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1 Introduction
The short pulse equation reads

Oy (8tu + q@xug’) = bu, ¢, beR, (1)

and has beed deduced in several context

 in [1]] for the nonlinear propagation of optical
pulses of a few oscillations duration in dielectric
media,

e in [2]] for the propagation of ultra-short light
pulses in silica optical fibers,

o in 3], [4], [5], [6], [[7]], [8] as non-slowly-varying
envelope approximation model that describes the
physics of few-cycle-pulse optical solitons,

* in [9], [[1O], [11] for pseudospherical surfaces,

* in [[12]] for the short pulse propagation in
nonlinear metamaterials characterized by a weak
Kerr-type nonlinearity in their dielectric
response,

* in [13]], [14]] in the context of plasma physics,
* in [15]], [16] for the dynamics of radiating gases,

e in [[17]], [18]], [19] for ultrafast pulse
propagation in a mode-locked laser cavity in the
few-femtosecond pulse regime.
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The mathematical features of (I)) have been widely
studied

* the wellposedness of the Cauchy problem in the
context of energy spaces can be found in [20],
[21], [22],

* the wellposedness of the Cauchy problem in the
context of entropy solution can be found in [23]],
[24], [25],

+ the wellposedness of the homogeneous initial
boundary value problem is in [26],

* the convergence of a finite difference numerical
scheme is studied in [27]).

Here we regularize (] with the following nonlocal
problem

Ou + q0,v = bP, t>0,x€R,

0P = u, t>0,z€R,
ad*v 4 BOv +yw =rud, t>0,z€R, (2)
P(t,0) =0, t>0,

u(0, ) = up(z), x €R,

where ¢, b, o, B, v, kK € R.
Nonlocal regularizations are widely used for
conservation laws

* inthe context of traffic flow [28]], [29], [30], [31]],
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* in the context of sedimentation [32]],
* in the context of slow erosion [33]], [34],

* in the context of the linearly polarized continuum
spectrum pulses in optical waveguides [35]], [36]].

Coherently with [23]], [24], [37],[38]].

¢ on the initial datum we assume

ug € L'(R) N L>(R), / ug(z)dr = 0; (3)
R

¢ on the function
R = [ wdy, @

we assume that

/RPO(:U)dx
= /R (/IOo uo(y)dy> dx =0, )

1Po 172 (ry

:A([;m@u@im<m;

* on the constants ¢, b, «, 3, 7y, Kk, we assume that

bzzfi o Bk £0,  (6)

or

b= ,)/7 o= =7, /3:07 77&0 (7)

Since in (6) and (6) we assume a # 0, it is not
restrictive to set it equal to 1. The assumptions (6)
and are necessary to keep the solutions of (2) in
the energy space.

The main result of this paper is the following
theorem.

Theorem 1.1 Assume (@), ), @), and (6) or (7).
There exists a distributional solution (u, v, P) of
such that

u € L®((0,T) x R)N L*>(0,T; L*(R)),

v e H?((0,T) x R) N L>®(0,T; H*(R))N
AW ((0,T) x R)N
NL>®(0,T; W% (R)),

Opu € L(0,T; WH2(R))N (8)
NL>(0,T; H'(R)),

010zv € L*(0,T; L°(R))N
NL>(0,T; L*(R)),

P e L>((0,T) x R)N L>(0,T; L*(R)).

forevery T > 0.
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The well-posedness of (2) was proved in [39]] and
[35]] under the assumption:

ug € L'(R) N H?*(R), ©)

and
ug € LY(R) N H'(R), (10

respectively. Finally, we observe that the assumptions
(3], (@) and (3)) are the ones used in [23]], [24] in order
to prove the well-posedness of entropy solutions of

(1)-

The remaining part of the manuscript is organized
as follows. Section [2|is dedicated to several a priori
estimates on a vanishing viscosity approximation of
(2). Those play a key role in the proof of our main
result, that is given in Section[3]

2 Vanishing Viscosity Approximation

Our existence argument is based on passing to the
limit in a vanishing viscosity approximation of (2).

Fix a small number 0 < ¢ < 1 and let u. =
ue(t, x) be the unique classical solution of the

following mixed problem, [40]:

Ovue + qOrve = bP- + 683%,
0. P: = ue,
ad?v. 4 BOv. + Yve = Kud, (11)
Pe(tv 0) =0,
us(0,z) = ueo(x),
where ¢t > 0, z € R and u, ¢ is a C'°° approximation
of ug such that

loteol ey < Il ey
||UE,OHL2(R) < ”uOHLZ(R),
Ueo(z)dr = 0,

R

[1£2,0 L2(R) < ||P0HL2(R) )

/I;Ps,()(l‘)dm =0,

Ve 19sue ol 2 g, (12)
+\/5 ||8%U5,0||22(R) < CO

3 2 _

€ |Lamu€,0||L2(R) )

+5\/5 ||a;1u5:0”L2(R) < C,

\/5 ”8t8:pus, 0||L2(R < 007
ue, 0 — uo(x) in Lj, (R) and a.e. in R,

and C is a constant independent on €.

Let us prove some a priori estimates on u,., P- and
ve. We denote with C the constants which depend
only on the initial data, and with C'(T"), the constants
which depend also on 7.

Following [5, Lemma 2.1], we prove the following
result.
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Lemma 2.1 For eacht > 0, we have that

P.(t,—o0) = P:(t,0) =0,
0 e
[mug(,x) T /0 ue(t, z)dxr = 0, (13)
ues(t, z)dxr = 0.
R
Remark 2.1 In light of (I3), we have that
x x
Pta) = [ustyydy = [ weltydn. (14)
—0oQ
Proof of Lemma[2.1}, We begin by proving
P.(t, —o0) = 0. (15)
Thanks to the smoothness of u., from the first
equation of (IT]), we have
lim (Qpue + qOyve) = bP-(t,—00) =0, (16)
T——00
that is (I3)).
In a similar way, we can prove that
Ps(t, ) = 0. (17)

15) and (7 give (T3

We prove (13| . Integratlng the second equation of
(11)) (0, x), again by (11)), we have

P.(t,x) = / ue(t,y)dy.
0
(13) follows from (I3]) and (I8).

Finally, we prove (I3). We begin by observing
that, by (13)),
0
I

Therefore, by and (19),

0
—00

that is (I3)). #

Following [35 Lemma 2.5], we have the
following result.

Lemma 2.2 For eacht > 0, we have that
/ P.(t,z) —latPE(t,O)
b v (t,0) + Ea e (t, 0),
/0 P.(t,2)d = =3 OiP.(t,0)z

Lo (t,0) + %&cus(t, 0),

b
/ P.(t,x)dx = 0.
R

(18)

ue(t, z)dr = 0. (19)

(t,x)dx —i—/oo ue(t, x)dx
9 (20)

ue (t, x)dz
R

0,

21
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Proof. We begin by proving (21)). Integrating the first
equation on (0, z), we have that

jg O (t, y)dy + qu-(t, z) — qua(t,0)
—e0,uc(t, ) + edyue(t,0)
iy /O P.(t,y)dy.

By (13)), we obtain that
d —00
/ ue (t, x)dz

—/ Opue(t, z)d

Moreover, the regularity of u. and v, give

— edyuc(t,z)) = 0.

(22)

(23)

lim_(qu.(t,) (24)

Therefore, by (22), (23) and (24),
b / P.(t,y)dy = —que(t,0) + edyuc(t,0), (25)
0

which gives (21

(21).
We prove. Observe that by (I3,

d/ ua(t,x)da::/ Opue(t, x)dx =0, (26)
dt Jo 0

while, thanks to the regularity of u., v.,

lim (que(t, z) — edpuc(t,z)) =0.  (27)
follows from , and (27
Flnally, d (21)) give @21). Q

Arguing as in [39 Lemma 2.2], we have the following
result.

Lemma 2.3 We have that

/ u38 ) Uedx
R

{ua%<my® @8)
0,

if (6) holds,
if (7) holds.

We continue with some L? type estimates of the
solution.

Lemma 2.4 Let T > 0. If () or (7) hold

[ue(t, ) sy < C(T),
[1P=(t, )l L2 ry < C(T),

Husgt, WNrzw < C(T),
e | (udpue)(s,)l[72r) ds < O(T),

= [ el )y ds < OO,

Nary

29)

e | ||0zue(s ds < C(T),
0
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for every 0 < t < T. In particular, if (6) holds, we
have

Hava( Mz wy ds < C(T),

1Pl oo 0,7y xR) < C(T),

forevery 0 <t <T.

(30)

Proof. We begin by observing that, thanks to (21}, we
can consider the following function:

x
Fut,2) = / P.(t,y)dy. 31)
— 00
Integrating the second equation of on (—oo, z),

thanks and Remark we have the following
equation:

O P-(t, x) + qua(t, x)

= bF.(t,z) + e0yuc(t, ). (32)

Therefore, arguing as in [39, Lemma 2.3], we have

7 and . ‘

A key role in our compactness argument is played
by the following a priori estimates.

Lemma 2.5 Assume (6) or (7). Let T > 0. We have
that

10z ve (t, ) e ) < C(T),
o 1020 (&, )| L2 r) < C(T),
Jo-(t, Wiz wy» [1ve(t ) 2wy

(33)
<C(T),

forevery 0 <t <T.

Proof. Let 0 <t < T. We begin by observing that,
thanks to and the Young inequality, we have that

wud(t,-) € L'(R), 0<t<T. (34)

Therefore, by [35, Lemma 2.1], holds. &

Arguing as in [5, Lemma 2.6] and [35, Lemma
2.8], we have the following result.

Lemma 2.6 Assume (6) or (7). We have that

HUEHLOO ((0,7)xR) <C( );
C(

9% v L°°((0T )XR) =
107ve (8, )| 2wy < C(T),

)s (35)

forevery 0 <t <T.

In the next lemma we prove an H' energy
estimate.
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Lemma 2.7 Assume (6) or (7). FixT > 0. We have
that

Ve [[Orue(t, )Hp R)

+2€\fe/
<o),

2 gs (36)

L*(R)

2ue(s, )|

forevery 0 <t <T.

Proof. Multiplying the first equation of ( (1) by
—2./202u., an integration on R gives

VE g 100us(t, ) 172 R)
+2e/E ||02u.(t,

= 2\51)/

R

—Qqﬁ/ 8gu56mvsdx.
R

Observe that, by and (13),

Mzemy

Pga,]cueda: (37

2% / P.0%u.d
R

—2b | O0,P:0,u.dx
= —2bfugaxu5dx =0.
R

(38)

Moreover,

2qﬁ/ qusamvgdm
R

(39)
—2q\@/ Bzugagvadx.
R

Consequently, by (37),

\[dt [0z ue (2, )HL2 R)
+2e1/2 [|0Fue t, HL2 (R)

(40)
—Zqﬁ/ Opu02v.dz.
R

Since 0 < € < 1, thanks to and the Young
inequality,

2\@“1’/ |Orte||Oxve|d

= 2\/5/R |0puc || q02ve | da
< Ve [[Oruc(t,

+veq 0z (t, )| e ry
< Ve llOzue(t, )HL2 (R)

+¢? [|9Fv-(t ||L2(R)
< Ve || Opus(t, )HL2 ® +C().

Mz w

(41)
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Therefore, by (@0),

\[dt | Oz ue (2, )”L2 )

£eE et ) @
< VE|Opue(t, )||L2(R +C(T).
The Gronwall Lemma and (12)) give
Ve |0z ue(t, )||L2(R )
+2e/eet /0 e xug(s,-)‘ R ds  (43)

t
< Coel + C(T)et/ e *ds < C(T),
0

which gives (36). &

The following lemma gives an estimate on the
blow-up of the H?3 norm of the solution.

Lemma 2.8 Assume (6) or (7). We have that

2
by < CD).

x’UE(t, )‘

(44)

forevery 0 <t <T.

Proof. Differentiating the third equation of with
respect to z, we have

aﬁgvs + ﬂ@iva + Y00 = 3Hu§8mu€. (45)
Since
Ue (t, £00) = Opuc(t, £00)
= ve(t, £00) = Oyve(t, £00) (46)
= 92v.(t, +00) = 0,
then
OPv.(t, £00) = 0. (47)

Multiplying by 2a£d3v. an integration on R of
(45| gives

2v/ea? || 93v.(t,
= Gfa/i/
—2/zaf / 020 0. dx
~2yEay [ Osv.0lv.de,

Miowy
U 2 uea vedx
(48)

Observe that, by ([@7),

—2ﬁaﬁ/ 02v.03v.dx

49
= /eaf /R(?x(agvs)Q =0, @
R
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and

—2[&7/ D003 dx

= 2y/eay [|O5v.(t ||L2(R
Consequently, since 0 < € < 1, by (33) and (@8],

2/ea?||9Fve(t, ||L2(R
<6\/§\a|]/<;\/ 2|0y |00, | de
+2vEyal [|020c(t,

< 6Elallx] [
+O(T).

(50)

C1))

Mz
u?| 0, ue| |8§v5|d1:

Due to (33), and the Young inequality,

6vElallx] [ w2louc]|0vldo

R

= 2\/5/ |3ku20,ue||adve | da
R

< 9\/EI£2/ ul (0pue)’dx

+vea® [|03ve(t, HL2(R)
< 9y/ex? HUsHLoo (0,T)xR) X
X [|Opue(t, )”L2
+xfa2||03ve Hm
C(T) + ea? [|03va(t,

It follows from that

(52)

Mzem

2
oy < CD).

Vea?

J:UE (t7 ) ‘
which gives ({@4). &

(33)

In the next lemma we prove an H? energy
estimate.

Lemma 2.9 Assume (6) or (7). Fix T > 0. We have

that
VE || 0Fue(t HL2
2
+2e/z€t / e * ||0pue(s, )’ ds 4
0 L2(R)
< (1),
and
Ve Haa:UEHLoo((o,T)xR) < C(T), (55)

forevery 0 <t <T.

Proof.  Multiplying the first equation of (II) by
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2./€0%u,, it follows from integration on R that

\[dt [07ue (t, HL2(R
20 E 080t ) g
= 2\/§b/ P.0}u.dx (56)
R

—2qﬁ/ 8§u56zv5dx.
R
Observe that, by (1)) and (T3,

Qb\@/RPgﬁﬁuEd:L‘
=92 [ 8,P.0° Cusdx
= —2\f/ uO3u.de
—2b/8u€3 udxr =0,

(57)

and
—2q\/5/ It Opv.da
= Qﬁqzagueagvadx (58)
= f2q/Ra§u58§vsdx.

It follows from (44, and the Young inequality
that

Ve 02ue(t, ) oy
Lo 2 0uelt,

= —2\/Eq/ O*u93v.dx
< 2V/elq| |32ue||33vs|dx (59)

< VE[ut. Mz w
+4*VE|07ve 1, HLz(R
< VE 02t )32y + C(T)-

The Gronwall Lemma and (12)) give
Ve |0Fue(t HLZ(R)

+2¢4/eet / e
0
< Co+C(T)e!

2
S (s, )| L@ (60)

e *ds < C(T),

which gives (54).
Finally, we prove (53)). Thanks to (36), (54) and
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the Holder inequality,

(Orue(t, x))?
= 2/ Gxusﬁguedy

<2 |6 Ue || 02 ue|dx (61)
<2 Ha ue(t, )HL2 (R) |05 ue(t, ||L2
C(T)
< E
Hence,
Ve ||axu€||%°°((0,T)><R) < C(T), (62)

which gives (53)). #

The following lemma gives a bound on the time
derivative of the solution.

Lemma 2.10 Assume (6) or (7). We have that
[0kuc(t, )| 2y < C(T), (63)
forevery 0 <t <T.

Proof. Multiplying the first equation of (1)) by 20;u.,
an integration on R gives

2| 0pue (t, ) 172wy
= 2b/ Oyue Pdx
R

64
+2¢ atueagugdx 64

—2q f OpteOpVed.
R

Since 0 < ¢ < 1, thanks to (29), (33), (36)) and the

Young inequality,
2\bl/Rlﬁtu€HPE\dac
- / Oy |[26P% | dx

< 5 [|Bpuet, )||L2
+2b [P (t, )”L2(R)
< S 10 (t, )72 ry + C(T),

(65)

and
2¢ [ |Bsuc||0%uc|da

I
%

A |Oyue|[260%u,. |da
S% ‘815“6( )HL2
% |02 ue (¢, ||Lz
= % 19pue (t: )1 72wy
5 [[0Fue (2, - ||L2 ®
< % Hé’tue( )+ C(D),

(66)
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and

zyq\/ 1Ort2]|Oyve| dz
_/ 10ru. 2D v. |dr

67
< o, )l ©7
+2¢° [|0zve )HL‘Z(R)
< 2||3tu5( N Zzm) + C(T).
Therefore, by (64), we have that
*Hatue( )||L2(R < C(T), (68)

which gives (63). &

We continue with some estimates of the high order
derivatives of mixed type.

Lemma 2.11 Assume (6) or (7). We have that

10e02ve (2, )| oo (ry < C(T),
100z ve(t, )| L2ry < C(T),
100 (t, )| oo (ry < C(T),
100 (¢, )l 2 ry < C(T),

forevery 0 <t <T.

(69)

Proof. Differentiating the third equation of with
respect to t, we have that
a@tﬁivg + B0y ve + YOve = 3/~w§8tu5. (70)

We begin by observing that, thanks to (29), (63)) and
the Young inequality, we have that

H?mug(t, ) Opue(t, )’

i SO,

(71)

for every 0 < t < T Therefore, by [35, Lemma 2.1],

holds. &

We continue with blow-up rate of the H* norm.

Lemma 2.12 Assume (6) or (7). We have that
€ ’ Ve (tv )‘

forevery 0 <t <T.

<C(T),

L2(R) — (72)

Proof. Differentiating with respect to z, we have
that
adive + BO3v. + y0%0.

= 6ku.(Opue)? + 3xul0?ue.. (73)
Observe that, since
D%u.(t, £00) = 0, (74)
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by (38) and (@)

v, (t, +00) = 0. (75)

Multiplying by 2ead?v., an integration on R
gives

20°¢ [|0pve (t ||L2 (R)
= 120ms/ ug(('?zue) 20%v.dx

+6ake | uldPu.0tv.dx (76)

—2afe | Ov.0fv.dx

—2are | 02v.0 v d.
R

Observe that, by and (73)),

—2afe / v 0 dx
R

77
= —Ozﬁ&/Rax((aing)2dx =0, ( )

and

—2a’y€/ 0 vea4vadx
(78)

= 2aye |00 (t, ) [ ey

Consequently, since 0 < £ < 1, by ([@4) and (7€),

20% | 40:(t. )2+ o

< 12|om,|5/ (| (D) 2|00, | der
2‘82u5|‘84'05|d$

+2|ayle ||83vE

+6|ak|e

Mzem

§12a/<a£/ U |(Oru 8§v dx
ol [ bl @ 2ol

+6|ak|e u2\82u5|\84vg|d:c

+2lar|VE 8ot Wiz

< 12|0¢/€|5~:/ e |(Dpue ) |0%v. | da

+6|arle | w202 u.||0tv.|dx

+C(T).

Since 0 < ¢ < 1, by (33), (36), (54), and the
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Young inequality,
12]a1<;]5/ |Ug|(a{£u€)2|a§va‘
R
= 6/ |12/€u5(6xu5)2|\0z3§115|d$
R
< 72&25/ uZ (Opue)tde
R
a 3 H84U5 HL2
< 72k%e ”usHLoc((o T)xR)
a a’e HBZLUE ||L2
< C(T)e /(8u€) dx
+a26 H84’U5 HL2
< C(T)e|0x UEHLw OT)XR)X
X [|Opue (2, )||L2(R)
+a2a H84,U5 HL2
< O(T) + %= || 03v: (¢,

A(@xu5)4dx

M
and
6|0m\5/ u2|02u.||9kv. | do
—5/ |6Ku202u.||adtv | dx
< 18k 6/ 4(0Pu.)?dx

R
+95% | 0ve(t, ) oy
< 18%2\f||ue\|Loo ((0.T)xR) X
H(? ue(t
+a25 Ha%s HLZ (R)
< O(T) + 25 [|ogve(t,

Sl ®)

Miew)
It follows from (79) that
xUE (t7 ) ’
which gives (72). &

2

< C(T),

L2(R) —

In the next lemma we prove an H? energy
estimate.

Lemma 2.13 Assume (6) or (7). We have that

e Ha%a HL2
2

ds

+2e2¢ L2(R)

fue (s, )|

R

and

Ved ||8§u€||L°°((O,T)><R) < O(1),

forevery 0 <t <T.
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Proof Multiplying the first equation of (TI]) by

—2e08 >ue, we have that

—2e08u. O,

= —2beP.%. — 220%u.0%,

—2qe0%u: 0,0, .

(85)

Observe that, thanks the second equation of (T1]) and

@),

—2be / Peﬁgugdx

= 2be axPac?guEda:
= 2be usﬁgusd:ﬁ
= —2be

awugaiuedx
R
= 2b5/ O*u03u. = 0.
R

Moveover,

—26/ 8Su€8tu€d$
82u€8t81u5dw

= / ot ug&g@ udx

= 26/ b usata udx

= e 0% (t, ) 22y

and

—262/ 8§u58gu5d1:

= 2¢? 65u583u5

= —2% ottt Weay -

and
—2q£/ OSu.Opv.dx
= 2qe R(‘)gueagvad:c
= —2quO§ugagv€dx

= 2q5/ DBu0tv.dx.
R

(86)

87

(88)

(89)

It follows from (86), (88) and an integration of (83)

on R that

€ [103ue(t. )22y
+2¢7 H34Ua Meem
= 2qs/ POt d.
R
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Due to (72)) and the Young inequality,

2|qys/ 103000, | dz

< e [|0Fu(t HL2 R oD
+q EHf) (1 ||L2(R
<e H83Ua HLz (R) + C(T).
Therefore, by (90),
g ||8 UE ||L2 R)
<5H8 Ug HLQ R)+C( )

The Gronwall Lemma and (12)) give (83).
Finally, we prove (84). Thanks to , (83) and
the Holder inequality,
(DZue(t,x))?
x
= 2/ O2u 03u.dy

/ 1020, ||0%|dx (93)
§H<92ue Mo 1030t )7 m)
< Cm)
<=

Hence,

oy SC@L 9

which gives (34). &

We prove an uniform L°° bound on the time
derivative.

Lemma 2.14 Assume (6) or (7). We have that
[[0cte | oo (0,7 xr) < C(T). (95)

Proof. By the first equation of (TI), and (33), we
have

|Opue |

= [bP. — qO,v: + €02u.|

S 0] P2| + |g| + |97 |
< (o[ ] s||L<>o((0T)xR) (96)
+q| 10z vell . ((0,1)xR)

+€H3 UEHLOO ((0,T)xR)
< O(T) + € [|02ue || Lo (0 7y xR) -

Since 0 < £ < 1, thanks to (84),

€ ||a§u6||L°°((O,T)><R)
= VebV/es Haa%“eHLoo((o,T)xR) 97
< \/‘;O)HGC%UEHLOC((O,T)XR) < C(T).
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It follows from (96)) and (97)) that
|Oyue| < C(T), (98)
which gives (93). &

We prove an uniform L? bound on the mixed time-
space second derivative.

Lemma 2.15 Assume (6) or (7). We have that
[0:0zuc(t, )| L2 (ry < C(T), (99)
forevery 0 <t <T.

Proof. Multiplying the first equation of (II)) by
—20;0%u., we have that

—28t8$u58tu5
= —200;02u. P. + 2q0;0%u-0yv. (100)
—25875838%115.

Observe that by the second equation of (TTJ),
2 / 0,0%u. P.da
0p P.0; 0z usdx (101)
=2b f U Op Oz ued.
R
Moreover,

—2/ 0107 u Oy dx
= 2|01z ue(t, )HL2 )
/ 002u Oveda
= —2q/ 040, uga vedx, (102)
—26/ ataxusal,ueda:
= 2¢ R&gawua@g’uadx.
An integration of (100) on R, (T01)) and give
2[00 uc(t, )HL2
= 2b/Ru€8t8xu6dw
—2q/ ataxuaagvgda:
€ R@@%@i%dw.

(103)

Since 0 < € < 1, dueto (29), (33), (83) and the Young
inequality,

2|b|/ (][0, | dee

< b2 [Juc(t, |72 w) (104)
+ [|0¢ O uc(t, )||L2(R)
< C(T) + ||0:0pue(t, )||L2(R
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and
25/ 1040 ue| |02 |da
:/‘\&‘0 ue||2603u | dx
R
< 110:05u ,
<zl O 35( Wiz (105
—1-25 [|O3uc(t ||L2 R)
< 5 100 ue (2, )HL2
+26Ha T
< 5 100 ue(t, )||L2 +O(T),
and
2"]|/ |0 0puc || 020, | dx
2 2
(106)
3 Hata ua( HL2 (R)
+3q [ 020 (t HL2
3 Hata ua( )HLz (R) —|- C( )
Therefore, by (T03),
G ”ata ue(t, )HL2 < C(T), (107)

which gives (99). &

We continue with the blow-up rate of the H° norm
of the solution.

Lemma 2.16 Assume (6) or (7). We have that

< C(T),

S (108)

St )|

forevery 0 <t <T.

Proof. Differentiating (73)) with respect to x, we have

addv. + BOv. + O3,
= 6 (0pue)® + 18ku 0pu:0%u,
+3Kuld3u.

(109)

Observe that, since 3u.(t, +)

- 0, by (@@, @),
@@ and ().

dov.(t, £00) = 0. (110)

Multiplying (109) by 2e1/zad3ve, an integration on
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R gives
2e\/a? || 020 (1,
= 125\504/1/
R
+32€\@a/<c/ U Oyt 02 u 00V dx
R
+68\/§ali/ uddu 02v.dx
—2ev/eafB | tv.dv.dx

Wiz
(Opuz)303v.da

(111)

—2e\/eary | O3v.05v.da.
R

Since 0 < e < 1, thanks to ({#7), and (T10)),
—26[04&/ ol 0020 da

(112)
:—sf/a (0%0.))2dx = 0,
and
—26[047/ o> Bv00v.da
= 2e\/eary ||O2ve(t HL2(R (113)
< 2¢|ay| ||0kv:(t, HL2
Therefore, by (IT1)),
2e /20 [|02ve(t, ||L2(R
< 12€ﬁ|0m|/ |0pue || 02ve |da
R
+328\/g|011€| |U581;U58£UE|X (114)
050 |dx
+6ev/e|ak| [ |[utdPu.||03v.|dx
+C(T).

Since 0 < ¢ < 1, due to (33), (36), (54), (53], (83)

and the Young inequality,

125\/E\cm\/ |0pue|?|05v: |

R

= 6\/5/ 1126 (g ue )2 ||adDv | da:
R

< 72&25\@/(8 u.)bda
+ 25 030 ()| 7oy
< 72k2 5\fH3 Us”Loo ((0,T)xR) * (115)
X ||0p us( )”L2
s\fa
| (%2 HL2(R
< eC(T) ||8 ua( )HLz(R)
+ 259 [ 030- (¢, )| 2y
< CO(T) + 25~ Hafz (e -
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and
325\@\(1&]/ |10 e 02| | 020, | e
R
= 5\@/ |32k 0pue02ue || adSv | da:
R

< 512%26ﬁ/ u2(0pue)? (02u.)2dx
R

5 1050 (1, ) Py

< 512626 v/E [[te| T (0.7 ) ¥
xA(azus)2(3§U5)2d$
o2 2
Eﬁ 163 HLZ(R
( )5\[”3 UEHL‘X’ ) %

X [|0Fue (¢, HL2
E\fa
+25% 102 HL2 R

smn+ﬂ%ﬂ@%wﬂm®,

(116)

and
6er/2|a] / u20%u, |30, |da
—e\f/ 6ku203u.||dPve | da

< 18k 5[/ ul(3u.)?dx

+E5 020 (8, )72y

< 18k2 HU5H4Loo(§20 T)xR) X
X ||O3ue(t HL2(R (117)
@ |63 ||L2

T)ey/e ||83us ||L2
@ |05, (

HLQ(R
<Cc(T H83ue ||L2
# 12 HLQ(R
a? 2
gaﬂ+ﬂ%w%%mwm®
Consequently, by (T14),

s\foc (’)‘

which gives (108)). &

2

o SC@.1®)

We continue by proving an H* energy type
estimate.

Lemma 2.17 Assume (6) or (7). We have that

evE[|0Fus(t I ze ry

+252\2fe / e
0

2 gs (119)

q;ué‘(s? )‘

L2(R)
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and
\87575Ha§u5||L°°((0,T)><R) < (1), (120)
forevery 0 <t <T.

Proof:  Multiplying the first equation of (II) by
2e,/208u., we get

2e/e08u O,

= 2be+/eP.0%u.
+2e2,/202u. 0%,
—2qe+\/E05U0, 0,

Observe that by and the second equation of (T,
2b5\/§/R P.0%u.dx
= 2b5\/5/ 0y PO udx
= 2b5ﬁf ugagugdx

(121)

(122)
= 2bev/e | Opu0Su.dx

= 2b5\/§/:8§u582u5d:r
= 2b/R(3§u68§u€dx =0.
Moreover,
QEf/ B Oy dx
—26\f/ O u 00y ucdz
= 2€f/ aﬁugata usdx (123)
= —22’5\[/ ou 003 u.dx
= eV [|0que(t, ||L2 ;

and
262\f/ 82u588u5dx
= —252f/ PBu 0l ucdx
= 2€2f/ It 0%u dx
= —2e%\/e [|Quc(t, ||L2(R

(124)

and
—9ge\E / OPueOyvedz
= 2ge\/e 87u562v5dﬂc
= —2qg\f/ u 3v.dx (125)
PV / Puveds
= 9geyE / Otu.v.de.
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Integrating (12T)), by (122)) and (124)), we have that

AT
NN ORI

—2q€ﬁ/ axus(?gvgdsc.
R

||L2
(126)

Due to and the Young inequality,

20afevE [ [0buc]0%|da

< eV [0t )
+q%e/E || 0dus(t, -

< ez [t

It follows from (126]) that

eVed [07us(t,
+2e2\/2 ||05u(t,
n

The Gronwall Lemma and (12)) gives (T19).

Finally, we prove (I20). Thanks to (83]), (II9) and

the Holder inequality,

(127)
N zemy
HL2 (R) +C( ).

||L2 (®)
IILz (128)

||L2 )+C( )-

(Oue(t,2))?

=2 B dx
—00
\83u5|64u5|dx (129)
< ||a e (t, )| 2y 11070t )| 2 v
< C()
= Ve
Hence,
’ o(T 130
2| Lo ((0,1)xR) = (), (130)

which gives (120). &

We show an uniform L bound on the second
order mixed derivative.

Lemma 2.18 Assume (6) or (7). We have that
Hataﬁué‘HLm((O,T)xR) S C(T) (131)

Proof. Differentiating the first equation of with
respect to, thanks to the second one of (TI]), we have
that

0sOple = bue + Eai’us — q@ivs. (132)
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Due to (33) and (33)),
|8t8xu€|
= |bu. — qO3v. + e03u,|
< |bllue] + [al[02vc] + el0Bue
< [b] ||Ua||Loo((o T)xR)
+lal [|03 ’UEHLw ((0,T)xR)
+5HG Ue || L 0,7y xR)
<C(T)+¢| 03 Ue || e (0.7 xR -

Observe that, since 0 < ¢ < 1, thanks to (120),

(133)

e [|03uell L 0.7y xm)
= VeV || 03ue| e (0.1 cmy
< Ve [|03ue | e (0. xm) < C(T).

(13T)) follows from (I33) and (134). &

Consider the fast decaying function

(134)

— x|
;

x(z) =e r € R, (135)
that satisfies

0<x<l  [¥]=x (136)
We prove the following result

Lemma 2.19 Assume (6) or (7). We have that
5/ (8t8xu6)2xd:c
R

t
+ / / (02u.)2xdtd < O(T),
0JR

forevery0 <t <T.

Proof. Differentiating the first equation of with
respect to ¢, we have

O*u. = b0y Pe + £0,0%u. — q030yv;. (138)

Multiplying (138) by 20?u.x, and integration on R
give,

(137)

2 (6t

= QbAatPaﬁfugxda:
+2€/ 3t8£u583ugxdaz
—2q Rﬁt&rvg@fusxdx.

(139)

Observe that
2e / 8t8§u58t2ugxdx
R

= —6%/Rx(8tua)2dx
—25/ 8t8xu58t2ugxlda:.
R

(140)
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Consequently, by @),
g%/Rx(atug)de
+2/(8t2ua)zxdx
= 2b 8tP O u-xdx (141)
—25/ 040y ug('? usx dx
—2q/ 010,00 ue xdz.

Since 0 < € < 1, thanks to (69), and the Young
inequality,

2e /R 10, ||02u. ||| d

< 200/1{\6t61u5\]8,52u5\xdm

e / NCTRAL
% (5t Us) xdx

Co ||3t6 ue(t, )| Fa(m)
%/(82%) xdx
R

< O(1) +4 [ (R,
206| [ 10, 0Fuclxds
< 262/(8,5P5)2)<dx
+3 [ (0Fue)xd,
20l [ 10:0,0l10P | xda
< 2q2/ X (010,02 da
% (at Ua) xdx
Co ||at8 ve(t, )||L2(R
%/R((?Zue) xdx
C(T) +3 [ (@R
It follows from (T41]) that

5%/}{x(8tua)2dx
+} [ @ xda (143)
< (1) + 2 [ (0P)xdo.
R

(142)

Observe that, by the second equation of (TT)),

0,P. — / Byuc(t, y)dy. (144)
0
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Therefore, by (T44)), (63) and the Jensen inequality

202 / (OrP.)*xdzx

R

T 2

Z/X</ 8tu5(t,y)dy) dz

R . (145)
S/X\xl / (Orus)?dy| dx
< 0t ey [ el < D).

Thus, by (I43)), we have

Edt/ X (Orue) da:—|—2/ 82u5 ) xdz (146)
< C( ).

Integrating on (0, ¢), by (12), we get

5/ x(Opue ) dx

R

+2// (82u5)2xdsdx (147)
<y —I—C( 3t < C(T)

that is (I37)). &

3 Proof of Theoremi(l.1

This section is devoted to the proof of Theorem
Proof of Theorem Thanks to Lemmas

2.6, 2.10, P11} P-T3] (93), (131), and 2.19),
{Opuc } >0 is bounded in H] .((0,00) x R) (148)

Consequentially, there exists w € H} ((0,00) x R)
such that

Opue — win HY ((0,00) x R),
Opue — win LY ((0,00) X R), (149)
1 <p < ooanda.e. in (0,00) x R.

We define the following functon:
t
u(t,z) = / w(s, z)ds + up(x). (150)
0

We prove that

u. = uin LY | ((0,00) x R),

1 <p < ooanda.e. in (0,00) x R. (15)

Observe that
t
ucltoo) = [ ucls,a)ds +ueol@). (152
0
consequentially, we have that
ue(t, ) — u(t, )
t

= /0 (Opue(s,z) —w(s,x))ds (153)
+ue o(z) — ug(x).
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Therefore, by (149),
T /R
// lue(t, ) — u(t, x)|dtdx
0J-R

TrR pt
< / /H/ |Ovus (s, ) — w(t, x)|dsdtdz
0J-R/O

R
+T/R |ue, 0(x) — up(z)|dz — 0,

(154)
which gives (I51).
By (151), we have that
P., — Pin L, ((0,T); W P(R)) (155)
1 <p<oo,anda.e. in (0,00) X R,
where

P(t,x) :/0 u(t,y)dy, t>0, xecR. (156)

Moreover, thanks to Lemmas 2.10/2.11]
2.13], (93), (131), and 2.19),

{v:}eso is bounded in H} ((0,00) x R)  (157)

Consequentially, there exists v € H]} ((0,00) x R)
such that
ve = vin H} ((0,00) x R),
ve » vin LF  ((0,00) x R),
1 <p<ooanda.e. in (0,00) x R.

(158)

Therefore, the triple (u, v, P) is a distributional
solution of (2)) and (8) hold. &

4 Conclusion

We consider the short pulse equations that is a second
order evolutive PDE that appear in the

modeling of several physical and mathematical phe-
nomena. Moreover, if can rewritten in the form of an
hyperbolic equation of the first order with a

nonlocal source term. Here we consider a nonlocal
regularization fo the flux and studied the existence
of possibly discontinuous solutions using a vanishing
viscosity type argument and energy type estimates.
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