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Abstract: This paper deals with the analytical solution of the non-homogeneous, orthotropic right-angle triangle
cross-section. The shear moduli of the elastic materials are linear function of the elastic materials are linear
functions of the cross-sectional coordinates. Explicit formulas are given for Prandtl’s stress function, torsion
function, shearing stresses, and torsional rigidity. The formulation of the solution is based on Saint-Venant’s
theory of uniform torsion and the application of Prandtl’s stress function.
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1 Introduction
The comprehensive understanding of uniform torsion 
often denoted as Saint-Venant’s torsion or uniform 
torsion theory has been thoroughly elucidated in the 
existing literature, as evidenced by references, [1], [2],
[3], and,[4]. Building upon this theoretical founda-
tion, a significant contribution to the field is found 
in the thesis work documented in, [5], where numer-
ical analyses of torsion for both homogeneous and 
non-homogeneous rectangular cross-sections are con-
ducted with the aid of the finite-volume method. This 
work extends the applicability of torsional analysis to 
diverse cross-sectional geometries.

Furthermore, the exploration of torsional behav-
ior extends to arbitrarily shaped orthotropic beams in 
a journal paper documented in, [6]. Here, a hybrid 
finite element approach is employed to simulate the 
torsion of orthotropic beams with irregular shapes, 
adding a layer of complexity and realism to the analy-
sis. The utilization of such advanced numerical meth-
ods showcases a commitment to capturing the nu-
ances of real-world structural behavior and highlights 
the versatility of these techniques in accommodating 
various geometrical and material complexities. Over-
all, these references collectively contribute to the ex-
panding body of knowledge in the realm of torsional 
analysis and simulation techniques.

This paper constitutes a significant contribution to 
the understanding of Saint-Venant’s torsion, as it in-
troduces a novel analytical solution tailored for the 
torsional analysis of non-homogeneous orthotropic 
cross sections specifically characterized by a right-
angled triangle shape. In this distinctive study,
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Fig. 1: Orthotropic non-homogeneous crossection

the principal directions of orthotropy are skillfully 
aligned parallel to the hypotenuse of the right-angled 
triangle, introducing a unique and specialized geo-
metric configuration that reflects the intricacies of 
real-world structural elements.

To provide a visual context for the discussed cross-
section, Figure 1 is included, offering a detailed il-
lustration of the considered geometry. This depic-
tion serves as a valuable reference for readers, aid-
ing in the comprehension of the geometric intrica-
cies under examination. By focusing on the torsion 
of a right-angled triangle with non-homogeneous 
orthotropic properties, this paper delves into a 
specific and nuanced aspect of structural mechanics, 
enhanc-ing our understanding of torsional behavior in 
materi-als with varying properties across different 
directions.

The analytical solution proposed in this study 
not only contributes to the theoretical framework of 
Saint-Venant’s torsion but also opens avenues for 
further exploration and comparison with numerical
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methods. The specialized nature of the considered 
cross-section adds a layer of complexity to the anal-
ysis, making the findings particularly relevant for ap-
plications in which right-angled triangles with non-
uniform orthotropic properties play a crucial role. 
Overall, this paper enriches the existing literature by 
offering a detailed and tailored approach to the anal-
ysis of torsional behavior in non-homogeneous 
orthotropic structures.

Lekhitskii’s works have extensively explored so-
lutions for Saint-Venant’s torsion, particularly empha-
sizing orthotropic and non-homogeneous cross sec-
tions in various beam configurations, as documented 
in references, [1], [2]. In alignment with this 
theme, the present paper takes a focused approach, 
addressing Saint-Venant’s torsion specifically within 
the context of non-homogeneous orthotropic right-
angled triangles. An essential aspect of the formu-
lation involves representing the shear moduli of the 
cross-section, denoted as

Gx(x) = gx x, Gy(y) = gy y, (1)

where gx and gy capture the spatial variation along the 
x-axis and y-axis, respectively. This representation
underscores the non-uniform and orthotropic nature
of the cross-sectional material properties.

Uniquely, this paper contributes to the field by pro-
viding an analytical solution to Saint-Venant’s torsion 
problem within the specific constraints of the consid-
ered non-homogeneous orthotropic right-angled tri-
angle cross-section. By doing so, it addresses a nu-
anced aspect of structural mechanics, offering in-
sights that are particularly relevant to scenarios in-
volving materials with varying properties along dif-
ferent axes. The analytical approach presented in this 
work serves as a valuable addition to the existing 
body of knowledge, enriching our understanding of 
torsional behavior in non-homogeneous orthotropic 
structures with specialized geometric configurations.

2 Governing equations
The torsion problem can be effectively expressed in 
the realm of stresses by employing the requisite equi-
librium equation. This equation finds exact satisfac-
tion through the stress function U = U(x, y). For 
a more comprehensive exploration of this approach, 
readers are encouraged to refer to the in-depth dis-
cussion provided in Lekhitskii’s book, as outlined in 
reference, [1].

In the context of solid orthotropic cross sections, 
the formulation devised by Prandtl gives rise to a spe-

cific boundary value problem, denoted by

∂

∂x

(
1

Gy(x, y)

∂U

∂x

)
+

∂

∂y

(
1

Gx(x, y)

∂U

∂y

)
= −2 (x, y) ∈ A, (2)

U(x, y) = 0 (x, y) ∈ A, (3)

where A is the cross-section of the beam, x and y are 
the cross sectional coordinates. Gx = Gx(x, y) and 
Gy = Gy(x, y) are the shear moduli of the orthotropic 
non-homogeneous cross-section, while U = U(x, y) 
is the Prandtl’s stress function of the considered solid 
cross-section.

This formulation encapsulates the intricacies of 
the torsional analysis within the framework of solid 
orthotropic materials. The boundary value problem 
serves as a critical element in delineating the condi-
tions and constraints that govern the stress function 
U , shedding light on the behavior of the material un-
der torsional loads. By delving into Prandtl’s formu-
lation, researchers and practitioners can gain valuable 
insights into the nuanced dynamics and responses ex-
hibited by solid orthotropic cross sections, contribut-
ing to a deeper understanding of torsional phenomena 
in this particular structural context.

From basic elasticity equations, the correspond-
ing non-vanishing shear stress components are τxz = 
τxz(x, y) and τyz = τyz(x, y) which can be obtained 
as, according to e.g., [1], [2], [5],

τxz = ϑ
∂U

∂y
, τyz = −ϑ

∂U

∂x
(x, y) ∈ A.

(4)
In equation (4) ϑ is the rate of twist. The torsional
rigidity of the cross-section is denoted by S its ex-
pression in terms of stress function U = U(x, y) is as
follows

S = 2

∫
A

U dA, (5)

S =

∫
A

[
1

Gx

(
∂U

∂x

)2

+
1

Gy

(
∂U

∂y

)2
]

dA. (6)

The connection between the torsion function ω =
ω(x, y) and stress function U = U(x, y) is described
with the following equations, for more details see, [1],
[2].

Gx

(
∂ω

∂x
− y

)
=

∂U

∂y
, Gy

(
∂ω

∂y
+ x

)
= −∂U

∂x

(x, y) ∈ A ∪ ∂A. (7)
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From equation (7) it follows thatω = ω(x, y) satisfies
the undermentioned boundary value problem

∂

∂x

[
Gx

(
∂ω

∂x
− y

)]
+

∂

∂y

[
Gy

(
∂ω

∂y
+ x

)]
= 0

(x, y) ∈ A, (8)

nxGx

(
∂ω

∂x
− y

)
+ nyGy

(
∂ω

∂y
+ x

)
= 0

(x, y) ∈ ∂A. (9)

The expression of the torsional rigidity S in terms of
ω = ω(x, y) can be obtained from equation (10) or
equation (11)

S =

∫
A

[
xGy

(
∂ω

∂y
+ x

)
− yGy

(
∂ω

∂x
− y

)]
dA,

(10)

S =

∫
A

[
Gx

(
∂ω

∂x
− y

)2

+Gy

(
∂ω

∂y
+ x

)2
]

dA.

(11)

3 Analytical  Solution
The boundary value problem, articulated by equa-
tions (1) and (2), lends itself to an analytical solution,
sought in the form of the expression

U(x, y) = C xy (bx+ ay − ab) (x, y) ∈ A ∪ ∂A.
(12)

Substituting equations (1) and (12) into equation
(2), we solve the unknown constant C

C = − gxgy
agy + bgx

, (13)

Therefore, the complete expression for the stress
function U(x, y) is determined as:

U(x, y) = − gxgy
bgx + agy

(bx2y+axy2−abxy). (14)

The application of the formulated stress function
leads to the derivation of shearing stresses, as repre-
sented by the following equations

τxz(x, y) = −ϑ
gxgy

bgx + agy
(bx2+2axy−abx), (15)

τyz(x, y) = ϑ
gxgy

bgx + agy
(2bxy + ay2 − aby). (16)

Furthermore, the shear stress resultant τz =
τz(x, y) is obtained from the following expressions

τz(x, y) =
√
τ2xz + τ2yz = ϑ

gxgy
bgx + agy

·√
(bx2 + 2axy − abx)2 + (2bxy + ay2 − aby)2

(x, y) ∈ A ∪ ∂A. (17)

This detailed analysis provides a systematic break-
down of the solution process, offering a clear under-
standing of the obtained expressions and their signif-
icance in characterizing the torsional behavior within 
the specified non-homogeneous orthotropic cross-
section.

Substitution equation (14) into the formula (4) 
gives

S =
gxgya

3b3

60(agy + bgx)
. (18)

The expression of the torsional function is obtained as
a solution of the system of partial differential equa-
tions (7). Solution of system of partial differential
equations (7) which satisfies the condition ω(0, 0) =
0 is as follows

ω(x, y) = − gy
agy + bgx

(
b

2
x2 − abx

)
+

gx
agy + bgx

(
2bxy +

a

2
y2 − aby

)
− xy

(x, y) ∈ A ∪ ∂A. (19)

4 Numerical  Example
This section provides a straightforward example to
demonstrate that the formulas are functional and ef-
fective in obtaining the precise solution for the torsion
of a non-homogeneous right-angled triangle. The nu-
merical example below incorporates the data used in
our illustration:

a = 0.8 [m], b = 0.35 [m],

gx = 5× 1010 [Nm−3], gy = 9× 1010 [Nm−3].

Figure 2 displays the contour lines of the stress func-
tion denoted asU = U(x, y). Upon applying formula
(12), the calculated result yields

S = 1.839 530 730× 107 [Nm2]. (20)

providing valuable insight into the system’s stress dis-
tribution based on the given stress function.

In Figure 3, the contours of the shearing stress re-
sultant, denoted as τz = τz(x, y), are illustrated, pro-
viding a visual representation of the distribution of
shearing stresses across the analyzed cross-section.
Simultaneously, Figure 4 displays the contour lines of
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Fig. 2: The contour lines of the stress function.

Fig. 3: The plots of contour lines of the shearing stress resultant.
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Fig. 4: The plots of the contour lines of the torsion function.

the torsional function ω = ω(x, y), offering insights 
into the torsional characteristics within the examined 
region.

For a more detailed exploration of the shear stress 
resultant, specifically along the x-axis within the 
range 0 ≤ x ≤ a, Figure 5 showcases the variation 
of τ(x, 0) as a function of x. This depiction allows 
a focused examination of the shear stress resultant 
concerning the horizontal position across the speci-
fied interval. Collectively, these figures contribute to 
a comprehensive understanding of the shearing and 
torsional behaviors within the system under investi-
gation.

5 Conclusion
This paper introduces a comprehensive analytical so-
lution for the uniform torsion analysis applied to a 
non-homogeneous orthotropic right-angled triangle 
cross-section. The analytical approach presented in 
this study serves as a valuable benchmark for val-
idating solutions derived through various numerical 
methods. Notably, it provides a means to assess the 
accuracy and reliability of results obtained using tech-
niques such as the finite element method, [6], fi-
nite difference method, [5], collocation method, and 
other numerical approaches commonly employed in 
the analysis of orthotropic non-homogeneous beams. 

By offering a closed-form analytical solution,

this work contributes to the validation and verifica-
tion processes in structural mechanics, allowing re-
searchers and practitioners to corroborate numerical 
findings against an established analytical framework. 
Such validation is crucial for ensuring the fidelity of 
numerical simulations and enhancing confidence in 
the results obtained through computational methods. 
The analytical solution proposed herein not only adds 
to the theoretical foundation of uniform torsion in 
non-homogeneous orthotropic materials but also fa-
cilitates a comparative analysis with numerical out-
comes, fostering a deeper understanding of the struc-
tural behavior of these specialized cross-sections.
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