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1 Introduction

When modeling periodic processes, conservative
“predator-prey” like systems, represented by even
skew-symmetric matrices, are known sources of
oscillations. Nevertheless, it is not always natural to
use such tools; for example, in the economy, here no
one clearly eats anyone, but everyone competes with
each other.

Odd skew-symmetric matrices are known to be
degenerate. However, an addition with a degenerate
matrix consisting of “1” elements can remove this
degeneracy, and we get an odd competition matrix.
We can investigate such a system analytically, but
with very strong assumptions about the shape of the
matrix. The main conclusion of the study is that
(n–1)/2 oscillations with different frequencies occur
in the proposed odd n-dimensional system.

Numerical experiments show that if the
assumptions in which an analytical solution to
the system is available are significantly weakened,
oscillations remain. Moreover, such oscillations
occur if the differential equations model is replaced
by a discrete analog implemented in the environment
of cellular automata.

It is known that the trajectory evolution ends in
a stable node in one, [1], and two dimensional, [2],
models of competition. Starting from 3 dimensions, a
stationary point can have the type of center or focus;
there may be oscillations of the trajectory around the
stationary point. This occurs when a non-transitive
order relates the coefficients of the double standard
matrix, similar to the game “rock, paper, scissors.”
For example, in the three-dimensional case, there
are populations A, B, and C. A is tolerant of B and
intolerant of C; B is tolerant of C and intolerant of A;
and finally, C is tolerant of A and intolerant of B. In
this paper, we will investigate multidimensional (n ≥

3, n is odd) competition systems for the oscillation
occurrence.

2 A Bit of LinearAlgebra and Matrix

Theory
Let 1 > d > 0. We will consider square n × n
matrices:∥∥∥∥∥∥∥

1 1 + d ... 1− d
1− d 1 ... 1 + d
... ... ... ...

1 + d 1− d ... 1

∥∥∥∥∥∥∥ , (1)

where n is an odd, and device-like even matrix:∥∥∥∥∥∥∥
1 1 + d ... 1 + d

1− d 1 ... 1− d
... ... ... ...

1− d 1 + d ... 1

∥∥∥∥∥∥∥ , (2)

where n is even.
These seemingly similar matrices actually have

very different properties, as we will see further.
Along with the indicated matrices (1) and (2),

we will consider the associated skew-symmetric
matrices: ∥∥∥∥∥∥∥

0 d ... −d
−d 0 ... d
... ... ... ...
d −d ... 0

∥∥∥∥∥∥∥ , (3)

n is odd, and ∥∥∥∥∥∥∥
0 d ... d

−d 0 ... −d
... ... ... ...
−d d ... 0

∥∥∥∥∥∥∥ , (4)

n is even.
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Let us prove that the determinant of the matrix (2)
equals to dn. We will prove it by induction. For
n = 2, this is true: suppose this formula is true up to
the determinant of the matrix (2) of dimension n− 2.
Let us calculate the determinant of the n-dimensional
matrix. For this, let us subtract from its last row
the first. The determinant will not change from this,
and its last line takes the form (−d, 0, ..., 0,−d). Let
us decompose the determinant by this line. Note
that the algebraic complement of the last element in
the string is a determinant of matrix (1), of n − 1
dimension. Let’s denote its size via ∆n−1. The minor
corresponding to the first element of the line has the
following form:∥∥∥∥∥∥∥

1 + d 1− d ... 1− d
1 1 + d ... 1 + d

... ... ... ...
1− d 1 + d ... 1

1 + d
1− d
...

1 + d

∥∥∥∥∥∥∥ .
Let’s lower the first line down, changing it

sequentially with the second,…, n− 1. This will not
change the sign of the determinant, since the number
of exchanges is even. Note that in the algebraic
complement, the determinant of this minor comes
with a minus sign. So we need to compute:

An,1 = −

∣∣∣∣∣∣∣
1 1 + d ... 1− d

1− d 1 ... 1 + d
... ... ... ...

1 + d 1− d ... 1 + d

∣∣∣∣∣∣∣ .
Note that this determinant differs from the

determinant of the matrix (1) of dimension n−1 only
by +d in the last diagonal element; therefore, due to
the linearity of the determinant as a column function,

An,1 = −∆n−1 −

∣∣∣∣∣∣∣
1 ... 1 + d 0

1− d ... 1− d 0
... ... ... ...

1 + d ... 1− d d

∣∣∣∣∣∣∣ =
= −∆n−1 − d · dn−2.

We decomposed the last term into the last column
and used the induction hypothesis. Finally, we
calculate our determinant:

∆n = −dAn,1 − dAn,n =

= −d(−∆n−1 − dn−1)− d∆n−1 = dn,

which is what was required to be proved.
Note that the same reasoning with the same result

dn, is also applicable to the matrix determinant (4).
Moreover, if A – a non-degenerate skew-symmetric
even matrix, and B differs from it by the fact that
1 is added to each of its elements, then due to

the linearity determinant, as functions of a column,
recalling Kramer’s rule, we have:

|B| = |A|+ |B| (ȳ, e), (5)

where e is a vector of units (1, ..., 1), and ȳ is a
solution for the equation By = e. Next, note that
|B| (ȳ, e) = |A| (x̄, e), where x̄ is the solution to
the equation Ax = e – in the matrix has a unit
column that can be subtracted from the rest, not
changing the determinant values. But by virtue of the
fact that the matrix A skew-symmetric, we conclude:
(x,Ax) = −(xA, x) = 0, ∀x, whence follows
(x̄, e) = (x̄, Ax̄) = 0, and hence |B| = |A|.

Note that for odd matrices, everything is
completely different. As it is known, the determinant
of the odd skew-symmetric matrix is zero:
|A| = |−A| = − |A| = 0, the determinant of
the same matrix (1), as we have to find out next, is
n2dn−1.

Now let us move on to calculating the determinant
of the matrix (1). Let’s choose in the matrix (1) j-th
column and add all the others to it. The determinant
of the matrix will not change from this, so we get:∣∣∣∣∣∣∣

1 1 + d ... 1− d
1− d 1 ... 1 + d
... ... ... ...

1 + d 1− d ... 1

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
1 ... n ...

1− d ... n ...
... ... ... ...

1 + d ... n ...

1− d
1 + d
...
1

∣∣∣∣∣∣∣ =

= n

∣∣∣∣∣∣∣
1 ... 1 ...

1− d ... 1 ...
... ... ... ...

1 + d ... 1 ...

1− d
1 + d
...
1

∣∣∣∣∣∣∣ = (6)

= n

∣∣∣∣∣∣∣
0 ... 1 ...

−d ... 1 ...
... ... ... ...
d ... 1 ...

−d
d
...
0

∣∣∣∣∣∣∣ . (7)

The resulting formula is an analog of (5), so in this
case |A| = 0. Obviously, determinants (6) and (7) at
any 0 ≤ j ≤ n are equal to each other, and all are

equal to
1

n
∆n, where ∆n is the desired determinant

of the matrix (1). When we prove that ∆n >0, from
here it will follow that if denoted by D matrix (1),
then the solution of the equation Dx = e is the vector

x̄ =

(
1

n
, ...,

1

n

)
. Consider now the determinant of

the form (7) at j = n:

∆ =

∣∣∣∣∣∣∣
0 d ... d

−d 0 ... −d
... ... ... ...
d −d ... −d

1
1
...
1

∣∣∣∣∣∣∣ (8)
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Let us try to calculate the determinant (8) using the
bordered minor formula:

∆ =

∣∣∣∣∣∣
1

An−1 ...
d ... 1

∣∣∣∣∣∣ =
= |An−1| − (d, ...,−d)Ãn−1

(
1
...
1

)
=

= dn−1 + d

n−1∑
j,k=1

(−1)kAj,k =

= dn−1 +

n−1∑
k=1

(−1)kd

n−1∑
j=1

Aj,k.

Here An−1 is a well-known even matrix of
type (4), whose determinant |An−1| = dn−1 was

calculated previously; Ãn−1 is an adjugate matrix
with An−1, i.e., such that in place of each element
ai,j is its cofactor Ai,j ; and finally Aj,k – already
mentioned cofactors of the elements of the matrix
An−1.

Note that the line
{
(−1)kd

}n−1

k=1
is a sum of

all rows of matrix (4) of dimension n − 1, hence,
remembering the property of the products of the
determinant strings on their cofactors, conclude:

n−1∑
k=1

(−1)kd

n−1∑
j=1

Aj,k =

n−1∑
k=1

n−1∑
l=1

al,k

n−1∑
j=1

Aj,k =

=

n−1∑
l=1

n−1∑
j=1

n−1∑
k=1

al,kAj,k =

=

n−1∑
l=1

n−1∑
j=1

δl,j |An−1| = (n− 1)dn−1.

From this, we get the value of the determinant of
the matrix (8):

∆ = ndn−1.

Having calculated the determinant (8), and
knowing that the desired determinant of the matrix (1)
is n times more, we can finally write the determinant
value of the odd matrix (1):

∆n = n2dn−1.

We now calculate the eigenvalues of the
matrix (1). Note that this matrix is a circulant
– a special kind of Toeplitz matrix that is fully
determined by its first row. Subsequent rows
are obtained from the previous ones by a cyclic

shift to the right by one position. From the linear
algebra course, [3], it is known that the circulant is
diagonalized by the discrete Fourier transform, which
is given by the following Vandermonde matrix:∥∥∥∥∥∥∥∥∥

1 1 1 ... 1
1 ε ε2 ... εn−1

1 ε2 ε4 ... ε2(n−1)

... ... ... ...
1 εn−1 ε2(n−1) ... ε(n−1)2

∥∥∥∥∥∥∥∥∥ ,

where ε = cos
2π

n
+ i sin

2π

n
– is n-th degree root

of 1. In this case, the eigenvalues of the matrix (1)
can be determined by the formula:

λj = 1+(1+d)εj+(1−d)ε2j+...+(1−d)εn−1
j , (9)

where εj = cos
2πj

n
+ i sin

2πj

n
, 0 ≤ j ≤ n− 1.

Let’s try to calculate these eigenvalues. The
easiest way to do this is at j =0, then ε0 =1 and
λ0 = n is the only real eigennumber. Let now j > 0,
we will calculate λj by formula (9). We will use
the known property roots of the n-th degree of 1,
following from De Moivre’s formula:

εkj = εjk1 = cos
2πjk

n
+ i sin

2πjk

n
.

First, note that all members associated with 1
disappear from the sum of formula (9). Indeed, by
the formula of the geometric progression sum

n−1∑
k=0

εkj =
1− εnj
1− εj

= 0.

Secondly, all members associated with cosines are
reduced. Indeed, at odd k, 0 < k < n terms

d cos
2πjk

n
are included in the sum of (9) with a plus

sign, and with even ones with a minus sign. Each k,

0 < k <
n

2
matches to l,

n

2
< l < n, such that

l = n− k, so

cos
2πjk

n
= cos

(
−2πjk

n

)
=

= cos

(
−2πjk

n
+ 2πj

)
= cos

2πjl

n
,

but k and l have opposite parity since n is odd, and
therefore are included in the sum (9) with opposite
signs. By virtue of the above, all cosines in (9) are
mutually destroyed, and all the sines will double, on
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the contrary, as odd functions. Given what has been
said, rewrite (9) as follows:

λj = 2id

n−1

2∑
k=1

sin

(
2πjk

n

)
=

= 2id

sin

(
n−1
2 + 1

2
· 2πj

n

)
sin

(
n− 1

4
· 2πj

n

)
sin

(
πj

n

) =

= 2id

sin

(
πj

2
+

πj

2n

)
sin

(
πj

2
− πj

2n

)
sin

πj

n

=

=
2id

sin
πj

n

(
sin

πj

2
cos

πj

2n
+ cos

πj

2
sin

πj

2n

)
×

×
(

sin
πj

2
cos

πj

2n
− cos

πj

2
sin

πj

2n

)
=

= id
sin2

πj

2
cos2

πj

2n
− cos2

πj

2
sin2

πj

2n

sin
πj

2n
cos

πj

2n

.

The latter expression behaves differently
depending on the parity of j. At the even j,

sin
πj

2
= 0 and cos2

πj

2
= 1, so λj = −id tan

πj

2n
.

At the odd j, sin2
πj

2
= 1 and cos

πj

2
= 0, so

λj = id cot
πj

2n
.

Note that every even l, 0 < l < n, corresponds to
an odd j, 0 < j < n such that j = n − l and vice
versa. From here, we conclude:

λj = id cot

(
πj

2n

)
= id cot

(
π(n− l)

2n

)
=

= id cot

(
π

2
− πl

2n

)
= id tan

(
πl

2n

)
= −λl.

Pairs of purely imaginary eigenvalues of the
matrix (1) are, as expected, complex conjugates. Now
we can write a single formula for pairs of complex
conjugate eigenvalues:

λk1,2
= ∓id tan

(
πk

n

)
, 1 ≤ k ≤ n− 1

2
. (10)

Further, on the one hand, as shown above,
the determinant of the matrix (1) is n2dn−1, with
the other being the product of all eigenvalues:

ndn−1

n−1

2∏
k=1

tan2
(
πk

n

)
. Equating these expressions,

we get a curious identity: n =

n−1

2∏
k=1

tan2
(
πk

n

)
, or:

2n+ 1 =

n∏
k=1

tan2
(

πk

2n+ 1

)
.

This equality is a special case of Eulerian
decomposition of a sine into a product [4]. When

n = 1, it is well-known: tan
π

3
=

√
3.

The eigenvector corresponding to λ0 = n
is the vector e, with “1” components. Invariant
two-dimensional subspaces, corresponding to pairs
of imaginary eigenvalues λk1,2

(10), are linear shells
of the following vector pairs:

(
1, cos

(
2πk

n

)
, ..., cos

(
2π(n− 1)k

n

))
,(

1, sin

(
2πk

n

)
, ..., sin

(
2π(n− 1)k

n

))
,

1 ≤ k ≤ n− 1

2
.

3 Odd Competitive SystemAnalysis
We will consider the n-dimensional system of
competition equations (n – odd, n > 1):

dxi
dt

= αixi

1−
n∑

j=1

mi,j
xj
x∗j

 ,mk,k = 1. (11)

Here αi is the Malthusian factor of the population
i, the environment capacity x∗i , that is the maximum
population size, which would be established in this
model if there were no other populations in it. A
matrix M = ‖mi,j‖ni,j=1 – is a competition matrix.

Its components mi,j are the double standard factors,
their meaning in the subject area of the model –
comparison of inter-population competition with the
intra-population one. So mi,j shows how many times
the competition of population j with population i is
stronger (mi,j > 1, j is intolerant for i), or vice
versa, – weaker (mi,j < 1, j is tolerant for i) than
the competition within the population j itself. Since
the competition within populations acts here as a
measurement standard, so all diagonal elements are
equal to 1.

Let us make a few assumptions for simplicity:

• Get rid of environment capacities in (11) by
moving to the relative numbers of populations
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Xi =
xi
x∗i

. This substitution is reversible,

so if we get any results then by making a
reverse substitution, we will interpret them in
terms of the initial system (11) with environment
capacities.

• Assume the same Malthusian factors: αi = α,
1 ≤ i ≤ n. This is a much more restrictive
assumption; however the author is not able to
get any meaningful results without it. Having
made this assumption, we can get rid of α in the
equations by replacing time t = ατ .

• We assume that the matrix M = ‖mi,j‖ni,j=1

in (11) is of the form (1), described by the
formula (12), because we showed above that
it produces the oscillation. M = ‖di,j‖ni,j=1,

where

di,j =

 1− (−1)j−id,
1,
1 + (−1)i−jd,

i < j;
i = j;
i > j.

(12)

Here 1 > d > 0.

As a result of the assumptions and transformations
made, we get the following system of equations:

Ẋi = Xi

1−
n∑

j=1

di,jXj

 . (13)

In the previous section it was shown that the
determinant of the matrix D = ‖di,j‖ni,j=1 is

n2dn−1 >0, so the solution of the linear equations
system

1−
n∑

j=1

di,jXj = 0

exists, is unique, equals X̄ =

(
1

n
, ...,

1

n

)
, according

to the previous section. The vector X̄ is the stationary
point of the system (13). We examine the system (13)
in a small vicinity of this stationary point. Let Xi =
X̄i + xi, where xi are small. Then, neglecting the
higher orders of smallness, we get:

ẋi = −X̄i

n∑
j=1

di,jxj = − 1

n

n∑
j=1

di,jxj ,

and after another time replacement τ =
1

n
t:

ẋi = −
n∑

j=1

di,jxj . (14)

The resulting system (14) is a linear homogeneous
system of differential equations with constant
coefficients. To solve this system, we are to find the
eigenvalues and eigenvectors of the matrix −D.

We found eigenvalues and invariant subspaces for
the matrix (1), D = ‖di,j‖ni,j=1 in the previous

section. In the equations (14) the same matrix
appears, but with a minus sign. Everything remains
true to it with the following correction: the only
real eigennumber −n and determinant −n2dn−1

now become negative; the rest, purely imaginary
eigenvalues, are still determined by the formula (10).
Also remain invariant for −D, all found for D
invariant subspaces.

The trajectory of the system (13) in the small
vicinity of the stationary point X̄ behaves as follows:
negative real eigennumber ”pulls” it into the affine
hyperplane

{
X : X = X̄ + x, (x, e) = 0

}
. This

hyperplane passes through n points

(1.0, ..., 0), (0.1, ..., 0), . . . , (0, ..., 1).

It is a direct sum of (n− 1)/2 two-dimensional
affine subspaces, in which oscillations occur with
frequencies:

d tan

(
πk

n

)
, 1 ≤ k ≤ n− 1

2
.

Recall that we twice made a time replacement: t =

ατ and τ =
1

n
t. Returning to the original time, we

get the oscillation frequencies:

αd

n
tan

(
πk

n

)
, 1 ≤ k ≤ n− 1

2
. (15)

Note that at n → ∞ is true:

αd

n
tan

π(n− 1)

2n
=

αd

n

cos
π

2n

sin
π

2n

−→
n→∞

2αd

π
. (16)

The frequency of the highest harmonic of the odd

n-dimensional systems tends to
2αd

π
, at n → ∞. The

limit frequencies of the previous harmonics will be
less in 2, 3, 4, 5,... times.

Returning to the original variables xi = x∗iXi, we
get: stationary point x̄ of system (1) has components

x̄i =
x∗i
n

, and the oscillation hyperplane passes

through the points of environment capacities:

(x∗1, 0, ..., 0), (0, x
∗
2, 0, ..., 0), . . . , (0, ..., 0, x

∗
n).

This hyperplane is the boundary of tolerance that
divides tolerant and intolerant regions in the phase
space of the system (11).
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The equation 1 −
n∑

i=1
di,j

xi

x∗
i
= 0 defines the

stationary point of the system (11). Its solution is:

(x̄1, ..., x̄n), x̄i =
x∗i
n
. (17)

The invariant subspaces in the original variables
will look like this: (x∗1, x

∗
2, ..., x

∗
n) – one-dimensional

subspace corresponding to a single real eigenvalue,
and two-dimensional subspaces corresponding to the
conjugate imaginary pairs:

(
x∗1, x

∗
2 cos 2πk

n , ..., x∗n cos
2π(n−1)k

n

)
,(

x∗1, x
∗
2 sin 2πk

n , ..., x∗n sin
2π(n−1)k

n

)
,

1 ≤ k ≤ n−1
2 .

(18)

4 Simulation Experiments
The 7-dimensional competition model was built in the
AnyLogic, [5, 6], simulation system using its System
Dynamics tools.

Figure 1: Oscillations of Three Different Frequencies
in the Small Neighborhood of the Stationary Point

According to the theory described above, three
types of oscillations with different frequencies are

possible in such a system: 3 = (7 − 1)/2.
Each of these types can be distinguished separately
by setting initial conditions in the corresponding
invariant two-dimensional subspace.

Figure 2: Oscillations of Three Different Frequencies
in the Large Neighborhood of the Stationary Point

By analogy with the “predator-prey” model, [2,7],
it is interesting to consider the potentials of individual
populations

C(xi) =
1

αi

(
lnxi −

nxi
x∗i

)
, (19)

where n = 7, and the potential of the entire system,
which is their sum

C =

n∑
i=1

1

αi

(
lnxi −

nxi
x∗i

)
. (20)

It is also interesting to check, based on the
simulation experiments, whether the potential of the
entire system is constant or not.

Let us start by highlighting the different types
of oscillations. As initial conditions, we take the
coordinates of a stationary point

(x̄1, ..., x̄n), x̄i =
x∗i
n
,
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to which we add vectors of one of the invariant
subspaces from (18) that are small in value.

Figure 3: Potentials in the Large Vicinity of
the Stationary Point, the Highest and the Lowest
Frequencies

As a result, we get three types of oscillations with
different frequencies, which are shown in Fig. 1. It
can be seen that in the small neighborhood of the
stationary point, the oscillations are indistinguishable
from harmonic ones.

Further, we show the results of experiments with
large deviations of the trajectory from the stationary
point.

In this case, the two-dimensional subspaces lose
their invariance; even if we take the initial data in
such a space, the remaining oscillation frequencies
still contribute to the trajectory. The harmonic nature
of the oscillations is also disrupted (Fig. 2).

When deviations of the trajectory from the
stationary point are small, the values of the
populations’ potentials (19) are approximately
equal to their value at the stationary point and
practically do not change.

It is interesting to consider the dynamics of the
populations’ potentials (19) and the potential of the
entire system (20), when the deviations from the
stationary point are sufficiently large. We see in Fig.
3, that the system potential remains constant (we took
the highest and lowest frequencies).

Finally, let us take arbitrary initial data. In
addition, we let the Malthusian factors be different.

We see that the potential of the entire system
(20) remains constant even with unequal Malthusian
coefficients and arbitrary (non-owned to invariant
subspaces) initial data. Whereas the potentials of

individual populations fluctuate in Fig. 3 and Fig. 4.

Figure 4: Oscillation and Potentials in the Large
Vicinity with Different Malthusian Factors

In contrast to Fig. 3, where the potentials of the
populations are approximately the same, in Fig. 4
they differ in magnitude markedly. This is because
the Malthusian factors differ, see (19).

5 Simulating Multidimensional Odd

Competition by Cellular Automata
In the work [8], a description of the cell automatic
analog of the multidimensional competition model
was given. Let us quote from there the rules of
automata dynamics.

Figure 5: Working Area of 5-Dimensional Cellular
Automata. Five different agents are outlined

For any cell, we will enter a parameter Pj –

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2025.24.18 Yury Brodsky

E-ISSN: 2224-2880 187 Volume 24, 2025



competitive pressure force of the j-th population. It
equals the sum of the agents of j-th type in the Moore
vicinity of that cell.

Figure 6: Oscillation in 5-Dimensional Cellular
Automata

The cellular automata field has a square,
toroidal-closed shape (Fig. 5). Each cell either
contains an agent of one of the five types, or remains
empty.

At each simulation step, for each agent:

1. The competitive pressure K on the cell in which
this agent (of some type i) is located is calculated.
In this case, this means the sum of the products
of the double standard factor mi,j (attitude of
the agent j towards the currently processed agent
i) by Pj , where j runs through all types of
agents located in the Moore vicinity. If it turns
out to be greater than or equal to Ki, – the
death threshold, then the agent dies (and the
subsequent rules do not apply to it). Here Ki

indicates resistance to the competition for the
i-th population – a parameter describing the
minimum level of competitive pressure that the
agent cannot withstand.

2. If there is at least one free cell near the agent, then
it passes into a random free cell.

3. The age of an agent increases by one. If an
agent reaches the reproduction age, its age is
reset to zero, – and a descendant is created in the
abandoned cell of the same type with zero age.

It can be shown that the reproduction age is
reciprocal to the Malthusian coefficient, i.e., α =
1/3 = 0.33. In our case, d = 0.3. Hence, the short
oscillation period is approximately 100, and the long
one is approximately 430, according to the formula
for the highest frequency, following from (15): ≈
2αd

π
. This is what we see in the top half of Fig. 6.

Now increase the Malthusian factor; reduce the
reproduction age to 2, then α = 1/2 = 0.5. Now the
shorter oscillation period should decrease to about 70,
which we see at the bottom of Fig. 6.

6 Conclusion
The analysis of the odd n-dimensional system (11)
with the double standard matrix of the type (1) shows
that there are (n− 1)/2 oscillations with frequencies
given by (15) near the stationary point (17), and
two-dimensional invariant subspaces are given by
(18).

We can relax the rigid assumptions in numerical
experiments. For example, you can allow the
Malthusian factors to be different (Fig. 4). We see
that the oscillations remain.

Striving for the limit of the highest frequency (16)
is interesting. This means that at large dimensions,
oscillations with approximately the same frequencies
are noticeable in competitive systems. For example,
the cycles of Kitchin (3-4 years), Zhuglyar (7-11
years), Kuznets (15-25 years), and Kondratiev (45-60
years) are noticeable in the economy, [9] and [10].
The ratios between periods are about the same as in
9 and 11 dimensional systems of our type. Perhaps
the cyclical nature of the economy is due, among
other things, to competition, with some a bit smaller
(related parties) and others – larger (competitors).

Simulation experiments show that in odd
competitive systems of the form (11) with the
double standard matrix of the type (1), the potential
of the system (20) conserves on the trajectory. At
the same time, the populations exchange part of their

potential (19) with each other (Fig. 3 and Fig. 4).

Odd five-dimensional competition equations
are implemented in the environment of cellular
automata, [8]. The adequacy of this implementation
is proved by the existence of such a subtle effect as
oscillations and a good correspondence between the
theoretical and observed oscillation periods.

As a side result, an interesting identity is obtained.
It turns out that any odd number is a complete square,
although not of integers, but still of very familiar
quantities: tangents of the first quadrant angles.

2n+ 1 =

n∏
k=1

tan2
(

πk

2n+ 1

)
.
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 For example, a New Year’s theme:

2025 =

1012∏
k=1

tan2
(

πk

2025

)
=

22∏
k=1

tan4
(
πk

45

)
.
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