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Abstract: - Increasing demand for the space operations, space industry turns its face to cost effective solutions. 

Small satellites, due to their size and cost, are receiving interest from many organizations. Two of most 

common sensors that are being used in nanosatellites are magnetometers and sun sensors. In this work, 

magnetometer and sun sensor measurements are fused together with the TRIAD algorithm to produce body 

angle estimation. Combining with gyroscopes measurements, an Extended Kalman Filter is used to estimate 

body angles, angular velocities, gyroscope and magnetometer biases. 
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1 Introduction 

Increasing usage of small satellites led to an 

increase in research about their hardware and 

software technologies. Attitude determination and 

control (ADC) is a key part for any type of mission 

[1]. It directly affects the mission success. Due to 

their size, sensor variety is considerably lower than 

regular size satellites. This fact is a challenge for 

ADC researchers. Commonly used sensors are used 

for body angle and angular velocity estimations and 

Euler angles are used to represent satellite attitude. 

Many different methods have been proposed for 

body angle estimation [9]. In this work, sun sensor 

and magnetometer are fed to the TRIAD 

algorithm to produce body angle 

estimations [2],[3],[4],[5],[8]. Combining with 

gyroscope measurements, these TRIAD outputs 

are then fed to an extended Kalman filter as 

measurements in order to estimate body angles, 

angular velocities, gyroscope and 

magnetometer biases. These estimated biases are 

fed back to sensor models for calibration. 

2. Equations of Motion
To define satellite motion, kinematic and dynamic  

equations are derived. In this paper, the DCM is 

constructed using 2-1-3 rotation. 

213 3 1 3A ( , , ) A ( )A ( )A ( )

cos sin 0 1 0 0 cos 0 sin

sin cos 0 0 cos sin 0 1 0

0 0 1 0 sin cos sin 0 cos

θ φ ψ = ψ φ θ

ψ ψ θ − θ     
     = − ψ ψ φ φ     
     − φ φ θ θ     

(2.1) 

After matrix multiplication, dcm has been derived. 

c c s s s c s c s s c s

c s s c s c c s s c c s

c s s c c

ψ θ + φ ψ θ φ ψ θ φ ψ − ψ θ 
 ψ φ θ − θ ψ φ ψ ψ θ + ψ θ φ 
 φ θ − φ φ θ 

(2.2) 

where c(.) and s(.) are cosine and sine functions 

respectively. From 2-1-3 rotation matrix, Euler 

angles can be extracted from matrix elements with 

equations below. 

A(1,2)
atan2

A(2,2)

 
 
 
 

ψ= (2.3) 
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A(3,1)
atan

A(3,3)

 
θ =  

 
 (2.4) 

( )A(3,2)cos
atan

A(2,2)

 − ψ 
φ =  

 
 (2.5) 

where atan and atan2 are both arctangent functions. 

atan2 is the arc tangent function with two arguments 

for complete coverage of four quadrants. 

 

2.1 Kinematic equations 
 

Obtaining a frame from another frame is possible 

with rotation matrices. Using the fact that angular 

velocities are additive, angle rates can be 

determined in terms of these velocities. Considering 

2-1-3 rotation, the initial frame rotates about the y 

axis by θ. Second rotation is about x′ by ϕ and final 

rotation is about w by ψ. Summing angular velocity 

vectors for each rotation [1] 

y x wω = θ + φ ′ + ψ
� �ɺ �

ɺɺ  (2.6) 

Taking the components of ω in u, v,w
r r r

 

v

u

w

yu x

yv x

u

v

yw wx

ω = θ + φ

θ + φ

θ +

′

ω = ′

ω = ′ + ψφ

�� �ɺ ɺ

�� �ɺ ɺ

�

�

�� �ɺ ɺ ɺ
�

 (2.7) 

In order to derive kinematic equations, (2.7) needs 

to be determined. yu,yv
r r r r

and yw
r r

can be calculated 

from DCM. y
r

indicates that second column of the 

DCM. 

yu cos sin= φ ψ
��

 (2.8) 

yv cos cos= φ ψ
��

 (2.9) 

yw sin= − φ
� �

 (2.10) 

For second rotation, R3(ψ)R1(ϕ) matrix needs to be 

calculated. Taking first column of the second 

rotation matrix 

cx u os′ = ψ
� �

 (2.11) 

sx v in′ = − ψ
� �

 (2.12) 

wx 0′ =
� �

 (2.13) 

Hence, angular velocity equations become 

u
cos sin cosω = θ φ ψ + φ ψɺ ɺ  (2.14) 

v
cos cos sinω = θ φ ψ − φ ψɺ ɺ  (2.15) 

w
sinω = −θ φ + ψɺ ɺ  (2.16) 

In matrix form, 

bo

cos sin cos 0

cos cos sin 0

sin 0 1

φ ψ ψ θ

ω = φ ψ − ψ φ

− φ ψ

  
  
  
     

ɺ

ɺ

ɺ

 (2.17) 

Taking inverse of the matrix, Euler angle rates can 

be determined in terms of angular velocities in body 

frame with respect to reference frame [1]. Rate 

equations are given below 

u vcos sinφ = ω ψ −ω ψɺ  (2.18) 

u v( sin cos )secθ = ω ψ + ω ψ φɺ  (2.19) 

u v wtan ( sin cos )ψ = φ ω ψ +ω ψ +ωɺ  (2.20) 

Rotations need to be defined with respect to inertial 

frame. For this reason, a transformation matrix is 

needed. Using the relation below, angular velocities 

with respect to the inertial frame can be calculated. 

u x

v y 0

w z

w 0

w A

w 0

ω     
     ω = − −ω     
     ω     

 (2.21) 

where 
0 3r

µ
ω = is angular velocity at the altitude r. 

µ is gravitational constant of the Earth and r is the 

distance between center of mass of the satellite and 

the Earth, r r=
�

. 

 

2.2 Satellite dynamics 
 

Attitude dynamics is related with time 

derivative of the angular momentum vector.If the 

origin of the body frame is selected as the center of 

mass, c, then [1], 

ch Jw=
�

 (2.22) 

where h is angular momentum vector, w is angular 

velocity vector in body frame wrt inertial frame and 

J is moment of inertia matrix. J is defined as, 

x

y

z

J 0 0

J 0 J 0

0 0 J

 
 =  
  

 (2.23) 

The relation between time derivative of the angular 

momentum and the angular velocity is, 

c b ch h w (h )= + ×
� � ��ɺ ɺ

 (2.24) 
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where bh
�ɺ

is the  time derivative of angular 

momentum as seen in a body-fixed frame. Knowing 

the time rate of change of the angular momentum is 

equal to external torque, Tc and using (2.22) 

c bT h w (Jw)= + ×
� � �ɺ

 (2.25) 

Rewriting this equation considering time derivative 

of the w is same in both body-fixed and reference 

frames, 

bh Jw=
� �ɺ ɺ  (2.26) 

( )1

cw J T w Jw−  = − × 
� � �ɺ  (2.27) 

The external torque can be defined as the sum of the 

gravity gradient torque, aerodynamic torque, 

magnetic torque and solar pressure disturbance. In 

this thesis, only magnetic torque is considered as 

external torque. 

c mT T=  (2.28) 

Finally, rewriting (2.25) for discrete time, 

( )
k 1 kx x z y y z m

x

t
w w w w J J T

J+

∆  = + − +   (2.29) 

( )
k 1 ky y x z z x m

y

t
w w w w J J T

J+

∆
= +  − +    (2.30) 

( )
k 1 kz z x y x y m

z

t
w w w w J J T

J+

∆  = + − +   (2.31) 

Equations (2.14)-(2.16) and (2.29)-(2.31) describe 

the satellite attitude motion 

 

 

3 Models of Sensor Measurements 
 

3.1 Magnetometer Measurement Model 
 
Magnetometer is the most commonly used sensor 

particularly in nanosatellite applications. For 

magnetic field vector, dipole model is used. Sensor 

model is given below, 

x 1

y 2 m m

z 3

B ( , , , t) B (t)

B ( , , , t) A B (t) b

B ( , , , t) B (t)

φ θ ψ   
   φ θ ψ = + + η   
   φ θ ψ   

 (3.1) 

where B1(t), B2(t) and B3(t) indicates Earth magnetic 

field vector components in orbit frame and given by 

[5], 

( ) ( ){

( ) ( )}

e
1 0 e3

0 e

M
B (t) cos t cos sin( ) sin( )cos( )cos( t)

r

sin t sin( )sin t

= ω  ε ι − ε ι ω  

− ω ε ω

 (3.2) 

( ) ( ) ( ) ( ) ( )e
2 e3

M
B (t) cos cos sin sin cos t

r
= −  ε ι + ε ι ω  

 (3.3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( )}

e
3 0 e3

0 e

2M
B t sin t cos sin sin cos cos t

r

2cos t sin sin t

= ω  ε ι − ε ι ω  

+ ω ε ω

 (3.4) 

where 15

eM 7.943 10= ×  Wb.m is magnetic dipole 

moment of the Earth, 11.7ε = o is the magnetic 

dipole tilt, 5

e 7.29 10−ω = × rad/s is the spin rate of 

the Earth, ι is the orbit inclination and 
143.98601 10µ = × m

3
/s

2
 is the Earth Gravitational 

constant. 

Bx( , , , tφ θ ψ ), By( , , , tφ θ ψ ) and Bz( , , , tφ θ ψ ) show 

the Earth magnetic field vector components in body 

frame as a function of body angles and time. The 

magnetometer bias vector is given as 
T

m x y zb b b b =   . Bias vector is model as rate of 

change of the bias vector is constant in time. 

mb 0=ɺ  (3.5) 

The noise term, m ,η is added linearly to the model 

and modeled as zero mean Gaussian white noise 

with the characteristic of 

T 2

1k 1j 3x3 m kjE  η η = σ δ  Ι  (3.6) 

where I3x3 is the identity matrix, mσ is the standard 

deviation of magnetometer errors and kjδ is the 

Kronecker symbol. 

 
3.2 Sun Sensor Measurement Model 
 
In order to construct a sun sensor model, a sun 

direction vector is used. Using VSOP87 theory, a 

direction cosine matrix is calculated which shows 

the sun’s position relative to Earth in ECI frame [6] 
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x 1

y 2

3z

B E

B E s

EB

s s

s A s

ss

   
   

= + η   
   

     

 (3.7) 

Construction of the sun direction vector, Es  requires 

two assumptions.Comparing the distance between 

Sun-Earth, 1 AU, and Earth-satellite, satellite 

altitude is negligible. Therefore the satellite’s sun 

direction vector is always parallel to Earth’s sun 

direction vector. The other assumption is taking the 

right ascension node of the Sun’s orbit as zero. 

Model is using Julian Date (JD). The reference 

epoch of the first order model is the January 1
st
 

2000, 12:00:00 pm. Converting this date to JD 

would be 2451545. Satellite’s epoch is selected as 

March 16
th
 2017, 22:46:22. The first step of  

calculating the direction vector is to find the mean 

anomaly of the Sun. All of the angles that are given 

below are in degrees. 

UTC
TDB

JD 2451545
T

36525

−
=  (3.8) 

Sun TDBM 357.5277233 35999.05034T= °+  (3.9) 

Secondly, the ecliptic longitude of the Sun, eclipticλ  is 

calculated. 

( ) ( )
Sunecliptic M Sun Sun

1.914666471sin M 0.019994643sin 2Mλ = λ + +

 (3.10) 

where 
SunMλ is the mean longitude of the sun. It can 

be calculated with the equation below. 

SunM sat280.460 36000.770Tλ = +  (3.11) 

Initially, Tsat is satellite’s epoch. It will increase by 

one second until satellite reach at the end of its first 

period. Lastly, the angle between Earth’s orbit and 

equator planes, obliquity of the ecliptic needs to be 

calculated. 

TDB23.439291 0.0130042Tε = −  (3.12) 

The sun direction vector, 

ecliptic

E ecliptic

ecliptic

cos

s sin cos

sin sin

 λ
 

= λ ε 
 λ ε 

 (3.13) 

The noise term, s ,η is added linearly to the model 

and modeled as zero mean Gaussian white noise 

with the characteristic of 

T 2

1k 1j 3x3 s kjE  η η = σ δ  Ι  (3.14) 

where I3x3 is the identity matrix, sσ  is the standard 

deviation of sun sensor errors and kjδ is the 

Kronecker symbol. 

 

3.3 Gyroscope Measurement Model 
 

The gyro model is constructed with satellite 

dynamic equations. A commonly used model for 

gyro measurements given by 

�
BI BI g gbω = ω + + η  (3.15) 

where gb is the gyro bias vector and the gη  is 

modeled as zero mean Gaussian white noise with 

the characteristic of 

T 2

1k 1j 3x3 g kjE  η η = σ δ  Ι  (3.16) 

where I3x3 is the identity matrix, gσ  is the standard 

deviation of gyro errors and kjδ is the Kronecker 

symbol. Bias vector is given as 

g bb = ηɺ  (3.17) 

where bη  is also the zero mean Gaussian white 

noise with the characteristic of 

2

3 3 .T

bk bj x gb kjE Iη η σ δ  =   (3.18)                                             

Here, gbσ  is the standard deviation of gyro biases. 

 
4 Filter Design 
 

In this section, the design methods that are 

used for the attitude determination process are 

given. Initially, a deterministic attitude 

determination process, the algebraic method, also 

known as TRIAD method, is given. The outputs of 

the TRIAD method are then used in extended 

Kalman filters [7]. 

     After each subsection, results are presented. For 

simulation, an imaginary satellite is selected. Its 

orbital attributes are given in Table 1. 
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Table 1 : Orbital Parameters. 

RAAN 

(deg) 

Argument 

of 

Perigee 

(deg) 

Inclination 

(deg) 

Altitude 

(km) 

310.94 207.4 97.65 400 

Using (2.29)-(2.31) and (2.21), satellite’s 

mathematical model is constructed. The satellite’s 

inertia matrix is given below. 

3

3

3

2.1 10 0 0

J 0 2 10 0

0 0 1.9 10

−

−

−

 ×
 

= × 
 × 

(4.1) 

4.1 TRIAD Method 

A rotation matrix describes the attitude of a 

spacecraft with respect to a known reference frame. 

It takes at least two measured vectors to determine 

the orientation of the vehicle. This directed cosine 

matrix has nine elements but only three quantities 

are sufficient to build the matrix. Therefore, with 

two measurements, four different quantities are 

obtained. This leads the problem to be 

overdetermined.The TRIAD algorithm discards the 

part of the measurements so that a solution can be 

found [2]. 

The algebraic method constructs two triads of 

orthonormal vectors. In this thesis, two triads are 

expressed by sun sensor and magnetometer unit 

vectors in body and reference frames. The 

magnetometer measurement vector is denoted by B 

and the sun sensor vector is denoted by S. For initial 

base vector, a more accurate sensor is selected to be 

exact. 

u S=
��

(4.2) 

b bu S=
��

(4.3) 

r ru S= (4.4) 

b and r subscripts denote the body and reference 

frames. For the second base vector, a unit vector 

that is perpendicular to the first base vector is 

constructed. 

v S B= ×
� ��

 (4.5) 

b b
b

b b

S B
v

S B

×
=

×

� �
�

� � (4.6) 

r r
r

r r

S B
v

S B

×
=

×

� �
�

� � (4.7) 

And the final base vector to complete the triad, 

w u v= ×
� � �

(4.8) 

b b bw u v= ×
� � �

(4.9) 

r r rw u v= ×
� � �

(4.10) 

Three base vectors form a complete orthogonal 

coordinate system. It is important to note that two 

vectors, S and B can not be parallel, S.B 1<
� �

.Constructing the direction cosine matrix, 

[ ][ ]Tbr

b b b r r rA u v w u v w=
� � � � � �

(4.11) 

Equation (4.11) results in a 3x3 matrix. Using 

equations (2.3)-(2.5), body angles can be obtained. 

Final step of the algebraic method is to find 

covariance of the algorithm. Calculating with the 

formula given below, covariance matrix is 

established [4], 

2 T 2 T
2 Tm b b s b b
s b b

S S B B
P v v

S B

σ + σ
= + σ

×

� � � �
� �

� � (4.12) 

Covariance and body angles that are obtained from 

the TRIAD algorithm are used as measurement 

inputs to the kalman filter. These results are 

combined with gyro measurements in order to 

achieve better accuracy. 

4.2 Extended Kalman Filter 

In this section, the traditional EKF, which is based 

on the nonlinear measurements, is introduced. The 

satellite’s rotational motion about its mass center is 

formulated using the discrete-time nonlinear state 

space model 

( ) ( ) ( )1x k f x k w k+ = +    (4.13)

[ ]( ) ( ) ( )z k h x k v k= +  (4.14) 

��
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where [ ]f ⋅  and [ ]h ⋅  are the nonlinear dynamic and

measurement functions respectively, ( )x k  is the n  

dimensional state vector at time k ,  ( )w k is the

zero-mean Gaussian noise with covariance ( )Q k ,

( )z k  is the d  dimensional measurement vector, 

( )v k is the zero-mean Gaussian noise with

covariance ( )R k . It  is  assumed  that  both  noise

vectors ( )w k  and ( )v k  are  linearly additive

Gaussian, temporally  uncorrelated  with  zero  

mean, 

[ ] [ ]( ) ( ) 0,    E w k E v k k= = ∀ (4.15) 

Filter algorithms based on the described system and 

measurements in (4.13)- (4.14) can be given. The 

approximations in the prediction and update stages 

of the filter can be found based on the EKF. The 

estimation value can be found as, 

[ ]{ }ˆ ˆ ˆ( 1) ( 1/ ) ( 1) ( 1) ( 1/ )x k x k k K k z k h x k k+ = + + + × + − +

 (4.16) 

The extrapolation value of the dynamic function can 

be found as 

[ ]ˆ ˆ( 1 / ) ( )x k k f x k+ =          (4.17) 

Filter-gain of the EKF is, 

[ ] 1

( 1) ( 1 / ) ( 1) ( 1) ( 1 / ) ( 1) ( )
T T

K k P k k H k H k P k k H k R k
−

+ = + + × + + + +

(4.18) 

where 
ˆ[ ( 1 / )]

( 1)
ˆ( 1/ )

h x k k
H k

x k k

∂ +
+ =

∂ +
is the partial 

derivatives of the measurement function with 

respect to the states. 

The covariance matrix of the extrapolation error 

is, 

ˆ ˆ[ ( )] [ ( )]
( 1/ ) ( / ) ( )

ˆ ˆ( ) ( )

Tf x k f x k
P k k P k k Q k

x k x k

∂ ∂
+ = × +

∂ ∂
 (4.19) 

The covariance matrix of the filtering error is, 

[ ]( 1 / 1) ( 1) ( 1) ( 1 / )P k k I K k H k P k k+ + = − + + +  (4.20)

The filter expressed by the formulas (4.17) - (4.20) 

is called the extended Kalman filter. 

The state vector considered in this study is, 

x y z x y z

T

x y z m m m g g g
x b b b b b b= φ θ ψ ω ω ω  

 (4.21) 

Body angles from the TRIAD algorithm, angular 

velocities from gyros and magnetic field 

measurements from magnetometers are taken as 

measurement vector. 9-state measurement vector is 

given below 

T

x y z x y zz B B B = φ θ ψ ω ω ω 

5 Simulations 

A 12-state EKF is used for attitude estimation and 

magnetometer and gyro bias calibration. Orbit of the 

satellite is chosen as circular with an altitude of 550 

km. Other orbital parameters are given in the 

magnetometer measurement model section.  

     For magnetometer measurements, sensor noise is 

characterized by zero mean Gaussian white noise 

with standard deviation of  σm = 0.006. 
Magnetometers are calibrated in-flight by using 

biases estimated by EKF. Sun sensors are calibrated 

against sensor biases. Sensor noise is also 

characterized by zero means Gaussian white noise 

with standard deviation of σs = 0.002. Gyroscope 

m        easure            ment   s are also calibrated in-flight. 

Gyroscope noise standard deviation is σg = 0.005. 
     Simulations are conducted for 5910 seconds with 

sampling time of 1 sec. Body angles, angular 

velocities and sensor biases are estimated. Estimated 

biases are fed back to sensor measurements for in- 
flight calibration. Hence, calibrated sensor 

measurements are used in both TRIAD and EKF. In 

Figures 1, Figure 2, Figure 3 and Figure 4, 

estimation results are given. 
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Figure 1: Body angle estimations 

 

Figure 2: Angular velocity estimations 

 

Figure 3: Magnetometer bias estimations 

 

Figure 4: Gyroscope bias estimations 

As can be seen in all of the graphs, there are some 

spikes and sudden fluctuations approximately in the 

same places. These anomalies are caused by high 

body angles. When yaw, pitch or roll angle goes to 

their respective boundaries, 180 degrees for yaw and 

roll, 90 degrees for pitch angle,  The TRIAD 

algorithm starts to fail and it leads EKF to the same 

behaviour. In roll angle estimation, it can be seen 

that when the angle is not close to its limits, both 

TRIAD and EKF estimate decently. 

 
6 Conclusion 
 
   In this study, magnetometer and sun sensor 

measurements are fused together with the TRIAD 

algorithm to produce body angle estimation. 

Combining with gyroscopes measurements, an 

Extended Kalman Filter is used to estimate body 

angles, angular velocities, gyroscope and 

magnetometer biases. 

 

The TRIAD method, even though it is an aging 

algorithm, can estimate satellite altitude well. The 

sun sensor and magnetometer are selected for inputs 

to the TRIAD algorithm because of their wide usage 

in the space industry. Many different filtering 

algorithms are presented to this day but proven 

algorithms are still getting attention from engineers. 

EKF proves itself on many missions. Satellite 

dynamic and kinematic equations show that all of 

the states are connected. The simulation results 
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show that, the proposed TRIAD-aided EKF 

algorithm estimates the attitude, attitude rate and 

magnetometer and gyroscope biases decently 
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