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Abstract: - The aim of this research to study the approximation of functions in the space- L,, by the “algebraic
polynomial” in terms of the” average modulus” of the k-order also, we will estimate the degree of the (O-S- A),
(means one — sided approximation) in term of averaged modulus where all the results which number is eleven
we need to prove the main theorem that (the degree of best (O-S- A) of f by trigonometric polynomials of
order n in L ,(X), (E,(f)p) ) is less than or equal to (Averaged modulus of smoothness of f of order-

k, (g ( f ,%) ) ) have been proven, It has also been proven the converse theorem for the main theorem in this
P

research.
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1 Introduction this paper we will prove the degree of best (O-S- A)
(O-S- A) was studied with unity space in in L, -space of f by trigonometric polynomials of order n in
and quadrature formulae, [1]. Also the problem of L ,(X) less than or equal to the integral modulus
the uniqueness of elements of the best of f of order , and the Converse theorem. While
approximations in the Ly[a,b] space has been most of the previous studies are about the
studied and the problem of the best relationship between the function and its best
approximation, the best (a,B)-approximation of approximation and the amount of difference‘between
continuous functions and the problem of the (O-S- them, they were able to prove that the difference
A), of continuously differentiable functions have between the function anq 1ts.best approximation
been analyzed, [2]. On the other hand, (O-S- A) was goes to zero when n go to infinity. So, regarding the

topic of this paper, we need the following definition:

presented in L, —norm and the difference degree _ :
Let L ,(Y) [8] is the space of all bounded functions

between the function and the polynomials used in

the research has been obtained, for more with the norm: )
information, [3]. Also, some researchers got the (O- _ _ NP
S- A) of the form W} of differentiable functions by” gl p = lgl» = (fY lgIP) " <,

algebraic  polynomials”  in( L; —space), [4]. Y =[a,b] 1 sp <o

Moreover, authors studied polynomials of the (O-S-
A) to a step function on [-1,1], and they proved that .
polynomials are obtained by Hermite interpolation at 2 Main Results

the zeros of some quasi-orthogonal Jacobi In this paper we will obtain the degree of the best

polynomial, [5]. After that, in 2016 a study, (O-S- A) of periodic bounded function in L ,(X) —

obtained, the (O-S- A) of functions of several space X = [0, 2r]. Also, we will estimate the degree

variables, by HAAR Polynomials by modulus of of the best (O-S- A) in term of averaged modulus.

continuity w, (f, x), [6]. Before we state our main results, we need the
In the same year, two researchers studied following notes and lemmas.

positive factors for the(O-S-A) of the infinite
functions in the weighted _space_L,,(X) and
provided an estimate of the degree of the (O-S- A) in
terms of the mean continuity coefficient, [7]. Now in

Integral modulus of f of order k,d € [0, b%a] is
defined by:
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1/P

0 (f,8)
= sup (f77"|ak foo| " ax) )
0< h<é

The local of smoothness for f of order k at
point x € [a,b],d € [0, b;ka] is defined by:

wk(flxid)p: Sup|h|<6 {”AZf(t)” pt: t, t+kh
e[x-2 . x+2]n [a,b] } 2)

_i kS .
where AF f () =3k (§) (D' f(x-—+ih)
, X F % € X, is the difference of a function f of
order k with step h at a point x . Averaged modulus
of smoothness of f of order- k is defined by:

T (F8)p= o (f .0l p, PE[T, ),
keN 3)

Now,

Let f €L ,(X) , X = [0, 2], f is bounded 27 —
periodic function, then the degree of best (O-S- A)
of f by trigonometric polynomials of order n in
L (X)) is defined by:

Fn(f)p =
lnf{” Pn — qn”p:qn (x),pn (x) € B, ;} 4)
D @ < f0 < pe®

where [, is the set of all real trigonometric
polynomials of order n. Also, the degree of best
approximation of a function f € L, (X) is define by:
E,= inf Il f = pall,.

Pn€ By

Lemmal:

Letf €L ,(X),X = [0, 2m], then
En(f)p <E.(f)p (5)

Proof:

Consider q,, p, be the best (O-S- A) of , were

9n(x) < f(x) < pn(x)

Ep(f) =inf {|[f— pn”p :Pn € By}

=inf {f, ACf = pa) (@) P dx) i p, € B}
nenN

< inf {Uy U= @) P dx))7 i py € B,
NneN

= ﬂ ”pn_Qn”p = E?L(f)p u

nenN

Lemma 2:
Let f €L, (X),X=[0,2mr]. Then

E.(f)p < Cp Ep(f)
C, 1s a constant depending on p

(6)
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Proof:
Consider p*(x) € T, is the best approximation of f
€L,(X) ands;, s, €T, are the best (O-S- A) of f
such that s,(x) < f(x) < s1(x)
E:r;;(f)p =[ls1(x) = s2(0)l,
En(F) p=lls1(x) — s2(x) + f(x) — f(x) —
P (x) +p (Il p
= (S50 = 5200+ f() = f(x) —p*(x) +
p*(0)][Pdx )" )

< (Jll(s1(0) = 52 GNP edx ) T+

UL ILCFCO =" ColPdx ) Vo + (GG —
p*(0)]IPdx ) ho<If - pillptllf = p*ll ptlls: —
52” P
< 2En (f)p+||51 - 52” D < Cp En (f) P u

Lemmaa3:

Letf, g, € L,(X), be2m—periodic functions,
C, is constant depends on p. if [ (x) — g(x)] |
< ¢ (x) Then

En(f)p < Cp (En(9)p + 2E0(@)pt llollp) (7)

Proof:
Let p;, is the best approximation of f and g;, is the
best approximation of ¢:

Ea(F)p= inf If=pall, =If=pill,

pn € By
1
= (J,If =i IPx) "
Jf+g+o+g, —9— ¢— g
plPd x)'/p

1

/
<(felg—pardx) ™ +(f, 10f -

1 1/

g)l”dx)/p+(fx (p—gn)Pdx) " +
(ol (o= gidlPdx) "
< NCg —pdll, + 1S =l + (e -
g, HICe = gn)ll,
< By ()5 10lly + 2B2(0) p + Bnl0)
< GoEn(@)p+ Il +2E, (@), by (6). Then
E, (f )p SCp En(g)p+||(/’||p +2En(¢’)p.

Lemma4:
Letf € L,(X) ,X=[0,2m], then
w(f,6)p =w1(f,x)p <6 ||f||p

where £ first derivative of f

(8)
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Proof:

@ (f,6) p=sup ||} f(-)||,1, =
21 D /P

sup. (5718% (D@ dx)

1
= sup ([N + ) =~ (HCOW dx)
0<hsé

s (Do @)

0<hs<

1
x+ ™ /
= [ (D@ dx) 7 e
<MIFOl,de < rIFOl,< 6 |17,

Lemmab:
Letf € L,(X) ,X =[0.2r] , with wy (f,x,h), is
a function of x , then

t(wp (F0h),8)p <14 (f,h +§) )
k 14

Proof:
Letg (x) TW (f'x'h)'a)p (10)
5
w1 (g9,x,8)p=sup { |Aég(t) | tttO€Ex--

5
Xt
=sup{|(g(t+9)—g(t))|:t,t+9€[x—
+SN<sup { (@) tex-2 x+2]

)
2%

Then by (2) and (10) we get:

w1 (g,%,8)p < sup { |AL ()]s, s+kme
5§ kh 5§  kh

[x-5— 5. x+t;— =1

k
—we (fx,h +2), .

By taking the norm tow sided we get that
k
||a)1 (g,x,d)p”ps ” wi (f,x,h + E)Z’” >
By (3) we get:
k
T (g,x,h,8)p<Tt(f,x,h + 5)7"

From (10) we have:

k
Tk F x,0),8)p <7 (L, h + E)p ]

Lemmaé:
Letf € L,(X) , f exists, then:

w (8 < e (£, 756) A
Proof:

since A X[(f)(®) 1=A K AL[(H®)]
=AM IOE+ R - (HOD
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=AM @+ D]du) b >0
BEIH@N < f 1A @+ o)|du.

Taking the supremum and integral both sides we get

sup {|[AK[(AON] e t+khex-2 x +2

J<sup { [y |A%71(F0,)~(u + )dul} N [ a, b]
w ( f,x_; §)p Shwg_1 (f,x;8), <
Swi—1 (f,x; 8)p,

lwe—1 (frx56) lp S(S”wk—l(f'x; 5) ”p

T (f,6) p <6 Tuer (frrs 8) M

Lemmar:
Let f €L,(X) ,X=[0,2n],68 =0 then

u (f.6), <6| fl (12)

p

Proof:

w1 (fx,8) p=sup {ILf (s1) = f(s)] l: 51,5, €
k=3 x + F1sw {|0)™ @ dt -

S1,S, € [x—g,x+§]} < fx s

()~ @1 de= [%1()™ (x + )] dt.

Then

w1 (F,x,8) ||p < J% N e+ 0llpdt
Thenrl(f,6)ps6||f||pl

N[>

Lemma8:
For f € L,(X), C(k)is constant depends on k.

Then T, (f ,8), < C(k) 6% ||f(k)||p (13)

Proof:
From (11), we get:
= k
T (F18) p <8 et (Frs 6),
<86 T2 ()75 8) p <685

Ti-3( ()= 1= 8)
<&k 1, (F*kV,26 )p.
where (f)= ,is the third derivative of f. From (12),
we get:
T (f,6)p < k1, (F*-1,26 )p <
285 IF Ol < ety 6* [|F 1,
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Lemma 9:
For every natural number kand §,0 < § < 2r/k,
there exists a function fy 5 € L,(X) ,
X = [a, b] with the properties:
i fG) = fis )] < Gk
wi (f,x,26)
i |IfCO) = fs (-)||p < CGlkowg (f,6)p

1
(I R OF A L PN
1,2, k.

Proof:
i. Define the function fj, s, [9], such that:

frs=(= 8 7 - [U(G) - (x+

k—time

Lt (O S v ¢

S EDRE ) (r s+
te ) )} dty ... dt.
| £(0) - fis() | <5

[N

k
(tl,...?—tk )k (f)(x)|dt1 dt, <
wi (f x5 28),.
If - fusll, <
1 6 1) k
0o ey Lo on D@ dtr ... dnc <

¢1 Wi (f, 8 )pa, -Now , for the derivative of order

7 of the function f} 5 ,we have:

1 e 2 5 ()
(18, (00 S )

() (k_"l) (1) My () (x +
@ e 1E () (B 5 ()
(x4 (B )} TTE, dts

[ASN, < 5 fo - Sotlas £ e+ ke
OGN

(5)kf

(k 1

T,

A Ge-1ys 1)6f x+— i )]

ot (KT Agf(x‘k p
rox =g ‘ I dt

IS = 5 ¢ o (f8) + () (KD
o (f, (k- 3L

(DK 0 (£ D} ST 50 (,8), m
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Lemma.10:

Consider the function f where:
fEL,(X),X=[0,2r],1 < p <
oo, Cis a constant we have:

Ea(fp <CTi(fs ) p
Where C= (r + 1)(4C, + 1).

(14)

Proof:
Let x; =in/n, i =0,1,2,--

1,2,--2n yYon+1 = V1
define the following 2m — periodic functions y,,and

By, with the following specifications:

Xi—1+X;

z’i:

2n y; =

Yn(x) =
sup{(f)(®) : t € [x;—q,
max{yn, ¥, ¥ai+1)}
Vn(o) = Y (2m)

x;]},forx =

Bn(x) =
inf{(f)(®): t€

[xi—1,

Bn(0) = Bn(2m)
y(x) and B (x) are continuous functions for x €
[xi—1, ¥i],x € [y;i, x;], respectively, i =
1,2, 2n.
Yn(x)and S, (x)are differentiable functions on [0, 2
1] except eventually at the points
x;,i=0,...2nandy; ,i = 1,..n

Wenote ¥,(x) < f (x) <Bp(x),x €[0,2r]
Since S,(x) is differentiable function in (y;, x; ),
there exist x € (y;, x; ), such that:

,Bn( ) — Bn(yl+1) Bn(yl) H— 1,2,”‘,2‘”
Yi+1— Vi
Letxl /n X -1~ (lTl)n:xi+1:(H;11)T[: izoa
..2n
yi: (Xi—12+Xi ) , yi+1 — (x; +;i+1) , i= 1’2"_. n
, then
ir | (i+1m
G+ xipn) (gt x) om0
Yit1 — Yi= = 2x1+1 - = 12 = > -
(i-1)m +i_71:
n2 no n/n
- _ BnWis1)—Bn (Vi) _ BnVis1)—Bn (Vi)
ﬁn (x) - Yit1— ¥i B m/n ’
Let n/m =k,

Br (x) = kn[Bn(Vit1) — Bn ()]

1B ()| < knlBn(Vir1) — Bn (Y] <

kn sup{l{(H) i+1) — DI .

< ky sup { ||A% £ () ||p}S kn i (f,x, 2)p

By taking the norm tow sided we get the following:

Volume 23, 2024
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1B7C) lp < [|Ca o (£, 200,
Cuty (f, % )p - which means

187 Iy < Cor (£, %)

p

(15)

Also:
Since y,(x) is differentiable function in (y;, x; ),

there exist x € (y;, x; ), such that:
1Ot )= ¥n W) _ ¥n Oir)=¥n G0

Y () Yirr— ¥i n/n E=12
.L2n.

Vo (x) = (¥n (yi+1)7;)’n ))n .

Letn/m =C,

Yn (%) = Cal¥n i) — ¥n )]
Iyn_(x) | < Cann (yi+1) —Vn (Yi)l <
Casup{|[[(N Bi+1) — (OO -

= Cysup { ||AL f () ||p < kpwr (f %, 2 ) p

By taken the norm tow sided we get the following:
i () Uy < | w01 (Fx, 2 10,
I () llp < Cut (F, = D

(16)

On the other hand:

0 < ¥n(x) Bn(x)= sup{(f)(®) : t € [x;—1,x ]} -
inf{(f)(®) : t € [x;i_1, %]}

< sup{(HN ) = (NCxi-D} = w1 (F1x, 1) p

By taking the norm for both sides we get the
following:

1) =B, < || 01 (F1x,2) 5 5,
(o

p

(17)

Using (15), (16) and (17) we have:
Evn(f)p:inanN”ﬁn - Vn”p <8 — Vn”p =
IBn—Br +Bn +vn —¥n — Wallp < ll=Ball, +
Bzl + v llp + =y llp + 11Bn — Yall, <

2C, 11 (f,n%)p +2C, 14 (f,n%)p +

T, (f,n%)p.

Then by using:

(e (F 18)p < 2(u+ ¥t (f,8),), [10], for =
1), we get:

En(f)p = 4Ca(m + 1)1y (f,%)p +4Cy(m + 1)
T (f,%)p +2(mr+ 1)1y (f,%)p
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=8C,(m + 1)1y (f,%)p +2(m+ Dy (f,;)p =
(m+1)(4C, + D1y (f,7)pm

Lemmall:
Letf € L,(X), X=[0,21], gy (x) =
wi (f ,x,n71) ,, then
E(gn)p <
1
Cre (f.3) (18)

C is a constant.

Proof:

From (10) letting h =4 :% ,
‘rk(f,%)p from (14) get
= 1 1

En(gn)p SCTl(gn';)p Scrk(fr;)p u

1
we have, T (gn,2) p <

3 Main Results: Direct Theorem:
Theorem12:

Let f € L,(X) ,for every natural number k, there is
a constant C (p, k)Depends on p and k such that:

En(Hp <C @, 0)7(f 1)y (19)

Proof:
Applying (7) for the functions , fi s and @(x) =

o201, _
En(f)p < Cp(En(fk,5 )p + 2En(§0)p +

2ll9@llp) = (BaUfis ) p + 2En( @) p+
2l|w(f 20 =10, )-

Using (18) with % =§ we get:

En(f)p SCEq(fi 5 ) p +2Cmi(f, 6)p,2G
T (f,6)p (20)

From lemma (9, iii, for r = k), we get
= 13
En(fes Do < C WD < itk one(r .8, <

Ca(k) 11 (f 1 8)p (21)
From (20) and (21), we get:
En(f dpa, <CoAR)Tic (f ,8)p,a, + 2G,
T (f 1 6)pa,

+2C,Ty (f,8), < [4C, + C2 ()] T4 (f,8), < C
k) ©w (f,6), W
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Converse theorem:
Theorem13:
Let f € L,(X) , then there is C( k ), such that:

n(f, n—1), <5230 (s + D E(),

Proof:
Let8,.9,, € [, aretrigonometric polynomials

En(f )p=inf 16 = Onllp, On(x) < f () <
nenN

6, (x), x€[0,2m]

If A¥ (f) (t) = 0, then:
AR () (0 =2k D™ (5) () (t+ (k -m)h)
< T80 O (b + Gk —2Dh) = %55 )
9, (t+(k—2i —1)h)
= 4 6, () — {ZE V20K ) (0n (e + (k—2i-
Dh) +09, (t + (k—Zl—l)h)}}
= A 0,0 =S VPE ) {6, + (k- 2i-
Dh) +9,(t + (k—=2i—1)h) —[6, (x) —
9, (x)]}+z(" DK Y16, (1) = 9, ()]
< A" 0, — 2k { wq (6, — ﬁn,x;kcﬁ)p,anﬂL [
6, (x) — 9,01}
A% (f0n) (O] < |AF 6,(0) |[+2¥[w; (6, —
O X 5 k8) 5, 160 (X) — 9, (0] (22)

Now if A¥ (f) (t) < 0, then in the same way, we
obtain:

A% () ®] < [8F 9 (D [+2"[w1 (6 -

Un x5 k8)p + [ 6 (x) — 95 (x)] (23)
Equations (22) and (23), we get:

(‘)k(f X, 5)p wk(en'x 6)1}

Wi O, x,8) pt+ 2K[wy (6 — T, x, 8), -

|9n(X) - 1911(75)”

Taking the norm for the both sides:
Tk (f ’ 8)p < Tk (Gn ’ 6)p+f£ (7-9n: 6)p
+2k[71 (en - 19n , k5) 14 + En(f )p]

From (12), we get:
Ty (On =90,k 8)p <k 6116 —9n) "Il

Using the Bernstein inequality for 8,, and 9,, € [,
Then:
Ty (6 — 9, k6) , < nk |0,

En(f )p.

Then

— Opll,=k& n
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T (f,6) p < T (01, 8) p+Tc (s 6) pt 2k (kén +
D E(f )p

By using method of Salem Steckin, [9],

witht (f + 9,6) p < 7 (f, 6) p + 71 (9,0) p»
[10]. Let us set n =250

T (f,8)p S T2yl T (06 — O0-1,8) +

Tp (950 — i1 ,6)p]+rk (61 - 6 ,5)p +
T (01— 99,6 )p + 2% (k én +
1)E(f )y (24)
Now

k
T (050 = O5-1,8) <6 ||(050 = 0,01) ”,,

< k&2 |6, - =k&k 2t
O —f+f1|,
k52 [lo— £+ 0, £l <
kg2t [”921' - 192"”,, + || 61 - I92"‘1”70]

— k%24 [Ep(f ) + Eza (f ) ]

Hzi‘lll ”92i -
p

Then '
T (01 = 04-1,8) ) < 2k6¥2%Epa (f ), (25)
T (90 = Dyt ,6)p < k6™ [| (96 -

k ,
91 ) ||p < k6*2% (|0, = 0,0

< ks*2ik [[[9,— f I, + 1 9z-a— f ||p] <

k8520 (10,0 = Oall | + 11851 = 001 |
Then
T (0,50 — Oyic1,8)p < 2k6*2KEp (), (26)

from (24), (25) and (26), we get:

Tk (f' 6)1) < 4ks* 2121 2k E—Z\‘:(f) p+
2k6*Eg(F)y + 2% (kdn + 1) En (),

T (f 6)p < 454 k8* 2 o(s + DFVE(f), +
2K (kén + 1) E(f ),, taking 6 =n"", we get:

T (F,8)p < 44 Uen™* B2 o(s + DF 1 EL(f)
P2k DB () < 2FH 0k B (s + DFT

E(pti (f,8)p <230 o(s + 1)+
Es(f )p 27)n

The following corollary characterize the best
(O-S- A) in L, —space by averaged moduli of
smoothness 7y (f,6), and moduli of smoothness
Wi (f, 8)p in Ly (X).

Corollaryl4:
Letf €L,(X) ,X=[0,2n],p=1 then
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T (f, 8)p= 0 (6%) if f En(f )p = O(n™)

Proof:
Let E,(f )p, = O(n™%) by (27) we get:
T(f Dy = S Tho(s + D E(f)y =

To(s+ 1)k_1 oOn™%),put: n = %

T (f, 6)p = % Yo=o(s + 1)k_1 O (6%) , then
T (f, 6)p = O (8%).

Now let 7y (f,8),= 0 (6%) , from(19)

Ey(f )p < C(p, )t (f ,8)p =C (p, k) O (6%),
taking & =~ Then E,(f ), =O(n™%) M

c(k)
“nk

4 Discussion and Conclusion

Through this research, we got the degree of the best
(O-S- A) of periodic bounded function in L ,(X) —
space. X = [0, 2r]. Also, we estimate the degree of
the best (O-S- A) in term of averaged modulus. As
well as the relationship between the degree of the
best (O-S- A), of the function fand averaged
modulus of order k.

5 Future Work

Our future work will be ((O-S- A), of the function
f) by g-Bernstein-Kantorovich Operator on the
Sobolev space which is Hilbert space.
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