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Abstract: Let {X(t), t ≥ 0} be a CIR diffusion process, and τ(x) be the first time thatX(t) = 0 or c, given that
X(0) = x ∈ (0, c). First, we compute the moment-generating function and the expected value of τ(x). Then, an
optimal control problem is considered for {X(t), t ≥ 0}. Finally, we add jumps to the diffusion process and we
calculate in a particular case the probability that X(τ(x)) = 0, as well as the expected time needed to leave the
interval (0, c). Explicit and exact results are obtained.
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1 Introduction
We consider the one-dimensional diffusion process
{X(t), t ≥ 0} defined by the stochastic differential
equation

dX(t) = a [b−X(t)] dt+ σ
√

X(t)dB(t), (1)

where {B(t), t ≥ 0} is a standard Brownian motion,
and a, b and σ > 0 are constants. This stochastic
process is known as a Cox–Ingersoll–Ross (CIR)
process. It is important in financial mathematics,
where it is used to model the evolution of interest
rates.

If the condition σ2 ≤ 2ab is satisfied, then the
origin cannot be reached in finite time, which is an
important feature in the application to interest rates.
However, in other applications it is possible to have
X(t) = 0. In this paper, we assume that

σ2 > 2ab, (2)

so that the origin is an attainable boundary.

Remark. In fact, it is possible that interest rates will
be zero or even negative, as has already been the case
in several countries, including Japan.

Assume that X(0) = x ∈ (0, c). We define the
first-passage time

τ(x) = inf{t > 0 : X(t) = 0 or c} (3)

and we denote its moment-generating function by
M(x;α):

M(x;α) := E
[
e−ατ(x)

]
, (4)

where α > 0.

In the next section, we will obtain an exact
and explicit expression for the function M(x;α).
Moreover, we will also compute the function
m(x) := E[τ(x)], as well as

A(x) := E

[∫ τ(x)

0
X(t)dt

]
. (5)

The function A(x) represents the expected value of
the area between the t-axis and the trajectory of
{X(t), t ≥ 0} in the interval [0, τ(x)]; see, [1].

First-passage problems for CIR or related
diffusion processes were studied, in particular, by
[2], [3], [4], [5], [6], [7].

In Section 3, we will consider an optimal control
problem for the CIR process. This control problem
will be a particular homing problem. In such
problems, the optimizer controls a stochastic process
until a given event occurs; for example, until the
process hits either of two absorbing boundaries, such
as 0 and c in the definition (3) of the random variable
τ(x).

In Section 4, random jumps according to a Poisson
process will be added to the CIR process. We
will compute the mean time until the jump-diffusion
process leaves the interval (0, c), as well as the
probability that it will hit the origin before the
boundary at c.
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2 First-exit Problems for the CIR
Process

The function M(x;α) satisfies the Kolmogorov
backward equation (see, for instance, [8], and/or, [9])

1

2
σ2xM ′′(x;α) + a(b− x)M ′(x;α) = αM(x;α),

(6)
subject to the boundary conditions M(0;α) =
M(c;α) = 1. Moreover, we have

M(x;α) = E

[
1− ατ(x) +

α2

2
τ2(x)− · · ·

]
.

(7)
Assuming that the moments of τ(x) exist (and are
finite), we can write that

M(x;α) = 1− αE[τ(x)] +
α2

2
E[τ2(x)]− · · · (8)

Substituting the above expression for M(x;α) into
Eq. (6), we find that the function m(x) := E[τ(x)]
satisfies the ordinary differential equation (ODE)

1

2
σ2xm′′(x) + a(b− x)m′(x) = −1. (9)

The boundary conditions arem(0) = m(c) = 0.
Finally the function A(x) defined in Eq. (5) is a

solution of the ODE (see, [1])

1

2
σ2xA′′(x) + a(b− x)A′(x) = −x, (10)

such that A(0) = A(c) = 0.
First, we will solve Eq. (6). We rewrite the

equation as follows:

xM ′′(x;α)−
(
2a

σ2
x− 2ab

σ2

)
M ′(x;α)− 2α

σ2
M(x;α) = 0.

(11)
Let

y :=
2a

σ2
x, (12)

where we assume that a ̸= 0, and N(y;α) :=
M(x;α). We find that the function N(y;α) satisfies
the ODE

yN ′′(y;α)−
(
y − 2ab

σ2

)
N ′(y;α)−α

a
N(y;α) = 0,

(13)
which is a Kummer differential equation. Its general
solution is of the form (see, [10])

N(y;α) = c1Φ

(
α

a
,
2ab

σ2
, y

)
+ c2Ψ

(
α

a
,
2ab

σ2
, y

)
,

(14)

where c1 and c2 are arbitrary constants, and Φ(·, ·, ·)
and Ψ(·, ·, ·) are confluent hypergeometric functions
of the first and second kind, respectively. Thus,

M(x;α) = c1Φ

(
α

a
,
2ab

σ2
,
2ax

σ2

)
+ c2Ψ

(
α

a
,
2ab

σ2
,
2ax

σ2

)
.

(15)
Next, the boundary conditions M(0;α) =

M(c;α) = 1 imply that

c1Φ
(
α
a
, 2ab

σ2 , 0
)
+ c2Ψ

(
α
a
, 2ab

σ2 , 0
)

= 1,

c1Φ
(
α
a
, 2ab

σ2 , 2ac
σ2

)
+ c2Ψ

(
α
a
, 2ab

σ2 , 2ac
σ2

)
= 1.

 (16)

We find that

c1 =
Φ(α

a
, 2ab
σ2 ,0)−Ψ(α

a
, 2ab
σ2 ,0)

Φ(α
a
, 2ab
σ2 , 2ac

σ2 )Ψ(α
a
, 2ab
σ2 ,0)−Ψ(α

a
, 2ab
σ2 , 2ac

σ2 )

and

c2 =
Φ(α

a
, 2ab
σ2 , 2ac

σ2 )−1

Φ(α
a
, 2ab
σ2 , 2ac

σ2 )Ψ(α
a
, 2ab
σ2 ,0)−Ψ(α

a
, 2ab
σ2 , 2ac

σ2 )
.

 (17)

Proposition 2.1. The moment-generating function
M(x;α) of the random variable τ(x) is given by
Eq. (15), with the constants c1 and c2 defined in
Eq. (17).

Now, we turn to Eq. (9). With

δ :=
2a

σ2
, β :=

2ab

σ2
and θ := − 2

σ2
, (18)

the equation becomes

xm′′(x) + (β − δx)m′(x) = θ, (19)

which is a first-order linear ODE for m′(x). We find
that

m′(x) = x−β eδx
[
c0 − θδ−βΓ(β, δx)

]
, (20)

where c0 is an arbitrary constant and Γ(·, ·) is the
incomplete upper gamma function:

Γ(s, x) :=

∫ ∞

x
ts−1e−tdt. (21)

We have

Γ(s, x) = Γ(s)− γ(s, x), (22)

where γ(s, x) is the incomplete lower gamma
function:

γ(s, x) :=

∫ x

0
ts−1e−tdt. (23)

Moreover,

γ(s, x) = xsΓ(s)e−x
∞∑
k=0

xk

Γ(s+ k + 1)
. (24)
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It follows that

Γ(β, δx) = Γ(β)

[
1− (δx)β e−δx

∞∑
k=0

(δx)k

Γ(β + k + 1)

]
. (25)

Now, integrating the expression obtained for
m′(x), we obtain that

m(x) = [c0 − θδ−βΓ(β)]

∫
x−β eδxdx

+ θΓ(β)

∫ ∞∑
k=0

(δx)k

Γ(β + k + 1)
dx

+ c00, (26)

where c00 is a constant to be determined.
Making use of WolframAlpha, we find that∫

x−βeδxdx = −x1−βEβ(−δx), (27)

where En(x) is an exponential integral function:

En(x) :=

∫ ∞

1

e−xt

tn
dt. (28)

We have, [11]

En(x) = xn−1Γ(1− n, x), (29)

which implies that∫
x−βeδxdx = −(−δ)β−1Γ(1− β,−δx). (30)

Next, integrating term by term (which is
allowed because the sum we integrate is uniformly
convergent), we have∫ ∞∑

k=0

(δx)k

Γ(β + k + 1)
dx =

∞∑
k=0

δk xk+1

(k + 1)Γ(β + k + 1)

=

x2F2

([
1
1

]
,

[
2

1 + β

]
, δx

)
Γ(1 + β)

, (31)

where pFq is the generalized hypergeometric
function. Hence, we can write that

m(x) = (−δ)β−1Γ(1− β,−δx)[θδ−βΓ(β)− c0]

+

xθΓ(β)2F2

([
1
1

]
,

[
2

1 + β

]
, δx

)
Γ(1 + β)

+ c00. (32)

Finally, we deduce from the boundary conditions
m(0) = m(c) = 0 that

c0 = δ−βθΓ(β)

+

δcθ(−δ)−β
2F2

([
1
1

]
,

[
2

1 + β

]
, δc

)
βγ(1− β, δc)

(33)

and

c00 = −
cθΓ(1− β)2F2

([
1
1

]
,

[
2

1 + β

]
, δc

)
γ(1− β, δc)

. (34)

Proposition 2.2. The expected value m(x) of the
random variable τ(x) is given by Eq. (32), with
the constants c0 and c00 defined in (33) and (34),
respectively. Moreover, the constants δ, β and θ are
defined in Eq. (18).

To conclude this section, we will solve Eq. (10).
With the notations introduced in Eq. (18), we rewrite
the equation as follows:

xA′′(x) + (β − δx)A′(x) = θx. (35)

We find that

A′(x) = k1x
−β eδx − θδ−β−1x−β eδxΓ(β + 1, δx)

= k1x
−β eδx

− θδ−β−1 [βx−β eδxΓ(β, δx) + 1], (36)

where k1 is an arbitrary constant, and the last equation
follows from the identity

Γ(s+ 1, x) = sΓ(s, x) + xse−x. (37)

Proceeding as above, we can state the following
proposition.

Proposition 2.3. The functionA(x) defined in Eq. (5)
is given by

A(x) = (−δ)β−1Γ(1− β,−δx) [θδ−β−1Γ(β + 1)− k1]

+

xβ θΓ(β)2F2

([
1
1

]
,

[
2

1 + β

]
, δx

)
δΓ(1 + β)

− θδ−β−1x+ k2, (38)

where

k1 =
1

∆

[
θ(−δ)−βδ−β−1

(
cδβ+1

2F2

([
1
1

]
,

[
2

1 + β

]
, δc

)
+ (−δ)βΓ(β + 1)γ(1− β,−cδ)− δc

)]
(39)

and

k2 = −
1

∆

[
cθδ−β−1Γ(1− β, 0)

×
(
δβ 2F2

([
1
1

]
,

[
2

1 + β

]
, δc

)
− 1

)]
, (40)

in which
∆ := γ(−cδ) (41)

and the constants δ, β and θ are defined in Eq. (18).
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3 A homing Problem
In this section, we consider the controlled CIR process
{Xu(t), t ≥ 0} defined by

dXu(t) = a [b−Xu(t)] dt+B[Xu(t)]u[Xu(t)]dt
+ σ

√
Xu(t) dW (t), (42)

where B(·) ̸= 0, u(·) is the control variable, which
is assumed to be a continuous function, and the
stochastic process {W (t), t ≥ 0} is a standard
Brownian motion.

Assume that Xu(0) = x ∈ (0, c). Our aim is to
find the value u∗[Xu(t)] of the control variable that
minimizes the expected value of the cost function

J(x) =

∫ τ(x)

0

{
1

2
Q[Xu(t)]u

2[Xu(t)] +R[Xu(t)]

}
dt,

(43)
where Q(·) > 0 and R(·) ̸= 0. To do so, we can
make use of dynamic programming. First, we define
the value function

F (x) = inf
u[Xu(t)]

0 ≤ t < τ(x)

E[J(x)]. (44)

Proceeding as in [12], we obtain the following
proposition.

Proposition 3.1. The value function F (x) satisfies
the non-linear ODE

R(x)− B2(x)

2Q(x)
[F ′(x)]2 + a(b−x)F ′(x)+

1

2
σ2xF ′′(x) = 0

(45)
for 0 < x < c, subject to the boundary conditions
F (0) = F (c) = 0. Moreover, the optimal control is
given by

u∗(x) = −B(x)

Q(x)
F ′(x). (46)

In the case when the relation

σ2x = κB2(x)/Q(x) (47)

holds for a positive constant κ, it is shown in [12], that
Eq. (45) can be linearized by defining

Φ(x) = e−F (x)/κ. (48)

In this paper, we will solve a problem for which
Eq. (47) does not hold.

Assume that a = 0, σ = 1 and

B(x) = x, Q(x) ≡ 1 and R(x) = x2. (49)

Remark. Because the function R(x) is positive, the
objective is to leave the continuation region (0, c) as
soon as possible, while taking the quadratic control
costs into account.

Then, Eq. (45) reduces to

x2 − x2

2
[F ′(x)]2 +

1

2
xF ′′(x) = 0. (50)

With the help of the software programMaple, we find
that the solution to the above equation that satisfies
the boundary condition F (0) = 0 can be written as
follows:

F (x) =

∫ x

0
−
√
2 tanh

(√
2z2

2
+ C1

√
2

)
dz, (51)

where C1 is an arbitrary constant. Let c = 1. We
find that the only constant C1 for which F (1) = 0 is
C1 ≃ −0.1652. Hence,

u∗(x) ≃ x
√
2 tanh

(√
2x2

2
− 0.1652

√
2

)
(52)

for 0 < x < 1. The functions F (x) and u∗(x) are
shown in Figure 1 and Figure 2, respectively.

Figure 1: Function F (x) defined in Eq. (51) for x in
the interval [0, 1].

Figure 2: Optimal control u∗(x) defined in Eq. (52)
for x in the interval [0, 1].
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4 Addition of Random Jumps
Let {N(t), t ≥ 0} be a Poisson process with rate λ,
which is assumed to be independent of the standard
Brownian motion {B(t), t ≥ 0}. In this section, we
consider the jump-diffusion process {X(t), t ≥ 0}
defined by

X(t) = X(0) +

∫ t

0
a [b−X(s)] ds

+ σ

∫ t

0

√
X(s)dB(s) +

N(t)∑
i=1

Yi, (53)

where Y1, Y2, . . . are independent random variables
that are uniformly distributed on the interval [−x, 0]:

fYi
(y) =

1

x
if −x ≤ y ≤ 0, (54)

for i = 1, 2, . . . Note that the continuous part of
the jump-diffusion process {X(t), t ≥ 0} is the CIR
process defined in Eq. (1).

We can show (see, [13], and/or, [14]) that
the moment-generating function of the random
variable τ(x) defined in Eq. (3) now satisfies the
integro-differential equation (IDE)

1

2
σ2xM ′′(x;α) + a(b− x)M ′(x;α)

+ λ

{
1

x

∫ 0

−x
M(x+ y;α)dy −M(x;α)

}
= αM(x;α). (55)

Similarly, the meanm(x) of τ(x) satisfies

1

2
σ2xm′′(x) + a(b− x)m′(x)

+ λ

{
1

x

∫ 0

−x
m(x+ y)dy −m(x)

}
= −1. (56)

The boundary conditions arem(0) = m(c) = 0.
Let

p(x) := P [X(τ(x)) = 0]. (57)

This function is a solution of the IDE

1

2
σ2xp′′(x) + a(b− x)p′(x)

+ λ

{
1

x

∫ 0

−x
p(x+ y)dy − p(x)

}
= 0 (58)

such that p(0) = 1 and p(1) = 0. We will calculate
the functionsm(x) and p(x) in the case when a = 0.

We have∫ 0

−x
m(x+ y)dy =

∫ x

0
m(z)dz (59)

(and similarly with the function p(x)). Differentiating
Eq. (56), we find that the function m(x) satisfies the
linear third-order ODE
1

2
σ2xm′′′(x) + σ2m′′(x)− λm′(x) = −1

x
. (60)

Likewise, we have
1

2
σ2xp′′′(x) + σ2p′′(x)− λp′(x) = 0. (61)

Let us choose σ =
√
2, λ = 1 and c = 1. We find

that
m(x) = d1 I0

(
2
√
x
)
+d2 K0

(
2
√
x
)
+2 ln

(
2
√
x
)
+d3, (62)

where I0(·) andK0(·) are modified Bessel functions.
The constants d1, d2 and d3 can be determined as
follows: we impose the conditionsm(0) = m(1) = 0
and m(0.5) = r. Then, we find that r must be equal
to (approximately) 0.3281 in order for the function
m(x) thus obtained to satisfy the IDE in (56). The
expression for m(x) is rather long and will therefore
not be reproduced here.

When there are no jumps, the functionm0(x) that
corresponds tom(x) satisfies the second-order linear
ODE

xm′′
0(x) = −1. (63)

The solution for whichm0(0) = m0(1) = 0 is

m0(x) = −x ln(x) for 0 ≤ x ≤ 1. (64)

The functions m(x) and m0(x) are displayed in
Figure 3. We can see the effect of the jumps on the
expected valuem(x).

Figure 3: Functions m(x) (full line) and m0(x) =
−x ln(x) for x in the interval [0, 1].

To obtain the function p(x), we must solve the
ODE

xp′′′(x) + 2p′′(x)− p′(x) = 0. (65)
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The solution such that p(0) = 1, p(0.5) = ρ and
p(1) = 0 is

p(x) =
I0(2)− I0(2

√
x)

I0(2)− 1
, (66)

which is valid if and only if ρ ≈ 0.5576. In the
absence of jumps, the corresponding function p0(x)
satisfies the simple ODE

xp′′0(x) = 0. (67)

The solution for which p0(0) = 1 and p0(1) = 0 is
p0(x) = 1− x. See Figure 4.

Figure 4: Functions p(x) (full line) and p0(x) = 1−x
for x in the interval [0, 1].

Finally, in Figure 5 we present the functions p(x)
and p0(x)when the parameter λ is equal to 10, instead
of 1. We observe the much greater effect of the jumps
on the probability of absorption at the origin.

Figure 5: Functions p(x) (full line) and p0(x) = 1−x
for x in the interval [0, 1], when λ = 10.
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