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1 Introduction
The short pulse equation reads

∂x
(
∂tu+ q∂xu

3
)
= bu, q, b ∈ R, (1)

and has beed deduced in several context

• in [1] for the nonlinear propagation of optical
pulses of a few oscillations duration in dielectric
media,

• in [2] for the propagation of ultra-short light
pulses in silica optical fibers,

• in [3], [4], [5], [6], [7], [8] as non-slowly-varying
envelope approximation model that describes the
physics of few-cycle-pulse optical solitons,

• in [9], [10], [11] for pseudospherical surfaces,

• in [12] for the short pulse propagation in
nonlinear metamaterials characterized by a weak
Kerr-type nonlinearity in their dielectric
response,

• in [13], [14] in the context of plasma physics,

• in [15], [16] for the dynamics of radiating gases,

• in [17], [18], [19] for ultrafast pulse
propagation in a mode-locked laser cavity in the
few-femtosecond pulse regime.

The mathematical features of (1) have been widely
studied

• the wellposedness of the Cauchy problem in the
context of energy spaces can be found in [20],
[21], [22],

• the wellposedness of the Cauchy problem in the
context of entropy solution can be found in [23],
[24], [25],

• the wellposedness of the homogeneous initial
boundary value problem is in [26],

• the convergence of a finite difference numerical
scheme is studied in [27].

Here we regularize (1) with the following nonlocal
problem

∂tu+ q∂xv = bP, t > 0, x ∈ R,
∂xP = u, t > 0, x ∈ R,
α∂2

xv + β∂xv + γv = κu3, t > 0, x ∈ R,
P (t, 0) = 0, t > 0,
u(0, x) = u0(x), x ∈ R,

(2)

where q, b, α, β, γ, κ ∈ R.
Nonlocal regularizations are widely used for

conservation laws

• in the context of traffic flow [28], [29], [30], [31],
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• in the context of sedimentation [32],

• in the context of slow erosion [33], [34],

• in the context of the linearly polarized continuum
spectrum pulses in optical waveguides [35], [36].

Coherently with [23], [24], [37],[38].

• on the initial datum we assume

u0 ∈ L1(R)∩L∞(R),

∫
R

u0(x)dx = 0; (3)

• on the function

P0(x) =

∫ x

−∞
u0(y)dy, (4)

we assume that∫
R

P0(x)dx

=

∫
R

(∫ x

−∞
u0(y)dy

)
dx = 0,

‖P0‖2L2(R)

=

∫
R

(∫ x

−∞
u0(y)dy

)2

dx < ∞;

(5)

• on the constants q, b, α, β, γ, κ, we assume that

qβ

κ
≥ 0, b =

2qκ

γ
, α, β, κ, γ 6= 0, (6)

or

b =
2qκ

γ
, α = −γ, β = 0, γ 6= 0. (7)

Since in (6) and (6) we assume α 6= 0, it is not
restrictive to set it equal to 1. The assumptions (6)
and (7) are necessary to keep the solutions of (2) in
the energy space.

The main result of this paper is the following
theorem.

Theorem 1.1 Assume (3), (4), (5), and (6) or (7).
There exists a distributional solution (u, v, P ) of (2)
such that

u ∈ L∞((0, T )× R) ∩ L∞(0, T ;L2(R)),
v ∈ H2((0, T )× R) ∩ L∞(0, T ;H2(R))∩

∩W 1,∞((0, T )× R)∩
∩L∞(0, T ;W 2,∞(R)),

∂tu ∈ L∞(0, T ;W 1,∞(R))∩
∩L∞(0, T ;H1(R)),

∂t∂xv ∈ L∞(0, T ;L∞(R))∩
∩L∞(0, T ;L2(R)),

P ∈ L∞((0, T )× R) ∩ L∞(0, T ;L2(R)).

(8)

for every T > 0.

The well-posedness of (2) was proved in [39] and
[35] under the assumption:

u0 ∈ L1(R) ∩H2(R), (9)

and
u0 ∈ L1(R) ∩H1(R), (10)

respectively. Finally, we observe that the assumptions
(3), (4) and (5) are the ones used in [23], [24] in order
to prove the well-posedness of entropy solutions of
(1).

The remaining part of the manuscript is organized
as follows. Section 2 is dedicated to several a priori
estimates on a vanishing viscosity approximation of
(2). Those play a key role in the proof of our main
result, that is given in Section 3.

2 Vanishing Viscosity Approximation
Our existence argument is based on passing to the
limit in a vanishing viscosity approximation of (2).

Fix a small number 0 < ε < 1 and let uε =
uε(t, x) be the unique classical solution of the

following mixed problem, [40]:
∂tuε + q∂xvε = bPε + ε∂2

xuε,
∂xPε = uε,
α∂2

xvε + β∂xvε + γvε = κu3ε,
Pε(t, 0) = 0,
uε(0, x) = uε,0(x),

(11)

where t > 0, x ∈ R and uε,0 is a C
∞ approximation

of u0 such that

‖uε,0‖L∞(R) ≤ ‖u0‖L∞(R) ,

‖uε,0‖L2(R) ≤ ‖u0‖L2(R) ,∫
R

uε,0(x)dx = 0,

‖Pε,0‖L2(R) ≤ ‖P0‖L2(R) ,∫
R

Pε,0(x)dx = 0,
√
ε ‖∂xuε,0‖2L2(R)

+
√
ε
∥∥∂2

xuε,0
∥∥2
L2(R) ≤ C0

ε
∥∥∂3

xuε,0
∥∥2
L2(R)

+ε
√
ε
∥∥∂4

xuε,0
∥∥2
L2(R) ≤ C0,√

ε ‖∂t∂xuε, 0‖L2(R) ≤ C0,

uε, 0 → u0(x) in Lp
loc(R) and a.e. in R,

(12)

and C0 is a constant independent on ε.
Let us prove some a priori estimates on uε, Pε and

vε. We denote with C0 the constants which depend
only on the initial data, and with C(T ), the constants
which depend also on T .

Following [5, Lemma 2.1], we prove the following
result.
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Lemma 2.1 For each t > 0, we have that

Pε(t,−∞) = Pε(t,∞) = 0,∫ 0

−∞
uε(t, x)dx =

∫ ∞

0
uε(t, x)dx = 0,∫

R

uε(t, x)dx = 0.

(13)

Remark 2.1 In light of (13), we have that

Pε(t, x) =

∫ x

0
uε(t, y)dy =

∫ x

−∞
uε(t, y)dy. (14)

Proof of Lemma 2.1. We begin by proving

Pε(t,−∞) = 0. (15)

Thanks to the smoothness of uε, from the first
equation of (11), we have

lim
x→−∞

(∂tuε + q∂xvε) = bPε(t,−∞) = 0, (16)

that is (15).
In a similar way, we can prove that

Pε(t,∞) = 0. (17)

(15) and (17) give (13).
We prove (13). Integrating the second equation of

(11) (0, x), again by (11), we have

Pε(t, x) =

∫ x

0
uε(t, y)dy. (18)

(13) follows from (13) and (18).
Finally, we prove (13). We begin by observing

that, by (13), ∫ 0

−∞
uε(t, x)dx = 0. (19)

Therefore, by (13) and (19),∫ 0

−∞
uε(t, x)dx +

∫ ∞

0
uε(t, x)dx

=

∫
R

uε(t, x)dx = 0,
(20)

that is (13). ♠

Following [35, Lemma 2.5], we have the
following result.

Lemma 2.2 For each t ≥ 0, we have that∫ −∞

0
Pε(t, x)dx = −1

b
∂tPε(t, 0)

−q

b
vε(t, 0) +

ε

b
∂xuε(t, 0),∫ ∞

0
Pε(t, x)d = −1

b
∂tPε(t, 0)x

−q

b
vε(t, 0) +

ε

b
∂xuε(t, 0),∫

R

Pε(t, x)dx = 0.

(21)

Proof. We begin by proving (21). Integrating the first
equation on (0, x), we have that∫ x

0
∂tuε(t, y)dy + qvε(t, x)− qvε(t, 0)

−ε∂xuε(t, x) + ε∂xuε(t, 0)

= b

∫ x

0
Pε(t, y)dy.

(22)

By (13), we obtain that

d

dt

∫ −∞

0
uε(t, x)dx

=

∫ −∞

0
∂tuε(t, x)dx = 0.

(23)

Moreover, the regularity of uε and vε give

lim
x→−∞

(qvε(t, x)− ε∂xuε(t, x)) = 0. (24)

Therefore, by (22), (23) and (24),

b

∫ x

0
Pε(t, y)dy = −qvε(t, 0) + ε∂xuε(t, 0), (25)

which gives (21).
We prove (21). Observe that by (13),

d

dt

∫ ∞

0
uε(t, x)dx =

∫ ∞

0
∂tuε(t, x)dx = 0, (26)

while, thanks to the regularity of uε, vε,

lim
x→∞

(qvε(t, x)− ε∂xuε(t, x)) = 0. (27)

(21) follows from (22), (26) and (27).
Finally, (21) and (21) give (21). ♠

Arguing as in [39, Lemma 2.2], we have the following
result.

Lemma 2.3 We have that∫
R

u3ε∂xvεdx

=

 β

κ
‖∂xvε(t, ·)‖2L2(R) , if (6) holds,

0, if (7) holds.

(28)

We continue with some L2 type estimates of the
solution.

Lemma 2.4 Let T > 0. If (6) or (7) hold

‖uε(t, ·)‖L4(R) ≤ C(T ),
‖Pε(t, ·)‖L2(R) ≤ C(T ),
‖uε(t, ·)‖L2(R) ≤ C(T ),

ε

∫ t

0
‖(uε∂xuε)(s, ·)‖2L2(R) ds ≤ C(T ),

ε

∫ t

0
‖uε(s, ·)‖2L2(R) ds ≤ C(T ),

ε

∫ t

0
‖∂xuε(s, ·)‖2L2(R) ds ≤ C(T ),

(29)
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for every 0 ≤ t ≤ T . In particular, if (6) holds, we
have ∫ t

0
‖∂xvε(s, ·)‖2L2(R) ds ≤ C(T ),

‖Pε‖L∞((0,T )×R) ≤ C(T ),
(30)

for every 0 ≤ t ≤ T .

Proof. We begin by observing that, thanks to (21), we
can consider the following function:

Fε(t, x) =

∫ x

−∞
Pε(t, y)dy. (31)

Integrating the second equation of (11) on (−∞, x),
thanks (31) and Remark 2.1, we have the following
equation:

∂tPε(t, x) + qvε(t, x)
= bFε(t, x) + ε∂xuε(t, x).

(32)

Therefore, arguing as in [39, Lemma 2.3], we have
(29), (30) and (30). ♠

A key role in our compactness argument is played
by the following a priori estimates.

Lemma 2.5 Assume (6) or (7). Let T > 0. We have
that

‖∂xvε(t, ·)‖L∞(R) ≤ C(T ),
, ‖∂xvε(t, ·)‖L2(R) ≤ C(T ),
‖vε(t, ·)‖L∞(R) , ‖vε(t, ·)‖L2(R) ≤ C(T ),

(33)

for every 0 ≤ t ≤ T .

Proof. Let 0 ≤ t ≤ T . We begin by observing that,
thanks to (29) and the Young inequality, we have that

κu3ε(t, ·) ∈ L1(R), 0 ≤ t ≤ T. (34)

Therefore, by [35, Lemma 2.1], (33) holds. ♠

Arguing as in [5, Lemma 2.6] and [35, Lemma
2.8], we have the following result.

Lemma 2.6 Assume (6) or (7).We have that

‖uε‖L∞((0,T )×R) ≤ C(T ),∥∥∂2
xvε

∥∥
L∞((0,T )×R) ≤ C(T ),∥∥∂2

xvε(t, ·)
∥∥
L2(R) ≤ C(T ),

(35)

for every 0 ≤ t ≤ T .

In the next lemma we prove an H1 energy
estimate.

Lemma 2.7 Assume (6) or (7). Fix T > 0. We have
that

√
ε ‖∂xuε(t, ·)‖2L2(R)

+2ε
√
εet

∫ t

0
e−s

∥∥∥∂2
xuε(s, ·)

∥∥∥2
L2(R)

ds

≤ C(T ),

(36)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by
−2

√
ε∂2

xuε, an integration on R gives

√
ε d
dt ‖∂xuε(t, ·)‖

2
L2(R)

+2ε
√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

= 2
√
εb

∫
R

Pε∂
2
xuεdx

−2q
√
ε

∫
R

∂2
xuε∂xvεdx.

(37)

Observe that, by (11) and (13),

2b

∫
R

Pε∂
2
xuεd

= −2b

∫
R

∂xPε∂xuεdx

= −2b

∫
R

uε∂xuεdx = 0.

(38)

Moreover,

2q
√
ε

∫
R

∂2
xuε∂xvεdx

= −2q
√
ε

∫
R

∂xuε∂
2
xvεdx.

(39)

Consequently, by (37),

√
ε d
dt ‖∂xuε(t, ·)‖

2
L2(R)

+2ε
√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

= −2q
√
ε

∫
R

∂xuε∂
2
xvεdx.

(40)

Since 0 < ε < 1, thanks to (35) and the Young
inequality,

2
√
ε|q|

∫
R

|∂xuε||∂xvε|dx

= 2
√
ε

∫
R

|∂xuε||q∂2
xvε|dx

≤
√
ε ‖∂xuε(t, ·)‖2L2(R)

+
√
εq2

∥∥∂2
xvε(t, ·)

∥∥2
L2(R)

≤
√
ε ‖∂xuε(t, ·)‖2L2(R)

+q2
∥∥∂2

xvε(t, ·)
∥∥2
L2(R)

≤
√
ε ‖∂xuε(t, ·)‖2L2(R) + C(T ).

(41)
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Therefore, by (40),

√
ε d
dt ‖∂xuε(t, ·)‖

2
L2(R)

+ε
√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

≤
√
ε ‖∂xuε(t, ·)‖2L2(R) + C(T ).

(42)

The Gronwall Lemma and (12) give

√
ε ‖∂xuε(t, ·)‖2L2(R)

+2ε
√
εet

∫ t

0
e−s

∥∥∥∂2
xuε(s, ·)

∥∥∥2
L2(R)

ds

≤ C0e
t + C(T )et

∫ t

0
e−sds ≤ C(T ),

(43)

which gives (36). ♠

The following lemma gives an estimate on the
blow-up of the H3 norm of the solution.

Lemma 2.8 Assume (6) or (7). We have that

√
ε
∥∥∥∂3

xvε(t, ·)
∥∥∥2
L2(R)

≤ C(T ), (44)

for every 0 ≤ t ≤ T .

Proof. Differentiating the third equation of (11) with
respect to x, we have

α∂3
xvε + β∂2

xvε + γ∂xvε = 3κu2ε∂xuε. (45)

Since

uε(t,±∞) = ∂xuε(t,±∞)
= vε(t,±∞) = ∂xvε(t,±∞)
= ∂2

xvε(t,±∞) = 0,
(46)

then

∂3
xvε(t,±∞) = 0. (47)

Multiplying (46) by 2αε∂3
xvε an integration on R of

(45 gives

2
√
εα2

∥∥∂3
xvε(t, ·)

∥∥2
L2(R)

= 6
√
εακ

∫
R

u2ε∂xuε∂
3
xvεdx

−2
√
εαβ

∫
R

∂2
xvε∂

3
xvεdx

−2
√
εαγ

∫
R

∂xvε∂
3
xvεdx.

(48)

Observe that, by (47),

−2
√
εαβ

∫
R

∂2
xvε∂

3
xvεdx

=
√
εαβ

∫
R

∂x(∂
2
xvε)

2 = 0,
(49)

and

−2
√
εαγ

∫
R

∂xvε∂
3
xvεdx

= 2
√
εαγ

∥∥∂2
xvε(t, ·)

∥∥2
L2(R) .

(50)

Consequently, since 0 < ε < 1, by (35) and (48),

2
√
εα2

∥∥∂3
xvε(t, ·)

∥∥2
L2(R)

≤ 6
√
ε|α||κ|

∫
R

u2ε|∂xuε||∂3
xvε|dx

+2
√
ε|γα|

∥∥∂2
xvε(t, ·)

∥∥2
L2(R)

≤ 6
√
ε|α||κ|

∫
R

u2ε|∂xuε||∂3
xvε|dx

+C(T ).

(51)

Due to (35), (36) and the Young inequality,

6
√
ε|α||κ|

∫
R

u2ε|∂xuε||∂3
xvε|dx

= 2
√
ε

∫
R

|3κu2ε∂xuε||α∂3
xvε|dx

≤ 9
√
εκ2

∫
R

u4ε(∂xuε)
2dx

+
√
εα2

∥∥∂3
xvε(t, ·)

∥∥2
L2(R)

≤ 9
√
εκ2 ‖uε‖4L∞((0,T )×R)×

×‖∂xuε(t, ·)‖2L2(R)

+
√
εα2

∥∥∂3
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) +
√
εα2

∥∥∂3
xvε(t, ·)

∥∥2
L2(R) .

(52)

It follows from (51) that

√
εα2

∥∥∥∂3
xvε(t, ·)

∥∥∥2
L2(R)

≤ C(T ), (53)

which gives (44). ♠

In the next lemma we prove an H2 energy
estimate.

Lemma 2.9 Assume (6) or (7). Fix T > 0. We have
that

√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

+2ε
√
εet

∫ t

0
e−s

∥∥∥∂3
xuε(s, ·)

∥∥∥2
L2(R)

ds

≤ C(T ),

(54)

and

4
√
ε ‖∂xuε‖L∞((0,T )×R) ≤ C(T ), (55)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by
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2
√
ε∂4

xuε, it follows from integration on R that

√
ε d
dt

∥∥∂2
xuε(t, ·)

∥∥2
L2(R)

+2ε
√
ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

= 2
√
εb

∫
R

Pε∂
4
xuεdx

−2q
√
ε

∫
R

∂4
xuε∂xvεdx.

(56)

Observe that, by (11) and (13),

2b
√
ε

∫
R

Pε∂
4
xuεdx

= −2b

∫
R

∂xPε∂
3
xuεdx

= −2
√
ε

∫
R

uε∂
3
xuεdx

= 2b

∫
R

∂xuε∂
2
xuεdx = 0,

(57)

and

−2q
√
ε

∫
R

∂4
xuε∂xvεdx

= 2
√
εq

∫
R

∂3
xuε∂

2
xvεdx

= −2q

∫
R

∂2
xuε∂

3
xvεdx.

(58)

It follows from (44), (56) and the Young inequality
that

√
ε d
dt

∥∥∂2
xuε(t, ·)

∥∥2
L2(R)

+2ε
√
ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

= −2
√
εq

∫
R

∂2
xuε∂

3
xvεdx

≤ 2
√
ε|q|

∫
R

|∂2
xuε||∂3

xvε|dx

≤
√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

+q2
√
ε
∥∥∂3

xvε(t, ·)
∥∥2
L2(R)

≤
√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R) + C(T ).

(59)

The Gronwall Lemma and (12) give

√
ε
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

+2ε
√
εet

∫ t

0
e−s

∥∥∥∂3
xuε(s, ·)

∥∥∥2
L2(R)

ds

≤ C0 + C(T )et
∫ t

0
e−sds ≤ C(T ),

(60)

which gives (54).

Finally, we prove (55). Thanks to (36), (54) and

the Hölder inequality,

(∂xuε(t, x))
2

= 2

∫ x

−∞
∂xuε∂

2
xuεdy

≤ 2

∫
R

|∂xuε||∂2
xuε|dx

≤ 2 ‖∂xuε(t, ·)‖L2(R)

∥∥∂2
xuε(t, ·)

∥∥
L2(R)

≤ C(T )√
ε
.

(61)

Hence,

√
ε ‖∂xuε‖2L∞((0,T )×R) ≤ C(T ), (62)

which gives (55). ♠

The following lemma gives a bound on the time
derivative of the solution.

Lemma 2.10 Assume (6) or (7). We have that

‖∂tuε(t, ·)‖L2(R) ≤ C(T ), (63)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by 2∂tuε,
an integration on R gives

2 ‖∂tuε(t, ·)‖2L2(R)

= 2b

∫
R

∂tuεPεdx

+2ε

∫
R

∂tuε∂
2
xuεdx

−2q

∫
R

∂tuε∂xvεdx.

(64)

Since 0 < ε < 1, thanks to (29), (33), (36) and the
Young inequality,

2|b|
∫
R

|∂tuε||Pε|dx

=

∫
R

|∂tuε||2bPε|dx

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R)

+2b2 ‖Pε(t, ·)‖2L2(R)

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R) + C(T ),

(65)

and

2ε

∫
R

|∂tuε||∂2
xuε|dx

=

∫
R

|∂tuε||2ε∂2
xuε|dx

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R)

+ ε2

2

∥∥∂2
xuε(t, ·)

∥∥2
L2(R)

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R)

+
√
ε
2

∥∥∂2
xuε(t, ·)

∥∥2
L2(R)

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R) + C(T ),

(66)
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and

2|q|
∫
R

|∂tuε||∂xvε|dx

=

∫
R

|∂tuε||2q∂xvε|dx

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R)

+2q2 ‖∂xvε(t, ·)‖2L2(R)

≤ 1
2 ‖∂tuε(t, ·)‖

2
L2(R) + C(T ).

(67)

Therefore, by (64), we have that

1

2
‖∂tuε(t, ·)‖2L2(R) ≤ C(T ), (68)

which gives (63). ♠

We continue with some estimates of the high order
derivatives of mixed type.

Lemma 2.11 Assume (6) or (7). We have that

‖∂t∂xvε(t, ·)‖L∞(R) ≤ C(T ),
‖∂t∂xvε(t, ·)‖L2(R) ≤ C(T ),
‖∂tvε(t, ·)‖L∞(R) ≤ C(T ),
‖∂tvε(t, ·)‖L2(R) ≤ C(T ),

(69)

for every 0 ≤ t ≤ T .

Proof. Differentiating the third equation of (11) with
respect to t, we have that

α∂t∂
2
xvε + β∂t∂xvε + γ∂tvε = 3κu2ε∂tuε. (70)

We begin by observing that, thanks to (29), (63) and
the Young inequality, we have that∥∥∥3κu2ε(t, ·)∂tuε(t, ·)∥∥∥

L1(R)
≤ C(T ), (71)

for every 0 ≤ t ≤ T. Therefore, by [35, Lemma 2.1],
(69) holds. ♠

We continue with blow-up rate of the H4 norm.

Lemma 2.12 Assume (6) or (7). We have that

ε
∥∥∥∂4

xvε(t, ·)
∥∥∥
L2(R)

≤ C(T ), (72)

for every 0 ≤ t ≤ T .

Proof. Differentiating (45) with respect to x, we have
that

α∂4
xvε + β∂3

xvε + γ∂2
xvε

= 6κuε(∂xuε)
2 + 3κu2ε∂

2
xuε.

(73)

Observe that, since

∂2
xuε(t,±∞) = 0, (74)

by (46) and (47),

∂4
xvε(t,±∞) = 0. (75)

Multiplying (73 by 2εα∂4
xvε, an integration on R

gives

2α2ε
∥∥∂4

xvε(t, ·)
∥∥2
L2(R)

= 12ακε

∫
R

uε(∂xuε)
2∂4

xvεdx

+6ακε

∫
R

u2ε∂
2
xuε∂

4
xvεdx

−2αβε

∫
R

∂3
xvε∂

4
xvεdx

−2αγε

∫
R

∂2
xvε∂

4
xvεdx.

(76)

Observe that, by (47) and (75),

−2αβε

∫
R

∂3
xvε∂

4
xvεdx

= −αβε

∫
R

∂x((∂
3
xvε)

2dx = 0,
(77)

and

−2αγε

∫
R

∂2
xvε∂

4
xvεdx

= 2αγε
∥∥∂3

xvε(t, ·)
∥∥2
L2(R) .

(78)

Consequently, since 0 < ε < 1, by (44) and (76),

2α2ε
∥∥∂4

xvε(t, ·)
∥∥2
L2(R)

≤ 12|ακ|ε
∫
R

|uε|(∂xuε)2|∂4
xvε|dx

+6|ακ|ε
∫
R

u2ε|∂2
xuε||∂4

xvε|dx

+2|αγ|ε
∥∥∂3

xvε(t, ·)
∥∥2
L2(R)

≤ 12|ακ|ε
∫
R

|uε|(∂xuε)2|∂4
xvε|dx

+6|ακ|ε
∫
R

u2ε|∂2
xuε||∂4

xvε|dx

+2|αγ|
√
ε
∥∥∂3

xvε(t, ·)
∥∥2
L2(R)

≤ 12|ακ|ε
∫
R

|uε|(∂xuε)2|∂4
xvε|dx

+6|ακ|ε
∫
R

u2ε|∂2
xuε||∂4

xvε|dx
+C(T ).

(79)

Since 0 < ε < 1, by (35), (36), (54), (55) and the
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Young inequality,

12|ακ|ε
∫
R

|uε|(∂xuε)2|∂4
xvε|

= ε

∫
R

|12κuε(∂xuε)2||α∂4
xvε|dx

≤ 72κ2ε

∫
R

u2ε(∂xuε)
4dx

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ 72κ2ε ‖uε‖2L∞((0,T )×R)

∫
R

(∂xuε)
4dx

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ C(T )ε

∫
R

(∂xuε)
4dx

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ C(T )ε ‖∂xuε‖2L∞((0,T )×R)×
×‖∂xuε(t, ·)‖2L2(R)

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) + α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R) ,

(80)

and

6|ακ|ε
∫
R

u2ε|∂2
xuε||∂4

xvε|dx

= ε

∫
R

|6κu2ε∂2
xuε||α∂4

xvε|dx

≤ 18κ2ε

∫
R

u4ε(∂
2
xuε)

2dx

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ 18κ2
√
ε ‖uε‖4L∞((0,T )×R)×

×
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

+α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) + α2ε
2

∥∥∂4
xvε(t, ·)

∥∥2
L2(R) .

(81)

It follows from (79) that

α2ε
∥∥∥∂4

xvε(t, ·)
∥∥∥2
L2(R)

≤ C(T ), (82)

which gives (72). ♠

In the next lemma we prove an H3 energy
estimate.

Lemma 2.13 Assume (6) or (7). We have that

ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+2ε2et
∫
R

e−s
∥∥∥∂4

xuε(s, ·)
∥∥∥2
L2(R)

ds

≤ C(T ),

(83)

and

8
√
ε3

∥∥∂3
xuε

∥∥
L∞((0,T )×R) ≤ C(T ), (84)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by
−2ε∂6

xuε, we have that

−2ε∂6
xuε∂tuε

= −2bεPε∂
6
xuε − 2ε2∂2

xuε∂
6
xuε

−2qε∂6
xuε∂xvε.

(85)

Observe that, thanks the second equation of (11) and
(13),

−2bε

∫
R

Pε∂
6
xuεdx

= 2bε

∫
R

∂xPε∂
5
xuεdx

= 2bε

∫
R

uε∂
5
xuεdx

= −2bε

∫
R

∂xuε∂
4
xuεdx

= 2bε

∫
R

∂2
xuε∂

3
xuε = 0.

(86)

Moveover,

−2ε

∫
R

∂6
xuε∂tuεdx

= 2ε

∫
R

∂5
xuε∂t∂xuεdx

= −2ε

∫
R

∂4
xuε∂t∂

2
xuεdx

= 2ε

∫
R

∂3
xuε∂t∂

3
xuεdx

= ε d
dt

∥∥∂3
xuε(t, ·)

∥∥2
L2(R) ,

(87)

and

−2ε2
∫
R

∂2
xuε∂

6
xuεdx

= 2ε2
∫
R

∂5
xuε∂

3
xuε

= −2ε2
∥∥∂4

xuε(t, ·)
∥∥2
L2(R) ,

(88)

and

−2qε

∫
R

∂6
xuε∂xvεdx

= 2qε

∫
R

∂5
xuε∂

2
xvεdx

= −2qε

∫
R

∂4
xuε∂

3
xvεdx

= 2qε

∫
R

∂3
xuε∂

4
xvεdx.

(89)

It follows from (86), (88) and an integration of (85)
on R that

ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+2ε2
∥∥∂4

xuε(t, ·)
∥∥2
L2(R)

= 2qε

∫
R

∂3
xuε∂

4
xvεdx.

(90)
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Due to (72) and the Young inequality,

2|q|ε
∫
R

|∂3
xuε||∂4

xvε|dx

≤ ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+q2ε
∥∥∂4

xvε(t, ·)
∥∥2
L2(R)

≤ ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R) + C(T ).

(91)

Therefore, by (90),

ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+2ε2
∥∥∂4

xuε(t, ·)
∥∥2
L2(R)

≤ ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R) + C(T ).

(92)

The Gronwall Lemma and (12) give (83).
Finally, we prove (84). Thanks to (54), (83) and

the Hölder inequality,

(∂2
xuε(t, x))

2

= 2

∫ x

−∞
∂2
xuε∂

3
xuεdy

≤ 2

∫
R

|∂2
xuε||∂3

x|dx

≤
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

∥∥∂3
xuε(t, ·)

∥∥2
L2(R)

≤ C(T )
4
√
ε3

.

(93)

Hence,

4
√
ε3

∥∥∥∂2
xuε

∥∥∥2
L2((0,T )×R)

≤ C(T ), (94)

which gives (84). ♠

We prove an uniform L∞ bound on the time
derivative.

Lemma 2.14 Assume (6) or (7). We have that

‖∂tuε‖L∞((0,T )×R) ≤ C(T ). (95)

Proof. By the first equation of (11), (30) and (33), we
have

|∂tuε|
= |bPε − q∂xvε + ε∂2

xuε|
≤ |b||Pε|+ |q|+ ε|∂2

xuε|
≤ |b| ‖Pε‖L∞((0,T )×R)

+|q| ‖∂xvε‖L∞((0,T )×R)

+ε
∥∥∂2

xuε
∥∥
L∞((0,T )×R)

≤ C(T ) + ε
∥∥∂2

xuε
∥∥
L∞((0,T )×R) .

(96)

Since 0 < ε < 1, thanks to (84),

ε
∥∥∂2

xuε
∥∥
L∞((0,T )×R)

=
8
√
ε5

8
√
ε3

∥∥∂2
xuε

∥∥
L∞((0,T )×R)

≤ 8
√
ε3

∥∥∂2
xuε

∥∥
L∞((0,T )×R) ≤ C(T ).

(97)

It follows from (96) and (97) that

|∂tuε| ≤ C(T ), (98)

which gives (95). ♠

We prove an uniformL2 bound on the mixed time-
space second derivative.

Lemma 2.15 Assume (6) or (7). We have that

‖∂t∂xuε(t, ·)‖L2(R) ≤ C(T ), (99)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by
−2∂t∂

2
xuε, we have that

−2∂t∂
2
xuε∂tuε

= −2b∂t∂
2
xuεPε + 2q∂t∂

2
xuε∂xvε

−2ε∂t∂
2
x∂

2
xuε.

(100)

Observe that by the second equation of (11),

−2b

∫
R

∂t∂
2
xuεPεdx

= 2b

∫
R

∂xPε∂t∂xuεdx

= 2b

∫
R

uε∂t∂xuεdx.

(101)

Moreover,

−2

∫
R

∂t∂
2
xuε∂tuεdx

= 2 ‖∂t∂xuε(t, ·)‖2L2(R) ,

2q

∫
R

∂t∂
2
xuε∂xvεdx

= −2q

∫
R

∂t∂xuε∂
2
xvεdx,

−2ε

∫
R

∂t∂
2
xuε∂

2
xuεdx

= 2ε

∫
R

∂t∂xuε∂
3
xuεdx.

(102)

An integration of (100) on R, (101) and (102) give

2 ‖∂t∂xuε(t, ·)‖2L2(R)

= 2b

∫
R

uε∂t∂xuεdx

−2q

∫
R

∂t∂xuε∂
2
xvεdx

+2ε

∫
R

∂t∂xuε∂
3
xuεdx.

(103)

Since 0 < ε < 1, due to (29), (35), (83) and theYoung
inequality,

2|b|
∫
R

|uε||∂t∂xuε|dx

≤ b2 ‖uε(t, ·)‖2L2(R)

+ ‖∂t∂xuε(t, ·)‖2L2(R)

≤ C(T ) + ‖∂t∂xuε(t, ·)‖2L2(R) ,

(104)

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.81 Giuseppe Maria Coclite, Lorenzo Di Ruvo

E-ISSN: 2224-2880 783 Volume 23, 2024



and

2ε

∫
R

|∂t∂xuε||∂3
xuε|dx

=

∫
R

|∂t∂xuε||2ε∂3
xuε|dx

≤ 1
2 ‖∂t∂xuε(t, ·)‖

2
L2(R)

+2ε2
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

≤ 1
2 ‖∂t∂xuε(t, ·)‖

2
L2(R)

+2ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

≤ 1
2 ‖∂t∂xuε(t, ·)‖

2
L2(R) + C(T ),

(105)

and

2|q|
∫
R

|∂t∂xuε||∂2
xvε|dx

=

∫
R

∣∣∣∣∣
√
2∂t∂

2
xuε√
3

∣∣∣∣∣ ∣∣∣√6q∂2
xvεdx

∣∣∣ dx
≤ 1

3 ‖∂t∂xuε(t, ·)‖
2
L2(R)

+3q2
∥∥∂2

xvε(t, ·)
∥∥2
L2(R)

≤ 1
3 ‖∂t∂xuε(t, ·)‖

2
L2(R) + C(T ).

(106)

Therefore, by (103),

1

6
‖∂t∂xuε(t, ·)‖2L2(R) ≤ C(T ), (107)

which gives (99). ♠

We continue with the blow-up rate of theH5 norm
of the solution.

Lemma 2.16 Assume (6) or (7). We have that

ε
√
ε
∥∥∥∂5

xvε(t, ·)
∥∥∥
L2(R)

≤ C(T ), (108)

for every 0 ≤ t ≤ T .

Proof. Differentiating (73) with respect to x, we have

α∂5
xvε + β∂4

xvε + γ∂3
xvε

= 6κ(∂xuε)
3 + 18κuε∂xuε∂

2
xuε

+3κu2ε∂
3
xuε.

(109)

Observe that, since ∂3
xuε(t,±) = 0, by (46), (47),

(74) and (75),

∂5
xvε(t,±∞) = 0. (110)

Multiplying (109) by 2ε
√
εα∂5

xvε, an integration on

R gives

2ε
√
εα2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

= 12ε
√
εακ

∫
R

(∂xuε)
3∂5

xvεdx

+32ε
√
εακ

∫
R

uε∂xuε∂
2
xuε∂

5
xvεdx

+6ε
√
εακ

∫
R

u2ε∂
3
xuε∂

5
xvεdx

−2ε
√
εαβ

∫
R

∂4
xvε∂

5
xvεdx

−2ε
√
εαγ

∫
R

∂3
xvε∂

5
xvεdx.

(111)

Since 0 < ε < 1, thanks to (47), (75) and (110),

−2ε
√
εαβ

∫
R

∂4
xvε∂

5
xvεdx

= −ε
√
ε

∫
R

∂x((∂
4
xvε))

2dx = 0,
(112)

and

−2ε
√
εαγ

∫
R

∂3
xvε∂

5
xvεdx

= 2ε
√
εαγ

∥∥∂4
xvε(t, ·)

∥∥2
L2(R)

≤ 2ε|αγ|
∥∥∂4

xvε(t, ·)
∥∥2
L2(R) .

(113)

Therefore, by (111),

2ε
√
εα2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ 12ε
√
ε|ακ|

∫
R

|∂xuε|3|∂5
xvε|dx

+32ε
√
ε|ακ|

∫
R

|uε∂xuε∂2
xuε|×

|∂5
xvε|dx

+6ε
√
ε|ακ|

∫
R

|u2ε∂3
xuε||∂5

xvε|dx
+C(T ).

(114)

Since 0 < ε < 1, due to (35), (36), (54), (55), (83)
and the Young inequality,

12ε
√
ε|ακ|

∫
R

|∂xuε|3|∂5
xvε|dx

= ε
√
ε

∫
R

|12κ(∂xuε)3||α∂5
xvε|dx

≤ 72κ2ε
√
ε

∫
R

(∂xuε)
6dx

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ 72κ2ε
√
ε ‖∂xuε‖4L∞((0,T )×R)×

×‖∂xuε(t, ·)‖2L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤
√
εC(T ) ‖∂xuε(t, ·)‖2L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) + ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R) ,

(115)
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and

32ε
√
ε|ακ|

∫
R

|uε∂xuε∂2
xuε||∂5

xvε|dx

= ε
√
ε

∫
R

|32κuε∂xuε∂2
xuε||α∂5

xvε|dx

≤ 512κ2ε
√
ε

∫
R

u2ε(∂xuε)
2(∂2

xuε)
2dx

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ 512κ2ε
√
ε ‖uε‖2L∞((0,T )×R)×

×
∫
R

(∂xuε)
2(∂2

xuε)
2dx

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T )ε
√
ε ‖∂xuε‖2L∞((0,T )×R)×

×
∥∥∂2

xuε(t, ·)
∥∥2
L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) + ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R) ,

(116)

and

6ε
√
ε|ακ|

∫
R

|u2ε∂3
xuε||∂5

xvε|dx

= ε
√
ε

∫
R

|6κu2ε∂3
xuε||α∂5

xvε|dx

≤ 18κ2ε
√
ε

∫
R

u4ε(∂
3
xuε)

2dx

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ 18κ2 ‖uε‖4L∞((0,T )×R)×
×

∥∥∂3
xuε(t, ·)

∥∥2
L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T )ε
√
ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T )ε
∥∥∂3

xuε(t, ·)
∥∥2
L2(R)

+ ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R)

≤ C(T ) + ε
√
εα2

2

∥∥∂5
xvε(t, ·)

∥∥2
L2(R) .

(117)

Consequently, by (114),

ε
√
εα2

2

∥∥∥∂5
xvε(t, ·)

∥∥∥2
L2(R)

≤ C(T ), (118)

which gives (108). ♠

We continue by proving an H4 energy type
estimate.

Lemma 2.17 Assume (6) or (7). We have that

ε
√
ε
∥∥∂4

xuε(t, ·)
∥∥2
L2(R)

+2ε2
√
εet

2

∫ t

0
e−s

∥∥∥∂5
xuε(s, ·)

∥∥∥2
L2(R)

ds

≤ C(T ),

(119)

and
8
√
ε5

∥∥∂3
xuε

∥∥
L∞((0,T )×R) ≤ C(T ), (120)

for every 0 ≤ t ≤ T .

Proof. Multiplying the first equation of (11) by
2ε
√
ε∂8

xuε, we get

2ε
√
ε∂8

xuε∂tuε
= 2bε

√
εPε∂

8
xuε

+2ε2
√
ε∂2

xuε∂
8
xuε

−2qε
√
ε∂8

xuε∂xvε.

(121)

Observe that by (13) and the second equation of (11),

2bε
√
ε

∫
R

Pε∂
8
xuεdx

= 2bε
√
ε

∫
R

∂xPε∂
7
xuεdx

= 2bε
√
ε

∫
R

uε∂
7
xuεdx

= 2bε
√
ε

∫
R

∂xuε∂
6
xuεdx

= 2bε
√
ε

∫
R

∂2
xuε∂

5
xuεdx

= 2b

∫
R

∂3
xuε∂

4
xuεdx = 0.

(122)

Moreover,

2ε
√
ε

∫
R

∂8
xuε∂tuεdx

= −2ε
√
ε

∫
R

∂7
xuε∂t∂xuεdx

= 2ε
√
ε

∫
R

∂6
xuε∂t∂

2
xuεdx

= −2ε
√
ε

∫
R

∂5
xuε∂t∂

3
xuεdx

= ε
√
ε d
dt

∥∥∂4
xuε(t, ·)

∥∥2
L2(R) ,

(123)

and

2ε2
√
ε

∫
R

∂2
xuε∂

8
xuεdx

= −2ε2
√
ε

∫
R

∂3
xuε∂

7
xuεdx

= 2ε2
√
ε

∫
R

∂4
xuε∂

6
xuεdx

= −2ε2
√
ε
∥∥∂5

xuε(t, ·)
∥∥2
L2(R) ,

(124)

and

−2qε
√
ε

∫
R

∂8
xuε∂xvεdx

= 2qε
√
ε

∫
R

∂7
xuε∂

2
xvεdx

= −2qε
√
ε

∫
R

∂6
xuε∂

3
xvεdx

= 2qε
√
ε

∫
R

∂5
xuε∂

4
xvεdx

= −2qε
√
ε

∫
R

∂4
xuε∂

5
xvεdx.

(125)
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Integrating (121), by (122) and (124), we have that

ε
√
ε d
dt

∥∥∂4
xuε(t, ·)

∥∥2
L2(R)

+2ε2
√
ε
∥∥∂5

xuε(t, ·)
∥∥2
L2(R)

= −2qε
√
ε

∫
R

∂4
xuε∂

5
xvεdx.

(126)

Due to (108) and the Young inequality,

2|q|ε
√
ε

∫
R

|∂4
xuε||∂5

xvε|dx

≤ ε
√
ε
∥∥∂4

xuε(t, ·)
∥∥2
L2(R)

+q2ε
√
ε
∥∥∂4

xuε(t, ·)
∥∥2
L2(R)

≤ ε
√
ε
∥∥∂4

xuε(t, ·)
∥∥2
L2(R) + C(T ).

(127)

It follows from (126) that

ε
√
ε d
dt

∥∥∂4
xuε(t, ·)

∥∥2
L2(R)

+2ε2
√
ε
∥∥∂5

xuε(t, ·)
∥∥2
L2(R)

≤ ε
√
ε
∥∥∂4

xuε(t, ·)
∥∥2
L2(R) + C(T ).

(128)

The Gronwall Lemma and (12) gives (119).

Finally, we prove (120). Thanks to (83), (119) and
the Hölder inequality,

(∂3
xuε(t, x))

2

= 2

∫ x

−∞
∂3
xuε∂

4
xuεdx

≤ 2

∫
R

|∂3
xuε|∂4

xuε|dx
≤

∥∥∂3
xuε(t, ·)

∥∥
L2(R)

∥∥∂3
xuε(t, ·)

∥∥
L2(R)

≤ C(T )
4
√
ε5

.

(129)

Hence,

4
√
ε5

∥∥∥∂3
xuε

∥∥∥2
L∞((0,T )×R)

≤ C(T ), (130)

which gives (120). ♠

We show an uniform L∞ bound on the second
order mixed derivative.

Lemma 2.18 Assume (6) or (7). We have that

‖∂t∂xuε‖L∞((0,T )×R) ≤ C(T ). (131)

Proof. Differentiating the first equation of (11) with
respect to, thanks to the second one of (11), we have
that

∂t∂xuε = buε + ε∂3
xuε − q∂3

xvε. (132)

Due to (35) and (35),

|∂t∂xuε|
= |buε − q∂3

xvε + ε∂3
xuε|

≤ |b||uε|+ |q||∂2
xvε|+ ε|∂3

xuε|
≤ |b| ‖uε‖L∞((0,T )×R)

+|q|
∥∥∂2

xvε
∥∥
L∞((0,T )×R)

+ε
∥∥∂3

xuε
∥∥
L∞((0,T )×R)

≤ C(T ) + ε
∥∥∂3

xuε
∥∥
L∞((0,T )×R) .

(133)

Observe that, since 0 < ε < 1, thanks to (120),

ε
∥∥∂3

xuε
∥∥
L∞((0,T )×R)

=
8
√
ε3

8
√
ε5

∥∥∂3
xuε

∥∥
L∞((0,T )×R)

≤ 8
√
ε5

∥∥∂3
xuε

∥∥
L∞((0,T )×R) ≤ C(T ).

(134)

(131) follows from (133) and (134). ♠

Consider the fast decaying function

χ(x) = e−|x|, x ∈ R, (135)

that satisfies

0 ≤ χ ≤ 1, |χ′| = χ. (136)

We prove the following result

Lemma 2.19 Assume (6) or (7). We have that

ε

∫
R

(∂t∂xuε)
2χdx

+

∫ t

0

∫
R

(∂2
t uε)

2χdtdx ≤ C(T ),
(137)

for every 0 ≤ t ≤ T .

Proof. Differentiating the first equation of (11) with
respect to t, we have

∂2
t uε = b∂tPε + ε∂t∂

2
xuε − q∂t∂xvε. (138)

Multiplying (138) by 2∂2
t uεχ, and integration on R

give,

2

∫
R

(∂2
t uε)

2χdx

= 2b

∫
R

∂tPε∂
2
t uεχdx

+2ε

∫
R

∂t∂
2
xuε∂

2
t uεχdx

−2q

∫
R

∂t∂xvε∂
2
t uεχdx.

(139)

Observe that

2ε

∫
R

∂t∂
2
xuε∂

2
t uεχdx

= −ε d
dt

∫
R

χ(∂tuε)
2dx

−2ε

∫
R

∂t∂xuε∂
2
t uεχ

′dx.

(140)
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Consequently, by (139),

ε d
dt

∫
R

χ(∂tuε)
2dx

+2

∫
R

(∂2
t uε)

2χdx

= 2b

∫
R

∂tPε∂
2
t uεχdx

−2ε

∫
R

∂t∂xuε∂
2
t uεχ

′dx

−2q

∫
R

∂t∂xvε∂
2
t uεχdx.

(141)

Since 0 < ε < 1, thanks to (69), (99) and the Young
inequality,

2ε

∫
R

|∂t∂xuε||∂2
t uε||χ′|dx

≤ 2C0

∫
R

|∂t∂xuε||∂2
t uε|χdx

≤ C0

∫
R

χ(∂t∂xuε)
2dx

+1
2

∫
R

(∂2
t uε)

2χdx

≤ C0 ‖∂t∂xuε(t, ·)‖2L2(R)

+1
2

∫
R

(∂2
t uε)

2χdx

≤ C(T ) + 1
2

∫
R

(∂2
t uε)

2χdx,

2|b|
∫
R

|∂tPε||∂2
t uε|χdx

≤ 2b2
∫
R

(∂tPε)
2χdx

+1
2

∫
R

(∂2
t uε)

2χdx,

2|q|
∫
R

|∂t∂xvε||∂2
t uε|χdx

≤ 2q2
∫
R

χ(∂t∂xvε)
2dx

+1
2

∫
R

(∂2
t uε)

2χdx

≤ C0 ‖∂t∂xvε(t, ·)‖2L2(R)

+1
2

∫
R

(∂2
t uε)

2χdx

≤ C(T ) + 1
2

∫
R

(∂2
t uε)

2χdx.

(142)

It follows from (141) that

ε d
dt

∫
R

χ(∂tuε)
2dx

+1
2

∫
R

(∂2
t uε)

2χdx

≤ C(T ) + 2b2
∫
R

(∂tPε)
2χdx.

(143)

Observe that, by the second equation of (11),

∂tPε =

∫ x

0
∂tuε(t, y)dy. (144)

Therefore, by (144), (63) and the Jensen inequality

2b2
∫
R

(∂tPε)
2χdx

=

∫
R

χ

(∫ x

0
∂tuε(t, y)dy

)2

dx

≤
∫
R

χ|x|
∣∣∣∣∫ x

0
(∂tuε)

2dy

∣∣∣∣ dx
≤ ‖∂tuε(t, ·)‖2L2(R)

∫
R

χ|x| ≤ C(T ).

(145)

Thus, by (143), we have

ε d
dt

∫
R

χ(∂tuε)
2dx+

1

2

∫
R

(∂2
t uε)

2χdx

≤ C(T ).
(146)

Integrating on (0, t), by (12), we get

ε

∫
R

χ(∂tuε)
2dx

+1
2

∫ t

0

∫
R

(∂2
t uε)

2χdsdx

≤ C0 + C(T )t ≤ C(T )

(147)

that is (137). ♠

3 Proof of Theorem 1.1
This section is devoted to the proof of Theorem 1.1.
Proof of Theorem 1.1. Thanks to Lemmas 2.4, 2.5,
2.6, 2.10, 2.11, 2.15, (95), (131), and (2.19),

{∂tuε}ε>0 is bounded in H1
loc((0,∞)× R) (148)

Consequentially, there exists w ∈ H1
loc((0,∞) × R)

such that

∂tuε ⇀ w in H1
loc((0,∞)× R),

∂tuε → w in Lp
Loc((0,∞)× R),

1 ≤ p < ∞ and a.e. in (0,∞)× R.
(149)

We define the following functon:

u(t, x) =

∫ t

0
w(s, x)ds+ u0(x). (150)

We prove that

uε → u in Lp
Loc((0,∞)× R),

1 ≤ p < ∞ and a.e. in (0,∞)× R.
(151)

Observe that

uε(t, x) =

∫ t

0
uε(s, x)ds+ uε, 0(x). (152)

consequentially, we have that

uε(t, x)− u(t, x)

=

∫ t

0
(∂tuε(s, x)− w(s, x))ds

+uε, 0(x)− u0(x).

(153)
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Therefore, by (149),∫ T

0

∫ R

−R
|uε(t, x)− u(t, x)|dtdx

≤
∫ T

0

∫ R

−R

∫ t

0
|∂tuε(s, x)− w(t, x)|dsdtdx

+T

∫ R

−R
|uε, 0(x)− u0(x)|dx → 0,

(154)
which gives (151).

By (151), we have that

Pεκ → P in Lp
loc((0, T );W

1, p(R))
1 ≤ p < ∞, and a.e. in (0,∞)× R,

(155)

where

P (t, x) =

∫ x

0
u(t, y)dy, t > 0, x ∈ R. (156)

Moreover, thanks to Lemmas 2.4, 2.5, 2.6, 2.10, 2.11,
2.15 , (95), (131), and (2.19),

{vε}ε>0 is bounded in H1
loc((0,∞)× R) (157)

Consequentially, there exists v ∈ H1
loc((0,∞) × R)

such that

vε ⇀ v in H1
loc((0,∞)× R),

vε → v in Lp
Loc((0,∞)× R),

1 ≤ p < ∞ and a.e. in (0,∞)× R.
(158)

Therefore, the triple (u, v, P ) is a distributional
solution of (2) and (8) hold. ♠

4 Conclusion
We consider the short pulse equations that is a second
order evolutive PDE that appear in the
modeling of several physical and mathematical phe-
nomena. Moreover, if can rewritten in the form of an
hyperbolic equation of the first order with a
nonlocal source term. Here we consider a nonlocal
regularization fo the flux and studied the existence
of possibly discontinuous solutions using a vanishing
viscosity type argument and energy type estimates.
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