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Abstract: - In this work, the extension of the Milgrom and Shtrikman model to anisotropic composite materials 

containing n-layered hollow ellipsoidal inclusions, is presented. The effective properties of such materials are 

determined using the Green function techniques and interfacial operators. Here, the basic unit of the 

microstructure is a hollow system of contacting concentric ellipsoidal shells, each of which is made of one of 

the components. Space is packed with such units of different sizes, but the same proportions; the cavity within 

each such shell system is then packed with similar systems and this continues in an infinite nesting sequence. In 

the final configuration, the effective properties are inside and outside the basic unit of layered shells (n+1). For 

n=2 and in the case of isotropic material, it is shown that the effective compressibility covers all ranges of the 

Hashin-Strikman bounds. 
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1  Introduction 
The multilayered model is widely studied in the 

literature. [1] extend the composite sphere model, 

[2] to n-layered spherical inclusion and give an 

exact solution of the effective elastic properties. [3], 

studied the thermo-elastic behavior of such 

materials. [4], obtained a general form for the 

piezoelectric properties of 𝑛-layered ellipsoidal 

inclusion. [5] and [6], give another form of the 

problem of multicoated inclusion. 

Historically, [7] was the first to study 

theoretically the effect of an interphase on local 

stress and strain fields. More recently, [8] developed 

a new analytical method based on Green’s function 

technics [9] and interfacial operators [10] for the 

determination of effective elastic moduli of the so-

called four-phase model. 

Here, an extension of [11] is given for a 

composite consisting of hollow multilayered 

ellipsoidal inclusions. Space is packed with such 

units of different sizes, but the same proportions; the 

cavity within each such shell system is then packed 

with similar systems and this continues in an infinite 

nesting sequence. All phases are assumed 

homogeneous and anisotropic and perfect bonding is 

supposed at the interfaces. It shows that the obtained 

effective properties depend on the evaluation of the 

localization tensors. 

2  Micromechanical Modelling 
Following [11] and using the generalized self-

consistent scheme (GSCS) [12] the effective 

properties are inside and outside the composite 

inclusion (Fig.1). The elementary problem described 

in Fig. 1 is constituted by 𝑛 ellipsoidal shells 

surrounded by a matrix layer and the whole 

composite inclusion is embedded in the effective 

medium with unknown elastic properties 𝑪𝑒𝑓𝑓. In 

this composite inclusion, c1 = Ceff denotes the elastic 

properties of ellipsoidal inclusion and c2 , c3 ,...., ck 

,….cn+1 denote the elastic properties of outer shells. 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The (n+1) phase model 

 

The present model takes a step beyond the 

multi-layered ellipsoid model in that the equivalent 
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medium is both inside and outside the basic unit of 

layered shells (Figure 1).  

 

2.1 Integral Equation 
To solve this problem, the kinematical integral 

equation [9] linking the elastic local strain 𝜺(𝑥) with 

the global uniform strain 𝑬, is given by: 

 𝜺(𝑥) = 𝑬 − ∫ 𝞒(𝑥 − 𝑥′): 𝛿𝒄(𝑥′): 𝜺(𝑥′)𝑑𝑉′
𝑉

   (1) 

 

Where: 

                𝛿𝒄(𝑥) = ∑ (𝒄𝑘 − 𝒄𝑒𝑓𝑓)𝑛+1
𝑘=1                  (2) 

 

The average strain 𝜺𝐽 of composite inclusion in 

Fig.1 is given by: 

𝜺𝐽 = ∑ 𝑓𝑘𝜺
𝑘𝑛+1

𝑘=1                 (3) 

 

𝜺𝑘 and 𝑓𝑘 denote the average strain and volume 

fraction of phase k, respectively. 

The composite inclusion of volume 𝑉𝐽  consists of 

all phases, such that:  

                                   𝑉𝐽 = ∑ 𝑉𝑘
𝑛+1
𝑘=1     (4) 

 

On the other hand, 𝜺𝐽 is calculated by using 

equation (1): 

         𝜺𝐽 = 𝑬− 𝑻𝐽(𝒄𝑒𝑓𝑓): ∑ 𝑓𝑘𝛥𝒄
(𝑘/𝑒𝑓𝑓): 𝜺𝑘𝑛+1

𝑘=1    (5) 

 

The tensor 𝑻𝐽(𝒄𝑒𝑓𝑓) is deduced from [13]: 

𝑻𝐽(𝒄𝑒𝑓𝑓) =
1

𝑉𝐽
∫ ∫ 𝜞(𝑥 − 𝑥′)𝑑𝑉′𝑑𝑉

𝑉𝐽𝑉𝐽
      (6) 

 

Combining equations (3) and (5), one can give: 

𝑬 = ∑ 𝑓𝑘[𝑰 + 𝑻
𝐽(𝒄𝑒𝑓𝑓): 𝛥𝒄(𝑘/𝑒𝑓𝑓)]: 𝜺𝑘𝑛+1

𝑘=1   (7) 

 

The concentrations tensor 𝐴𝐽 for the composite 

inclusion and the concentrations tensors 𝑎𝑘 for each 

phase k can be introduced [14] so that: 

       𝜺𝐽 = 𝐴𝐽: 𝑬          (8) 

 

𝜺𝑘 = 𝑎𝑘: 𝜺𝐽   (9) 

 

with from equation (3): 

 

   ∑ 𝑓𝑘𝑎
𝑘𝑛+1

𝑘=1 = 𝑰                    (10) 

 

where I is the unit fourth order tensor. From 

equations (8) and (9), one can also write: 

   𝜺𝑘 = 𝐴𝑘: 𝑬   (11) 

 

where: 

   𝐴𝑘 = 𝑎𝑘: 𝐴𝐽    (12) 

 

Using equation (7), it comes: 

𝐴𝐽 = (𝑰 + 𝑻𝐽(𝒄𝑒𝑓𝑓): (∑ 𝑓𝑘𝛥𝒄
(𝑘/𝑒𝑓𝑓): 𝑎𝑘𝑛+1

𝑘=1 ))
−1

   (13) 

 

Equation (13) expresses a relation between 

tensors 𝐴𝐽 and 𝑎𝑘. To solve the problem, another 

equation should be derived. 

 

2.2  Interfacial Operators 
Perfect bonds between all phases are assumed and 

then the displacement and traction vectors are 

continuous through the interfaces. Using the elastic 

properties of two phases (k) and (k+1), the strain 

jump through their common interface is written as 

follows [10]: 

    𝜺𝑘+1(𝑥) − 𝜺𝑘(𝑥) = 𝑷(𝒄𝑘+1): (𝒄𝑘 − 𝒄𝑘+1): 𝜺𝑘(𝑥)  (14) 

 

𝑷(𝒄𝑘+1)  is the interfacial operator. 

 

For each level (k), Ω𝑘 = V1𝚄…𝚄V𝑘 denotes the 

volume of the composite formed by the phases 1 to 

k. Then, in order to solve the problem 𝜺𝑘(𝑥) is 

substituted by the averaged value 𝜺𝑘. Thus, by 

performing the average strain over the phase (k + 1) 

of volume V𝑘+1 denoted 𝜺𝑘+1, the following 

recurrence relation at each level (k) from eq. (14) is 

giving by: 

 𝜺𝑘+1 = (𝐼 + 𝑻𝑘+1(𝒄𝑘+1): (𝒄Ω𝑘 − 𝒄𝑘+1)) : 𝜺Ω𝑘 (15) 

 

where: 

       𝑻𝑘+1(𝒄𝑘+1) =
1

𝑉𝑘+1
∫ 𝑷𝑘+1(𝒄𝑘+1)𝑑𝑉
𝑉𝑘+1

    (16) 

 

and: 

       𝜺Ω𝑘 = ∑
𝑉𝑘

Ω𝑘

𝑘
𝑖=1 𝜺𝑖 =

∑ 𝑓𝑖
𝑘
𝑖=1 𝜺𝑖

∑ 𝑓𝑖
𝑘
𝑖=1

  (17) 

 

for 𝑛 = 2, 𝜺2 is given by: 

   𝜺2 = (𝐼 + 𝑻2(𝒄2): (𝒄1 − 𝒄2)): 𝜺1         (18) 

 

Tensor 𝑻𝑘+1(𝒄𝑘+1) is given by [15]: 

𝑻𝑘+1(𝒄𝑘+1) = 

 𝑻Ω𝑘(𝒄𝑘+1) −
∑ 𝑓𝑖
𝑘
𝑖=1

𝑓𝑖+1
[𝑻Ω𝑘+1(𝒄𝑘+1) − 𝑻Ω𝑘(𝒄𝑘+1)]      (19) 

 

where: 

𝑻Ω𝑘(𝒄𝑘+1) =
1

Ω𝑘
∫ 𝜞(𝒄𝑘+1)𝑑𝑉
Ω𝑘

        (20) 

 

𝑻Ω𝑘+1(𝒄𝑘+1) =
1

Ω𝑘+1
∫ 𝜞(𝒄𝑘+1)𝑑𝑉
Ω𝑘+1

        (21) 

 

From equation (15), the following form is obtained: 

𝜺𝑘+1 = 𝜺Ω𝑘 − 𝑻𝑘+1(𝒄𝑘+1): 𝛥𝒄(𝑘+1/Ω𝑘): 𝜺Ω𝑘   (22) 
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Where; 

             𝛥𝒄(𝑘+1/Ω𝑘) = 𝒄𝑘+1 − 𝒄Ω𝑘              (23) 

 

The Hooke’s law implies that: 

𝛥𝒄(𝑘+1/Ω𝑘): 𝜺Ω𝑘 =
∑ 𝑓𝑖𝛥𝒄

(𝑘+1/𝑖):𝜺𝑖𝑘
𝑖=1

∑ 𝑓𝑖
𝑘
𝑖=1

 (24) 

 

By using equations (17), (22) and (24), the 

expression of  𝑎𝑘+1 is obtained: 

    𝑎𝑘+1 =
∑ 𝑓𝑖 𝑤

(𝑘+1/𝑖): 𝑎𝑖𝑘
𝑖=1

∑ 𝑓𝑖
𝑘
𝑖=1

         (25) 

where: 

       𝑤(𝑘+1/𝑖) = 𝐼 − 𝑻𝑘+1(𝒄𝑘+1): 𝛥𝒄(𝑘+1/𝑖)      (26)  

 

Then, by recurrence, equation (25) is 

transformed into the following equation: 

 𝑎𝑘+1 =  𝑋𝑘+1:  𝑎1                     (27) 

 

with the recurrence relations for  𝑋𝑘+1: 

 𝑋𝑘+1 =
∑ 𝑓𝑖 𝑤

(𝑘+1/𝑖): 𝑋𝑖𝑘
𝑖=1

∑ 𝑓𝑖
𝑘
𝑖=1

                (28) 

 

Thus, it is sufficient to derive 𝑎1 to completely 

solve the problem. This is done by applying 

equation (10) such that: 

                         𝑎1 = (∑ 𝑓𝑘𝑋
𝑘𝑛+1

𝑘=1 )
−1

                  (29) 

 

 

3 Framing of Any Compressibility by 

 [16] 
The composite under consideration is an isotropic 

material consisting of isotropic matrix containing 

isotropic spherical and coated inclusions. The 

resulting four phase model is shown in Fig.2 where 

the inclusion 1, the interphase 2 and the matrix layer 

3 are characterized by the radii 𝑟1, 𝑟2, and 𝑟3, 

respectively. The interphases 2 and 3 are 

characterized by the elastic moduli 𝑐2, and 𝑐3 

respectively. The inclusion and the equivalent 

homogeneous medium are characterized by the 

effective elastic moduli 𝑪𝑒𝑓𝑓. 

 

 

 

 

 

Fig. 2: Four-phase model 

The volume fraction of the sphere occupied by 

the components [11] is given by: 

     𝑝 =
𝑟3
3−𝑟1

3

𝑟3
3               (30) 

 

The special case 𝑝 = 1 is the well-known 

coated sphere model. Another special case is 𝑝 ≪ 1 

(very thin shells). 

The volume fractions of phases 1 and 2 are, 

respectively: 

                            𝑓1 =
𝑟1
3

𝑟3
3             (31) 

 

  𝑓2 =
𝑟2
3−𝑟1

3

𝑟3
3               (32) 

 

The effective elastic moduli [8] of the 

composite of Fig.2 are given by: 

𝑪𝒆𝒇𝒇 = 𝒄3 + 𝑓1(𝑪
𝑒𝑓𝑓 − 𝒄3): 𝑨(1) + 𝑓2(𝒄

2 − 𝒄3): 𝑨(2)(33) 

 

For isotropic elastic bodies, the tensors 𝒄2, 𝒄3, 

𝑪𝑒𝑓𝑓, 𝑨(1) and 𝑨(2) are written as sum of volumetric 

and deviatoric parts 𝑱 and 𝑲 and are given by the 

following relations: 

𝒄2 = 3𝑘2𝑱 + 2𝜇2𝑲  (34) 

 

𝒄3 = 3𝑘3𝑱 + 2𝜇3𝑲  (35) 

 

         𝑪𝑒𝑓𝑓 = 3𝑘𝑒𝑓𝑓𝑱 + 2𝜇𝑒𝑓𝑓𝑲                (36) 

 

𝑨(1) = 𝑀(1)𝑱 + 𝐷(1)𝑲                 (37) 

 

𝑨(2) = 𝑀(2)𝑱 + 𝐷(2)𝑲                   (38) 

 

where 𝑘 and 𝜇 are bulk and shear moduli and 

the tensors 𝑱 and 𝑲 result from the decomposition of 

the unit tensor 𝑰 such that: 

       𝑰 = 𝑱 + 𝑲   (39) 

 

Basing on the forgoing equations, one can 

express the effective compressibility as follow: 

𝑘𝑒𝑓𝑓 = 

  𝑘3 + 𝑓1(𝑘
𝑒𝑓𝑓 − 𝑘3):𝑀

(1) + 𝑓2(𝑘2 − 𝑘3):𝑀
(2)  

(40) 

 

𝑀(1) and 𝑀(2) denote the volumetric parts of 

tensors 𝑨(1) and 𝑨(2), respectively, and are given 

by: 

𝑀(1) = 𝑚1𝑀           (41) 

 

𝑀(2) = 𝑚2𝑀           (42) 

 

Where: 

   
 

Effective medium 

𝑟1 

𝑟2 
𝑟3 
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= (
1 +

3𝑓1(𝑘
𝑒𝑓𝑓−𝑘𝑒𝑓𝑓)

3𝑘𝑒𝑓𝑓+4𝜇𝑒𝑓𝑓
𝑚(1)

+
3𝑓2(𝑘2−𝑘

𝑒𝑓𝑓)

3𝑘𝑒𝑓𝑓+4𝜇𝑒𝑓𝑓
𝑚(2) +

3𝑓3(𝑘3−𝑘
𝑒𝑓𝑓)

3𝑘𝑒𝑓𝑓+4𝜇𝑒𝑓𝑓
𝑚(3)

)

−1

        

(43) 

  𝑚(1) =

(
𝑓1 + 𝑓2

4𝜇𝑒𝑓𝑓+3𝑘𝑒𝑓𝑓

3𝑘2+4𝜇2

+
𝑓3

𝑓1+𝑓2
(𝑓1

4𝜇3+3𝑘
𝑒𝑓𝑓

3𝑘3+4𝜇3
+ 𝑓2

4𝜇3+3𝑘2

3𝑘3+4𝜇3

4𝜇2+3𝑘
𝑒𝑓𝑓

3𝑘2+4𝜇2
)
)

−1

 (44) 

 

  𝑚(2) =

(
𝑓2 + 𝑓1

3𝑘2+4𝜇2

4𝜇2+3𝑘
𝑒𝑓𝑓

+
𝑓3

𝑓1+𝑓2
(𝑓1

4𝜇3+3𝑘
𝑒𝑓𝑓

3𝑘2+4𝜇3

3𝑘2+4𝜇2

4𝜇2+3𝑘
𝑒𝑓𝑓 + 𝑓2

4𝜇3+3𝑘2

3𝑘2+4𝜇3
)
)

−1

 (45) 

 

   𝑚(3) =      

{
 
 

 
 𝑓1 (

𝑓1

𝑓1+𝑓2

4𝜇3+3𝑘
𝑒𝑓𝑓

3𝑘3+4𝜇3
+

𝑓2

𝑓1+𝑓2

4𝜇3+3𝑘2

3𝑘3+4𝜇3

4𝜇2+3𝑘
𝑒𝑓𝑓

3𝑘2+4𝜇2
)
−1

+𝑓2 (
𝑓1

𝑓1+𝑓2

4𝜇3+3𝑘
𝑒𝑓𝑓

3𝑘3+4𝜇3

4𝜇2+3𝑘2

3𝑘𝑒𝑓𝑓+4𝜇2
+

𝑓2

𝑓1+𝑓2

4𝜇3+3𝑘2

3𝑘3+4𝜇3
)
−1

+𝑓3 }
 
 

 
 
−1

      

(46) 
 

For a material having 𝑘2 = 8𝐺𝑃𝑎, 𝜇2 = 4𝐺𝑃𝑎, 

𝑘3 = 1𝐺𝑃𝑎, 𝜇3 = 0.5𝐺𝑃𝑎 and varying p between 0 

and 1, an exact model that cover the whole range of 

allowed values of the effective compressibility is 

given in Fig.3. 

 

 
Fig. 3: Framing of any compressibility by [16] 

 

 

4  Conclusion 
The expression for the effective properties of a new 

model for anisotropic composite materials 

containing 𝑛 -layered hollow ellipsoidal inclusions, 

is derived. The obtained results present the 

extension of the Milgrom and Shtrikman model who 

gave an expression for the effective response matrix 

of isotropic composites. 

Analytical formulations obtained using the 

integral equation, interfacial operators and the 

obtained effective properties require the estimation 

of the strain localization tensors in each phase of the 

multi-layered inclusion. It is shown that any 

compressibility of isotropic material lies within the 

Hashin-Shtrikman bounds. 
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