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Abstract: - This article created the Odd Chen-Log-Logistic distribution from Odd Chen-G family distributions. 
We derive various statistical features. The parameter estimation theory focuses on selecting the best estimators. 
We estimate distribution parameters using maximum likelihood, moment, least squares, weighted least, L-
moment, maximum product spacing, and minimal distance methods. We will examine Kolmogorov-Smirnov 
simulation studies that compare estimator efficiency. Finally, we analyze a genuine COVID-19 data set to 
demonstrate the flexibility of our model and its accuracy compared to other distributions. 
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1  Introduction 
The log-logistic distribution, also known as the Fisk 
distribution, is a massive continuous probability 
distribution with a huge tail. Indeed, it has a singular 
form parameter and a single scale or rate. This 
distribution uses a non-negative random variable 
whose logarithm has the common logistic 
distribution, [1]. The log-logistic distribution 
enables the closed representation of the cumulative 
distribution and helps one to estimate incomplete (or 
censored) data. Indeed, in the domains of business, 
medicine, economics, income, wealth, and the social 
sciences, the log-logistic distribution models do find 
their use. They help to depict data with a substantial 
degree of fluctuation. 

In several areas, the log-logistic distribution 
differs from many parametric distributions used in 
survival and reliability research. 

Many disciplines, including demography [2], 
economics [3], engineering [4], and hydrology [5], 
use the log-logistic distribution as a basic yet 
effective parametric model. 
 

Definition 1.1. A random variable 𝑋 has a Log-
Logistic distribution with shape parameter 𝛽 > 0 
and scale parameter 𝛼 > 0, based on the probability 
density function: 

𝑔 𝑋(𝑥; 𝜃, 𝜇) =
(
𝜇

𝜃
)(

𝑥

𝜃
)
𝜇−1

(1+(
𝑥

𝜃
)
𝜇
)
2 (1) 

 
and cumulative distribution function 

𝐺𝑋(𝑥; 𝜃, 𝜇) =
𝑥𝜇

𝜃𝜇+𝑥𝜇 (2) 
 

According to [6], the Odd Chen-G Family of 
distributions generator provides the pdf and cdf of a 
continuous distribution: 

𝑓𝑋 (𝑥; 𝜆, 𝛽, 𝜉) = 𝜆𝛽𝑔 (𝑥; 𝜉) 𝐺 (𝑥; 𝜉)
𝛽−1

× 

× [1 − 𝐺 (𝑥; 𝜉)]
−(𝛽+1)

𝑒
(

𝐺(𝑥;𝜉)

1−𝐺(𝑥;𝜉)
)

𝛽

𝑒

𝜆

(

 
 
 

1−𝑒

(
𝐺(𝑥;𝜉)

1−𝐺(𝑥;𝜉)
)

𝛽

)

 
 
 

 (3) 
and  

𝐹𝑋 (𝑥; 𝜆, 𝛽, 𝜉) = 1 − 𝑒

𝜆

(

 
 
 

1−𝑒

(
𝐺(𝑥;𝜉)

1−𝐺(𝑥;𝜉)
)

𝛽

)

 
 
 

 (4) 
 
respectively, for 𝑥 > 0,𝜆 > 0,𝛽 > 0 and parameter 
vector 𝜉. 

 
This study examines Log-Logistic (3) and (4), 

often known as the Odd Chen distribution, as 
baseline functions for (5) and (6). 
 

Definition 1.2. The probability density function of a 
random variable X with a vector parameter is called 
an Odd Chen Log-Logistic distribution (𝜆, 𝛽, 𝜃, 𝜇). 
 

𝑓𝑋(𝑥; 𝜆, 𝛽, 𝜃, 𝜇) = 𝜆𝛽
(

𝜇

𝜃
) (

𝑥

𝜃
)

𝜇−1

(1 + (
𝑥

𝜃
)

𝜇

)
2

𝑥𝜇

𝜃𝜇 + 𝑥𝜇

𝛽−1

× 
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× [1 −
𝑥𝜇

𝜃𝜇+𝑥𝜇]
−(𝛽+1)

𝑒
(
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𝜆
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)

𝛽

)

 
 
 
 

 (5) 

and cumulative distribution function 
 

𝐹𝑋(𝑥; 𝜆, 𝛽, 𝜃, 𝜇) = 1 − 𝑒

𝜆

(

 
 
 
 

1−𝑒

(
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𝜃𝜇+𝑥𝜇

1−
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)

𝛽

)

 
 
 
 

 (6) 
respectively, for 𝑥 > 0, 𝜆 > 0, 𝛽 > 0, 𝜃 > 0, 𝜇 > 0 . 
 

Some alternative shapes of the Odd Chen Log-
Logistic distribution (OC-LL) distribution for given 
values of λ,β,θ, and μ are shown in Figure 1 and 
Figure 2. 

 
Fig. 1: CDF 
 

 
Fig. 2: PDF 
 
2   Some Properties 
 
2.1  Survival Function 
Survival function or reliability function of the Odd 
Chen Log-Logistic distribution: 

𝑅(𝑥; 𝛼, 𝛽, 𝜃) = 1 − 𝐹𝑋(𝑥; 𝛼, 𝛽, 𝜃) 

1 − 1 + 𝑒

𝜆

(

 
 
 
 

1−𝑒

(
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𝛽

)

 
 
 
 

= 𝑒

𝜆

(

 
 
 
 

1−𝑒

(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
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𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 
 
 

 (7) 
 

2.2   Hazard Function 
Hazard rate function, or failure rate, of the Odd 
Chen Log-Logistic distribution is: 
 

ℎ(𝑥; 𝛼, 𝛽, 𝜃) = 𝜆𝛽
(
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𝜃
) (
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𝜃
)
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(1 + (
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𝜃
)
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)
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𝜃𝜇 + 𝑥𝜇

𝛽−1

× 

× [1 −
𝑥𝜇

𝜃𝜇+𝑥𝜇]
−(𝛽+1)

𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇
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)

𝛽

 (8) 
 

Figure 3 and Figure 4 display the potential 
Reliability and Hazard functions of the Odd Chen 
Log-Logistic (OC-LL) distribution for specific 
values 𝜆, 𝛽, 𝜃 and 𝜇.  

 

 
Fig. 3: Reliability Function 
 

 
Fig. 4: Hazard Function 
 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2024.23.80

Klodiana Bani, Arbër Qoshja, 
Aurora Simoni, Marselina Uzuni

E-ISSN: 2224-2880 766 Volume 23, 2024



2.3  Quantiles 
Solving equation 𝐺(𝑥𝑝) = 𝑝, we get the quantile of 
some distribution, for 0 < 𝑝 < 1. Odd Chen Log-
Logistic distribution quantile function is: 

𝑥(𝑝) = 𝐺−1 [
(𝑙𝑜𝑔(1−

𝑙𝑜𝑔(1−𝑝)

𝜆
))

1
𝛽⁄

1+(𝑙𝑜𝑔(1−
𝑙𝑜𝑔(1−𝑝)

𝜆
))

1
𝛽⁄
] (9) 

 
2.4  Some Useful Expression  
Extension of Taylor series, [7], the pdf (7) of 𝑋 
becomes: 

𝑓𝑋(𝑥; ) = 𝜆𝛽
(

𝜇

𝜃
) (

𝑥

𝜃
)

𝜇−1

(1 + (
𝑥

𝜃
)

𝜇

)
2 𝑒𝜆 × 

× ∑∑
(−1)𝑖𝜆𝑖

𝑖!

∞

𝑗=0

∞
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(𝑖 + 1)𝑗
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(

𝑥𝜇

𝜃𝜇 + 𝑥𝜇
)

𝛽(𝑗+1)−1

×

× [1 − (
𝑥𝜇

𝜃𝜇 + 𝑥𝜇
)]

−(𝛽(𝑗+1)−1)

 

 
Generalized binomial expansion: 

𝑓𝑋(𝑥; 𝜆, 𝛽, 𝜃, 𝜇) = 𝜆𝛽
(

𝜇

𝜃
) (
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𝜃
)

𝜇−1

(1 + (
𝑥

𝜃
)

𝜇

)
2 𝑒𝜆 × 

× ∑∑ ∑
(−1)𝑖𝜆𝑖

𝑖!

(𝑖 + 1)𝑗

𝑗!

∞

𝑘=0

∞

𝑗=0

∞

𝑖=0

(
𝛽(𝑗 + 1) + 𝑘

𝑘
) × 
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𝑥𝜇

𝜃𝜇 + 𝑥𝜇
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𝛽(𝑗+1)+𝑘−1

 

 
2.5  Order Statistics 
The maximum order density for i.i.d. continuous 
random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with pdf (7) and cdf 
(8) is: 

𝑓(𝑛)(𝑥) = 𝑛𝑓(𝑥)𝐹(𝑥)𝑛−1 = 𝑛𝜆𝛽
(
𝜇

𝜃
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𝜃
)
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𝜃
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𝜇
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𝑥𝜇

𝜃𝜇+𝑥𝜇

𝛽−1

×
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𝑥𝜇

𝜃𝜇+𝑥𝜇]
−(𝛽+1)

𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

𝑒

𝜆
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1−𝑒

(

𝑥𝜇

𝜃𝜇+𝑥𝜇
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𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽
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×
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1 − 𝑒𝑥𝑝

(

  
 

𝜆

(

 
 

1 − 𝑒
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𝑥𝜇

𝜃𝜇+𝑥𝜇
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𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽
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)

  
 

]
 
 
 
 
𝑛−1

 (10) 

 
The minimum order density for i.i.d. continuous 

random variables 𝑋1, 𝑋2, … , 𝑋𝑛  with pdf (7) and cdf 
(8) is: 

𝑓(1)(𝑥) = 𝑛𝑓(𝑥)(1 − 𝐹(𝑥))
𝑛−1

= 𝑛𝜆𝛽
(

𝜇

𝜃
) (

𝑥

𝜃
)

𝜇−1

(1 + (
𝑥

𝜃
)

𝜇

)
2

𝑥𝜇

𝜃𝜇 + 𝑥𝜇

𝛽−1

× 

× [1 −
𝑥𝜇

𝜃𝜇+𝑥𝜇]
−(𝛽+1)

𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

𝑒

𝜆

(

 
 
 
 

1−𝑒

(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 
 
 

×

[
 
 
 
 

𝑒𝑥𝑝

(

  
 

𝜆

(

 
 

1 − 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 

)

  
 

]
 
 
 
 
𝑛−1

 (11) 

 
The minimum order density for i.i.d. continuous 

random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with pdf (7) and cdf 
(8) is: 
 

𝑓(𝑘)(𝑥) = 𝑛𝑓(𝑥) (
𝑛 − 1
𝑘 − 1

)𝐹(𝑥)𝑘−1(1 − 𝐹(𝑥))
𝑛−𝑘

= 

= 𝑛𝜆𝛽
(

𝜇

𝜃
) (

𝑥

𝜃
)

𝜇−1

(1 + (
𝑥

𝜃
)

𝜇

)
2

𝑥𝜇

𝜃𝜇 + 𝑥𝜇

𝛽−1

× [1 −
𝑥𝜇

𝜃𝜇 + 𝑥𝜇
]

−(𝛽+1)

 

× 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

𝑒

𝜆

(

 
 
 
 

1−𝑒

(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 
 
 

× (
𝑛 − 1

𝑘 − 1
) 

×

[
 
 
 
 

1 − 𝑒𝑥𝑝

(

  
 

𝜆

(

 
 

1 − 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 

)

  
 

]
 
 
 
 
𝑘−1

× 

×

[
 
 
 
 

𝑒𝑥𝑝

(

  
 

𝜆

(

 
 

1 − 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 

)

  
 

]
 
 
 
 
𝑛−𝑘

 (12) 

 

2.6  Rényi Entropy 
Information theory's Rényi entropy generalises 
collision, min-entropy, Shannon, and Hartley 
entropies. The Rényi entropy studies the largest 
method for information quantification that maintains 
additivity for separate events, [8]. In fractal 
dimension estimation, generalized dimensions are 
based on Rényi entropy. Rényi entropy is a measure 
of diversity in statistics and ecology. The Rényi 
entropy is an important entanglement gauge in 
quantum information. It is possible to exactly 
determine the Rényi entropy as a function of α in 
the Heisenberg XY spin chain model, as it is an 
automorphic function for a specific subgroup of the 
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modular. Rényi entropy 𝐼𝑅(𝜈) for the Odd Chen 
Log-Logistic distribution is as follows: 
 

𝐼𝑅(𝜈) = (1 − 𝜈)−1𝑙𝑜𝑔 [ ∫ 𝑓𝜈(𝑥)𝑑𝑥

∞

−∞

] = (1 − 𝜈)−1𝑙𝑜𝑔 

[
 
 
 
 
 
 
 

∫

(

 
 
 
 
 

𝜆𝛽
(
𝜇

𝜃
)(

𝑥

𝜃
)
𝜇−1

(1+(
𝑥

𝜃
)
𝜇
)
2

𝑥𝜇

𝜃𝜇+𝑥𝜇

𝛽−1

[1 −
𝑥𝜇

𝜃𝜇+𝑥𝜇]
−(𝛽+1)

×

× 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

𝑒

𝜆

(

 
 
 
 

1−𝑒

(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 
 
 

)

 
 
 
 
 

𝜈

∞

−∞

]
 
 
 
 
 
 
 

,  

𝜈 ≠ 1, 𝜈 > 0.  (14) 
 
 
3 Approaches to Parameter Estimation 
 

3.1  Maximum Likelihood 
The most prevalent ML method is full information 
maximum likelihood (ML) because it gives 
estimates with desirable large sample quality. In 
finite samples, these traits hold roughly. For 
independent 𝑥1, 𝑥2, … , 𝑥𝑛 consider a parametric 
model with probability density or frequency 
distribution functions 𝑓𝑖(𝑥𝑖; 𝝃). We know that: 
 
 𝐿(𝝃) = ∏ 𝑓𝑖(𝑥𝑖; 𝝃)

𝒏
𝒊=𝟏  (13) 

 
𝐿(𝝃) represents the probability of the sample being 
observed for 𝝃. So, the value of �̃� that maximises 
𝐿(𝝃) defines the MLE. 
So, 𝑥1, 𝑥2, … , 𝑥𝑛 be i.i.d. random variables with pdf 
(7). The likelihood function of parameters 𝜆, 𝛽, 𝜃 and 
𝜇 is:  

ℓ = 𝑛𝑙𝑜𝑔𝜆𝛽 + ∑ 𝑙𝑜𝑔
(

𝜇

𝜃
) (

𝑥𝑖

𝜃
)

𝜇−1

(1 + (
𝑥𝑖

𝜃
)

𝜇

)
2

𝑛

𝑖=1

+ 

(𝛽 − 1)∑ 𝑙𝑜𝑔𝑛
𝑖=1

𝑥𝜇

𝜃𝜇+𝑥𝜇 + 𝜆 ∑

(

 
 

1 − 𝑒
(

𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

)

 
 

𝑛
𝑖=1 −

(𝛽 + 1)∑ 𝑙𝑜𝑔 [1 −
𝑥𝜇

𝜃𝜇+𝑥𝜇] ∑ (
𝑥𝜇

𝜃𝜇+𝑥𝜇

1−
𝑥𝜇

𝜃𝜇+𝑥𝜇

)

𝛽

𝑛
𝑖=1

𝑛
𝑖=1  (14) 

 
Solving nonlinear equations simultaneously 

estimates unknown parameters, which cannot be 
solved analytically. Iterative methods like the 
Newton-Raphson approach simplify nonlinear 
situations. Newton Raphson estimated parameters 
using these beginning values. The parameter 
estimates for the 100(1 − 𝛼) two-sided confidence 

range are asymptotically close to standard normal, 
as indicated by the z-score. 
 
3.2  Moment Estimation 
Since sample moments are estimates of population 
moments, the method of moments is one of the 
oldest point estimator methods, [9]. Equalising the 
first three theoretical moments with the three sample 
moments yields the Odd Chen Log-Logistic 
distribution's moment estimators. These four 
moments are examples: 
 

𝑚1 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

, 𝑚2 =
1

𝑛
∑ 𝑥𝑖

2

𝑛

𝑖=1

 

𝑚3 =
1

𝑛
∑ 𝑥𝑖

3

𝑛

𝑖=1

, 𝑚4 =
1

𝑛
∑𝑥𝑖

4

𝑛

𝑖=1

 

 (15) 
 
and the first four theoretical moments were 
characterised as: 

   𝜇1
′ = 𝐸(𝑋1) = ∫ 𝑥𝑓(𝑥

+∞

−∞

)𝑑𝑥  

𝜇2
′ = 𝐸(𝑋2) = ∫ 𝑥2𝑓(𝑥

+∞

−∞

)𝑑𝑥 

𝜇3
′ = 𝐸(𝑋3) = ∫ 𝑥3𝑓(𝑥

+∞

−∞

)𝑑𝑥 

𝜇4
′ = 𝐸(𝑋4) = ∫ 𝑥4𝑓(𝑥

+∞

−∞

)𝑑𝑥 

 
The moment's estimators �̂�𝑀𝐸 , �̂�𝑀𝐸 , 𝜃𝑀𝐸 , �̂�𝑀𝐸 of 

the parameters 𝜆, 𝛽, 𝜃, 𝜇 can be obtained by solving 
numerically the following system of equations: 
 

𝑚1 = 𝜇1
′ (𝜆, 𝛽, 𝜃, 𝜇) 

𝑚2 = 𝜇2
′ (𝜆, 𝛽, 𝜃, 𝜇) 

𝑚3 = 𝜇3
′ (𝜆, 𝛽, 𝜃, 𝜇) 

𝑚4 = 𝜇4
′ (𝜆, 𝛽, 𝜃, 𝜇) 

 
Modified moment estimate is a good alternative 

to moment estimation. This first-order statistics 
approach can be adjusted, as mentioned by [10]. 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a sample from Odd Chen 
Log-Logistic distribution, with observed values 
𝑥1, 𝑥2, … , 𝑥𝑛. Solving the following equations yields 
Odd Chen Log-Logistic distribution modified 
moment estimators: 
 

𝐸(𝑋) = �̅� 
𝑉(𝑋) = 𝑠2 

𝐸 (𝐹(𝑋(1))) = 𝐹(𝑥1) 

where �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  and 𝑠2 is the sample variance 

 𝑠2 =
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 . 
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3.3  Least Square Estimation 
Beta distribution parameters can be found using 
least square estimators and weighted LSEs, [11].  

The Odd Chen Log-Logistic distribution's 
unknown parameters' LSEs can be found by 
minimizing: 
 ∑ (𝐹(𝑥(𝑗)) −

𝑗

𝑛+1
)

2
𝑛
𝑗=1  (16) 

 
regarding unknown parameters 𝜆, 𝛽, 𝜃, 𝜇.  
 

To calculate the least squares estimate (LSE) of 
𝜆, 𝛽, 𝜃, 𝜇, can be derived by minimizing the 
respective values: 

𝐿𝑆(𝑥𝑗) = ∑

(

 
 
 
 
 
 

1− 𝑒𝑥𝑝

(

 
 
 
 
 
 
 

𝜆

(

 
 
 
 
 
 

1 − 𝑒(

 
 
 

𝑥𝑗
𝜇

𝜃𝜇+𝑥𝑗
𝜇

1−
𝑥𝑗

𝜇

𝜃𝜇+𝑥𝑗
𝜇

)

 
 
 

𝛽

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

−
𝑗

𝑛 + 1

)

 
 
 
 
 
 

2

𝑛

𝑗=1

 

 
Hence, �̂�𝐿𝑆𝐸 , �̂�𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 , �̂�𝐿𝑆𝐸 of 𝜆, 𝛽, 𝜃, 𝜇 can be 

found by solving the following system of equations: 
𝜕𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇 )

𝜕𝜆
= 0,

𝜕𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇 )

𝜕𝛽
= 0 

𝜕𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇 )

𝜕𝜃
= 0,

𝜕𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇 )

𝜕𝜇
= 0 

 
We can calculate estimates by solving these 

equations numerically �̂�𝐿𝑆𝐸 , �̂�𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 , �̂�𝐿𝑆𝐸 . 
 
3.4  The Weighted Least Square Estimation 
The unknown parameters' weighted least squares 
estimators (WLSEs) can be calculated by 
minimizing: 
∑ 𝜔𝑗 (𝐹(𝑥(𝑗)) −

𝑗

𝑛+1
)

2

          𝑛
𝑗=1  (17) 

 
consider 𝛼, 𝛽, 𝜃, and 𝜔𝑗 denote the weight function: 

𝜔𝑗 =
1

𝑉(𝐹(𝑋(𝑗))

(𝑛 + 1)2(𝑛 + 2)

𝑗(𝑛 − 𝑗 + 1)
 

 
The WLSEs say �̂�𝐿𝑆𝐸 , �̂�𝐿𝑆𝐸 , 𝜃𝐿𝑆𝐸 , �̂�𝑊𝐿𝑆𝐸 by 

minimizing: 
 

𝑊𝐿𝑆𝐸(𝑥𝑗|𝜆,𝛽,𝜃, 𝜇) = ∑
(𝑛 + 1)2(𝑛+ 2)

𝑗(𝑛− 𝑗 + 1)
×

𝑛

𝑗=1

 

×

(

 
 
 
 
 
 

1 − 𝑒𝑥𝑝

(

 
 
 
 
 
 
 

𝜆

(

 
 
 
 
 
 

1 − 𝑒(

 
 
 

𝑥𝑗
𝜇

𝜃𝜇+𝑥𝑗
𝜇

1−
𝑥𝑗

𝜇

𝜃𝜇+𝑥𝑗
𝜇

)

 
 
 

𝛽

)

 
 
 
 
 
 

)

 
 
 
 
 
 
 

−
𝑗

𝑛 + 1

)

 
 
 
 
 
 

2

 

We may calculate the estimators �̂�𝑊𝐿𝑆𝐸,  �̂�𝑊𝐿𝑆𝐸, 
 𝜃𝑊𝐿𝑆𝐸,  �̂�𝑊𝐿𝑆𝐸 by taking the first partial derivative 
of 𝜆, 𝛽, 𝜃, 𝜇 and setting the result to zero: 

𝜕𝑊𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇)

𝜕𝜆
= 0,

𝜕𝑊𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇)

𝜕𝛽
= 0 

𝜕𝑊𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇)

𝜕𝜃
= 0,

𝜕𝑊𝐿𝑆(𝑥𝑗; 𝜆, 𝛽, 𝜃, 𝜇)

𝜕𝜇
= 0 

 
We can calculate estimates by solving these 

equations numerically �̂�𝑊𝐿𝑆𝐸,  �̂�𝑊𝐿𝑆𝐸,  𝜃𝑊𝐿𝑆𝐸, 
 �̂�𝑊𝐿𝑆𝐸. 
 
3.5  L-Moments Estimators 
Equating sample and population L-moments yields 
L-moment estimators, [12]. Equating sample and 
population L-moments yields these estimators. The 
L-moment estimators are more reliable than the 
moment estimators, more immune to outliers, and 
more efficient than the maximum likelihood 
estimators for specific distributions, [13].  

Equating the first three sample L-moments with 
the population L-moments yields the Odd Chen 
Log-Logistic distribution L-moments estimators. 
Example's first three L-moments: 

𝑙1 =
1

𝑛
∑𝑥(𝑗),

𝑛

𝑗=1

 

𝑙2 =
2

𝑛(𝑛 − 1)
∑(𝑗 − 1)𝑥(𝑗)

𝑛

𝑗=2

− 𝑙1 

𝑙3 =
6

𝑛(𝑛 − 1)(𝑛 − 2)
∑(𝑗 − 1)(𝑗 − 2)𝑥(𝑗) − 6𝑙2 + 𝑙1

𝑛

𝑗=3

 

 
a first three population L-moments of: 

𝜆1 = 𝐸(𝑋1:1) = ∫ 𝑥
+∞

−∞

𝑓(𝑥)𝑑𝑥 = 𝐸(𝑋), 

𝜆2 =
1

2
[𝐸(𝑋2:2) − 𝐸(𝑋2:1)]

= ∫ 𝑥[2𝐹(𝑥)
+∞

−∞

− 1]𝑓(𝑥)𝑑𝑥, 

𝜆3 =
1

3
[𝐸(𝑋3:3) − 2𝐸(𝑋2:3) + 𝐸(𝑋1:3)]

= ∫ 𝑥[6(𝐹(𝑥))
2
− 6𝐹(𝑥)

+∞

−∞

+ 1]𝑓(𝑥)𝑑𝑥 
 

𝑋𝑗:𝑛 is the jth order statistic of an n-sample. To 
calculate the L-moments estimators for the 
parameters 𝜆, 𝛽, 𝜃, 𝜇 solve the following equations 
numerically: 

𝜆1(�̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸 ) = 𝑙1  
𝜆2(�̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸 ) = 𝑙2 
𝜆3(�̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸, �̂�𝐿𝑀𝐸 ) = 𝑙3 
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3.6  Maximum Product Spacing Estimators  
For continuous univariate distributions, [13], [14] 
developed the maximum product of spacings (MPS) 
approach to estimate parameters and approximate 
the Kullback-Leibler measure of information. This 
approach assumes an equal distribution of 
consecutive point discrepancies.  

Consider 𝑋1, … , 𝑋𝑛 as a random sample from 
the Odd Chen Log-Logistic distribution and 
𝑋(1), 𝑋(2), … , 𝑋(𝑛) as an ordered sample. We refer to 
𝑋0 = −∞ and 𝑋𝑛 = +∞. I The method of 
maximum product of spacings estimates distribution 
parameters 𝜆, 𝛽, 𝜃, 𝜇 by maximising the geometric 
mean of distances 𝐷𝑖, denoted as: 

𝐷𝑖 = ∫ 𝑓(𝑥; 𝜃)

𝑥(𝑖)

𝑥(𝑖−1)

𝑑𝑥 = 𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))  

for 𝑖 = 1, 2, … , 𝑛 + 1  (18) 
where 𝐹(𝑥(0)) = 0, 𝐹(𝑥(𝑛+1)) = 1 and 

∑ 𝐷𝑖 = 1.

𝑛+1

𝑖=1

 

 
The geometric mean of distances is expressed as: 
𝐺𝑀 = √∏ 𝐷𝑖

𝑛+1
𝑖=1

𝑛+1  (19) 
 

The MPS estimators �̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆, �̂�𝑀𝑃𝑆 are 
calculated by maximising the geometric mean (GM) 
of spacings concerning 𝜆, 𝛽, 𝜃, 𝜇 or the logarithm of 
the geometric mean of sample spacings: 

log(𝐺𝑀) = log

(

 √∏ 𝐷𝑖

𝑛+1

𝑖=1

𝑛+1

 

)

 =
1

𝑛 + 1
∑ 𝑙𝑜𝑔𝐷𝑖

𝑛+1

𝑖=1

 

=
1

𝑛 + 1
∑ log[𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))]

𝑛+1

𝑖=1

= 

=
1

𝑛+1
∑ log

(

 
 
 
 

1 − 𝑒𝑥𝑝

(

 
 
 
 

𝜆

(

 
 
 

1 − 𝑒

(

𝑥𝑖
𝜇

𝜃𝜇+𝑥𝑖
𝜇

1−
𝑥𝑖

𝜇

𝜃𝜇+𝑥𝑖
𝜇

)

𝛽

)

 
 
 

)

 
 
 
 

−𝑛+1
𝑖=1

(

 
 
 
 

1 − 𝑒𝑥𝑝

(

 
 
 
 

𝜆

(

 
 
 

1 − 𝑒

(

𝑥𝑖−1
𝜇

𝜃𝜇+𝑥𝑖−1
𝜇

1−
𝑥𝑖−1

𝜇

𝜃𝜇+𝑥𝑖−1

)

𝛽

)

 
 
 

)

 
 
 
 

)

 
 
 
 

)

 
 
 
 

  (20) 

 
The MPS estimators �̂�𝑀𝑃𝑆, �̂�𝑀𝑃𝑆, 𝜃𝑀𝑃𝑆, �̂�𝑀𝑃𝑆 

can be derived by solving the following equations 
simultaneously:  
 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝜆
=

1

𝑛 + 1
∑ [

𝐹𝜆
′(𝑥(𝑖)) − 𝐹𝜆

′(𝑥(𝑖−1))

𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))
]

𝑛+1

𝑖=1

= 0 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝛽
=

1

𝑛 + 1
∑ [

𝐹 𝛽
′ (𝑥(𝑖)) − 𝐹 𝛽

′ (𝑥(𝑖−1))

𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))
]

𝑛+1

𝑖=1

= 0 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝜃
=

1

𝑛 + 1
∑ [

𝐹 𝜃
′ (𝑥(𝑖)) − 𝐹 𝜃

′ (𝑥(𝑖−1))

𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))
]

𝑛+1

𝑖=1

= 0 

𝜕𝑙𝑜𝑔𝐺𝑀

𝜕𝜇
=

1

𝑛 + 1
∑ [

𝐹 𝜇
′ (𝑥(𝑖)) − 𝐹 𝜇

′ (𝑥(𝑖−1))

𝐹(𝑥(𝑖)) − 𝐹(𝑥(𝑖−1))
]

𝑛+1

𝑖=1

= 0 

 

3.7  Methods of Minimum Distances 
 The goodness-of-fit statistics method minimizes 
empirical distribution function statistics to estimate 
distribution parameters, [15]. The generic minimal 
distance method assumes establishing a distribution 
function that closely matches the empirical 
distribution of the observed data. The minimal 
distance approach has estimators based on the 
empirical distribution function statistic. This section 
presents three Odd Chen Log-Logistic distribution 
estimate methods based on goodness-of-fit statistics 
minimization for 𝜆, 𝛽, 𝜃, 𝜇. This statistical class is 
based on the difference between the empirical 
distribution function and the cumulative distribution 
function estimate, [16], [17]. 
 
3.7.1  Method of Cram�́�r-von-Mises  

The minimal distance estimator (CME) is a type of 
estimator based on the Cramér-von-Mises statistic 
[18], [19]. The real-world data in [20] shows that 
Cramér-von-Mises-type minimal distance estimators 
are less biased than other minimum distance 
estimators, which explains why they are used. The 
Cramér-von-Mises estimates 

�̂�𝐶𝑀𝐸 , �̂�𝐶𝑀𝐸 , 𝜃𝐶𝑀𝐸 , �̂�𝐶𝑀𝐸 of parameters 𝜆, 𝛽, 𝜃, 𝜇 
of Odd Chen Log-Logistic distribution are obtained 
by minimizing, concerning 𝜆, 𝛽, 𝜃, 𝜇 the function: 

𝐶(𝜆, 𝛽, 𝜃, 𝜇 ) =
1

12𝑛
+ ∑(𝐹(𝑥(𝑖)) −

2𝑖 − 1

𝑛
)

2𝑛

𝑖=1

 

𝐶(𝜆, 𝛽, 𝜃, 𝜇) =
1

12𝑛
+ 

+∑

(

 
 
 
 
 

1− 𝑒𝑥𝑝

(

 
 
 
 
 
 

𝜆

(

 
 
 
 
 

1 − 𝑒(

 
 

𝑥𝑖
𝜇

𝜃𝜇+𝑥𝑖
𝜇

1−
𝑥𝑖

𝜇

𝜃𝜇+𝑥𝑖
𝜇

)

 
 

𝛽

)

 
 
 
 
 

)

 
 
 
 
 
 

−
2𝑖 − 1

𝑛

)

 
 
 
 
 

2

𝑛

𝑖=1

 

(21) 
 

To obtain these estimates, you can solve the 
following nonlinear equations: 
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∑(𝐹(𝑥(𝑖)) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖))

𝜕𝜆
= 0           

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖) ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖))

𝜕𝛽
= 0           

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖) ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖) )

𝜕𝜃
= 0           

𝑛

𝑖=1

 

∑(𝐹(𝑥(𝑖) ) −
2𝑖 − 1

𝑛
)
2 𝜕𝐹(𝑥(𝑖) )

𝜕𝜇
= 0           

𝑛

𝑖=1

 

 
3.7.2  Anderson-Darling and Right-tail Methods 

The Anderson-Darling estimator (ADE) is derived 
from the statistic, another minimum distance 
estimator. Besides using a weighted squared 
difference, the Anderson-Darling test is similar to 
the Cramér-von-Mises criterion. These weights are 
determined by the deviation from the empirical 
distribution function. The Anderson-Darling test is 
an alternative to traditional statistical procedures 
used to identify deviations from normality in sample 
distributions, [21], [22]. We minimize a function to 
estimate the Anderson-Darling parameter 𝜆, 𝛽, 𝜃, 𝜇: 
 
𝐴(𝜆, 𝛽, 𝜃, 𝜇) = −𝑛 −

1

𝑛
∑ (2𝑖 − 1)[𝑙𝑜𝑔𝐹(𝑥(𝑖)) +𝑛

𝑖=1

log �̅� (𝑥(𝑛+1−𝑖))] (22) 
 

∑(2𝑖 − 1) [
𝐹𝜆

,(𝑥(𝑖))

𝐹(𝑥(𝑖))
−

�̅�𝜆
,(𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝛽

, (𝑥(𝑖))

𝐹(𝑥(𝑖))
−

�̅�𝛽
, (𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝜃

, (𝑥(𝑖))

𝐹(𝑥(𝑖))
−

�̅�𝜃
, (𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
]

𝑛

𝑖=1

= 0 

∑(2𝑖 − 1) [
𝐹𝜇

,(𝑥(𝑖))

𝐹(𝑥(𝑖))
−

�̅�𝜇
,(𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
]

𝑛

𝑖=1

= 0 

 
To obtain right-tail Anderson-Darling 

estimations of parameters, minimise function about 
𝜆, 𝛽, 𝜃, 𝜇. 
𝑅(𝜆, 𝛽, 𝜃, 𝜇) =

𝑛

2
− 2∑ 𝐹(𝑥(𝑖)) −

1

𝑛
∑ (2𝑖 −𝑛

𝑖=1
𝑛
𝑖=1

1) log �̅� (𝑥(𝑛+1−𝑖)) (23) 
 

The following non-linear equations may be 
solved for these estimates: 

−2∑
𝐹𝜆

,(𝑥(𝑖))

𝐹(𝑥(𝑖))
+

1

𝑛
∑(2𝑖 − 1)

�̅�𝜆
,(𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝛽

, (𝑥(𝑖))

𝐹(𝑥(𝑖))
+

1

𝑛
∑(2𝑖 − 1)

�̅�𝛽
, (𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝜃

, (𝑥(𝑖))

𝐹(𝑥(𝑖))
+

1

𝑛
∑(2𝑖 − 1)

�̅�𝜃
, (𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

−2∑
𝐹𝜇

,(𝑥(𝑖))

𝐹(𝑥(𝑖))
+

1

𝑛
∑(2𝑖 − 1)

�̅�𝜇
,(𝑥(𝑛+1−𝑖))

�̅�(𝑥(𝑛+1−𝑖))
= 0

𝑛

𝑖=1

𝑛

𝑖=1

 

 
 
4  Computer Applications 
 
4.1  Simulation Study  
Using Monte Carlo simulation, this section tests 
multiple estimation methods for forecasting Odd 
Chen Log-Logistic distribution parameters. The 
Kolmogorov-Smirnov test compares the 
recommended estimators. This approach uses KS 
statistics. 

𝐷𝑛 = max
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥|𝜆, 𝛽, 𝜃, 𝜇)| 

where max
𝑥

 denotes the maximum of the set of 
distances, 𝐹𝑛(𝑥) is the empirical distribution 
function, and 𝐹(𝑥|𝜆, 𝛽, 𝜃, 𝜇) is the cumulative 
distribution function. 
 

We proposed a method to randomly sample the 
Odd Chen Log-Logistic distribution given 
parameter values and sample size n. 

We take 𝜆 = 0.5, 𝛽 = 0.9, 𝜃 = 1.2, 𝜇 = 1.7 
arbitrarily and 𝑛 =  10, 20, . . . , 50. 

We implemented all techniques in the statistical 
computing environment R. 

Simulations were done using the approach. 
 

Table 1. Estimation techniques and Kolmogorov-
Smirnov values 

i Methods of 
Estimations 

Kolmogorov-
Smirnov test 

Ranking 

1 Maximum Product 
Spacing Estimating 

0.068542 5 

2 Moment Estimation 0.066021 3 
3 Least Square 

Estimation 
0.066254 4 

4 Weighted Least 
Square Estimation 

0.062741 2 

5 L-Moment 
Estimation 

0.070517 6 

6 Maximum 

Likelihood 

Estimation  

0.061254 1 

7 Maximum Product 
Spacing Estimating 

0.072749 9 

8 Anderson-Darling 
Estimation 

0.070654 7 

9 Right-tail Anderson-
Darling 

0.071154 8 

 
The simulation study shows that the Maximum 

Likelihood Estimation (MLE) technique estimates 
Odd Chen Log-Logistic distribution parameters 
more efficiently than other approaches. Table 1 
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shows that MLE produces the lowest Kolmogorov-
Smirnov test result. Additionally, maximal 
likelihood estimators (MLE) have excellent 
theoretical properties.. These are consistency, 
asymptotic efficiency, normalcy, and invariance. 
These data suggest that MLE estimators are best for 
calculating Odd Chen Log-Logistic distribution 
parameters. 
 
4.2  Actual Data 
Now, we'll assess the enlarged distribution's 
effectiveness. In this investigation, our model 
outperforms other models on a real data set (Table 
2). The data shows the case fatality ratio of COVID-
19 in China from March 8th to April 1st, 2022, 
relative to a new strain. Data is obtained from the 
WHO website (https://covid19.who.int/). 
The data are as follows: 1.09, 1.00, 1.08, 1.12, 1.50, 
1.60, 1.77, 1.81, 2.07, 1.75, 2.58, 2.59, 
2.65, 3.09, 3.20, 3.47, 3.21, 2.77, 3.17, 2.65, 3.00, 
3.61, 3.08, 2.70, 2.41. 
 

Table 2. Covid-19 case fatality ratio in China: 
MLEs and comparability criteria 

Distribu
tion 

Parameter 
Estimate 

−ℓ AIC BIC CAI
C 

Chen 
Log-
Logistic 

𝜆=0.5 
𝛽=0.9 
𝜃=1.2 
𝜇=1.7 

89.241
9 

157.3
26 

151.3
22 

148.2
31 

HLOPG
W-ILD 

𝛼=1.2545
8712 
𝛽=0.3645
8756 
𝜃=4.2514
5235 

91.125
4 

165.2
36 

160.6
31 

159.3
74 

EPL 𝛼=2.6705
2921 
𝛽=0.6654
7111 
𝜆=1.56820
413 

132.25
41 

198.2
54 

191.3
65 

196.7
84 

L 𝛼=0.6535
4891 

195.35
12 

290.3
54 

289.9
51 

290.4
57 

E 𝜃=0.2673
2123 

201.32
64 

340.5
87 

342.6
14 

341.7
53 

 
For the dataset, AIC, CAIC, and BIC are used to 

evaluate distribution models. Lower criteria values 
indicate a better dispersion. 

𝐴𝐼𝐶 = −2𝑙𝑜𝑔ℓ(�̃�, 𝛼, 𝛽, 𝜃) + 2𝑝 

𝐶𝐴𝐼𝐶 = 𝐴𝐼𝐶 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 

𝐵𝐼𝐶 = −2𝑙𝑜𝑔ℓ(�̃�, 𝛼, 𝛽, 𝜃) + 𝑝𝑙𝑜𝑔(𝑛) 
 

The sample size is n, and the p-value reflects the 
number of parameters calculated from the data. 

According to our preview work [23], we can say 
that our new modified distribution, Odd Chen Log-
Logistic, fits the data better than other models. 
 

 

5   Conclusion 
This paper derives the Odd Chen Log-Logistic 
distribution from the Odd Chen Log-G family 
distributions. We analyzed various statistical aspects 
of the distribution and tried to design a parameter 
estimation model. We used Kolmogorov-Smirnov 
simulations to compare multiple estimators. To 
compare our model's adaptability to other 
distributions' correctness, this research analyses an 
actual COVID-19 data set. This broader spread may 
be useful in different study areas. 
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