444.14 425.12 

4 861.87 803.23 719.73 636.51 558.77 

5 957.82 936.93 937.59 937.99 933.88 

 

 
Fig. 7: Effect of tilt angle α on natural frequency of 

two-roof steel frames 

 

Figure 7 shows the influence of the roof slope 

angle of the structure while the width and height of 
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the structure have constant dimensions of B=9m; 

H=4m; during the calculation, the slope angle 

changes from α=100 to α =300. The calculation 

results show that the slope angle of the structure does 

not affect much the natural oscillation frequency of 

the frame structure, which is clearly shown when the 

graph shows the corresponding horizontal frequency 

lines. However, with the 4th frequency, when the 

slope angle increases, this frequency decreases; the 

relationship between the frequency and the slope 

angle of the frame through the linear equation has 

the form         =-15.5α +1025.2. In this case, the 

graph also clearly shows that the first oscillation 

frequency of the structures is the smallest, that value 

increases corresponding to the following oscillation 

frequencies. 

 

 

4  Conclusion 
By the  frame oscillation calculation program, the 

results have determined the natural oscillation 

frequency without damping, and the comparison 

results with [9],  show that the calculation program 

has high reliability. On the other hand, with the 

change of different boundary conditions, when the 

frame is clamped at both ends, the natural oscillation 

frequency is the largest. The oscillation form has 

been drawn corresponding to the boundary 

conditions, thereby showing the difference in 

amplitude and  shape when the frame oscillates. In 

this study, the natural oscillation frequency of the 

two-sided inclined roof steel frame model with an I-

shaped cross-section (code I40) has been determined. 

The corresponding natural oscillation forms have 

also been determined. By the natural oscillation 

form, the positions with the largest free oscillation 

amplitude have been predicted. We have studied the 

influence of the roof slope and the width of the 

structure on the natural oscillation frequency. The 

research results show that when the width of the 

structure changes from 9m to 15m, the natural 

oscillation frequency of the structures has a large 

difference (the slope of the graph is large); when the 

size changes from 9m to 30m, the natural oscillation 

frequency of the structure does not change much (the 

graph is almost horizontal). When changing the 

slope angle of the roof, the corresponding natural 

oscillation frequency does not change much. With 

the 4th oscillation frequency, when the slope angle 

changes, the oscillation frequency decreases; when 

linearizing the relationship between the slope angle 

and the fourth oscillation frequency, we have the 

equation =-15.5+1025.2. The results also 

demonstrate that the first natural oscillation 

frequency is the smallest, this value increases with 

the following oscillation frequencies. These results 

can be used in practice to design structures with two-

roof steel frame models. 
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