
Abstract: In the framework of this work, we used the isogeometric method to solve the least squares problem in
one dimension, on a curve ofRd, d = 1, 2, including a semicircle. For this purpose, we presented the isogeometric
method and the tools necessary for the description of this method, namely, the b splines basis, the parameterization
of the Rd, d = 1, 2 curve. We formulated the least squares problem which is a minimization problem. This
problem was solved by using the Discontinuous Galerkin (DG) and the b splines basis as the approximation basis.
The numerical method was validated by evaluating the error. For this purpose, an inverse inequality was therefore
used.

Key-Words: -Isogeometric method, Least squares problem, B-spline basis, Parameterization, Discontinuous
Galerkin, Inverse inequality.

1 Introduction
The approximation of a function in the sense of least
squares is a tool mathematics important in computer-
aided design (CAD) because the engineer uses it to
approximate a function. The least squares problem is
used in biology for problems of mathematical model-
ing, [1].

In the framework of this work, we use isogeometric
method to solve the least squares problem.

Isogeometric method has been introduced in 2005,
[2], [3], [4]. The objectives of Isogeometric Analy-
sis are to generalize and improve upon Finite Element
Analysis (FEA) in the following ways :

1. To provide more accurate modeling of com-
plex geometries and to exactly represent com-
mon engineering shapes such as circles, cylin-

ders, spheres, ellipsoids, etc.

2. To fix exact geometries at the coarsest level of
discretization and eliminate geometrical errors.

3. To vastly simplify mesh refinement of complex
industrial geometries by eliminating the neces-
sity to communicate with the CAD description
of geometry.

4. To provide refinement procedures, including
classical h- and p- refinements analogues, and
to develop a new refinement procedure called
k-refinement, [5].

The idea of isogeometric method is to build a geo-
metry model and, rather than develop a finite ele-
ment model approximating the geometry, directly use
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the functions describing the geometry in analysis, [6].
These functions are b-splines.

Isogeometric Analysis is approached, using con-
tinuous or discontinuous Galerkin method. In the
framework of the isogeometric method, we use a
parametrization to describe the domain on which, we
solve our problem. This parametrization is used for
numerical integration, [1],[7].

The least squares problem is addressed in one
dimesnsion on a segment in, [1]. The particularity of
our work is to solve our problem in one dimension on
a curve of R2.

2 The least squares problem

formulation
The isogeometricmethod uses b-splines as basis func-
tions to construct the numerical approximations.

Definition 1. Let x1 ≤ x2 ≤ · · · ≤ xm be an increas-
ing sequence of reals, b-splines functions of degree k
are defined by Cox-de Boor-Mansfield recursion for-
mula, [8] :

For 1 ≤ i ≤ m− 1

Ni,0(t) = 1 if t ∈ [xi, xi+1[

Ni,0(t) = 0 otherwise
(1)



For k ≥ 1 and 1 ≤ i ≤ m− k − 1

Ni,k(t) =
t− xi

xi+k − xi
Ni,k−1(t)+

xi+k+1 − t

xi+k+1 − xi+1
Ni+1,k−1(t),

(2)
with the convention x

0 := 0 for all real number x

The set (xi)
m
i=1 (1 ≤ i ≤ m) is called knots

vector.

Definition 2. Let (xi)
m
i=1 (1 ≤ i ≤ m) be a knots

vector. Let n be a non-zero natural integer et let

(Pi)
n
i=0 be a sequence of points of IRd (d = 1, 2).

We call b-spline curve of degree k (d'ordre k+1) and
of control points Pi, i = 0, . . . , n, the function P de-

fined from the interval [x1 , xm] into IRd by :

P (t) =

n∑
i=0

PiNi,k(t), x1 ≤ t ≤ xm, 0 ≤ k ≤ n

The set of points (Pi)
n
i=0 are the vertices of a polygon

called control polygon of the curve P .

Univariate B-spline basis functions are piecewise
polynomial. They form a partition of unity, have local
support, and are non-negative, [9].

Theorem 1 (existence and uniqueness of solution).
Let C be a non-empty closed convex set of a Hilbert
space H . Then for all f ∈ H, there exists a unique
u ∈ C such that :

‖f − u‖ = min
v∈C

‖f − v‖ (3)

We note u = PC(f), the projection of f on C. u is
therefore the solution of the minimization problem.

The parametrization F of the physical domain is de-
fined by :

F : Ω̂ ⊂ IR → Ω ⊂ IRd, d = 1, 2

ε 7−→ x = F (ε) =

n∑
i=0

CiN̂i,k(ε)

where Ω̂ is the parametric domain, the (Ci)
n
i=0 are

control points and n+ 1 is the number of basis func-
tions.

We use the standard notation of Sobolev spaces
H l(Ω). The norm and semi-norm will be denoted res-
pectively by ‖.‖Hl(Ω) and |.|Hl(Ω).

When l = 0,H l(Ω) = L2(Ω).
We use also the inner product on L2(Ω) denoted by
(., .)L2(Ω).

Let us consider the function t
F7−→ F (t)

g7−→ g(F (t)),
Where F is the parametrization of the domain
Ω ⊂ Rd, d = 1, 2.

X = (Xi)
m
i=1 is an open knots vector, with m the

total number of knots.

Xd = (χi)
Nd

i=1 is the set of distinct knots of X.

Let be Ωi = {x ∈ IRd;x = F ([χi, χi+1]), },
1 ≤ i ≤ Nd − 1

Thus ∃! q(i) ∈ {1, . . . ,m} such as χi = Xq(i) where

q(i) =

i∑
k=1

nk,

And ni is the multiplicity of χi in X.

Let be Ω =

Nd−1⋃
i=1

Ωi, with Ωi ∩ Ωs = ∅,∀i 6= s.

(Nj,p)j∈Ii is a b-spline basis of degree p,
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Where Ii = {k ∈ {0, . . . , n};SuppNk,p ∩ Ωi 6= ∅},

SuppNj,p = F ([χj ;χj+p+1]).

SuppNj,p ∩ F ([χi;χi+1]) 6= ∅ ⇐⇒ j ∈
{q(i)− p, . . . , q(i)}.

∀i ∈ {1, . . . , Nd−1}, N i
j,p(x) =

{
Nj,p(x) if x ∈ F ([χi;χi+1])

0 otherwise

We want to approximate a function g by a b-spline
curve g̃ on a domain Ω ⊂ Rd, d = 1, 2 in the least
squares sense

Where g̃(F (t)) =

Nd−1∑
i=1

∑
j∈Ii

P i
jN

i
j,p(F (t)), [7].

We are therefore looking for the coefficients (P i
j ),

knowing that :∫
Ωi

g(F (t))N i
k,p(F (t))dF =

∫
Ωi

Nd−1∑
i=1

∑
j∈Ii

P i
jN

i
j,p(F (t))N i

k,p(F (t))dF

Solving this approximation problem amounts to min-
imizing ‖g − g̃‖L2(Ω).
Before proposing an isogeometric formulation of our
problem, we give a definition and a theorem.

Definition 3. Let πh be a map which is such that :

∀v ∈ L2(Ω), πhv ∈ L2(Ω) with

(πhv, yh)L2(Ω) = (v, yh)L2(Ω),

∀yh ∈ L2(Ω). (4)

Theorem 2 (isogeometric inverse inequality). Given
the integers l and s such that 0 ≤ l ≤ s ≤ p+ 1 and
a function u ∈ Hs(Ω), then:∑
K∈τh

|u−πhu|2Hl(K) ≤ Ch2(s−l)‖u‖2Hs(Ω), [7], [10]

(5)
where C is independent of h.

Minimizing ‖g − g̃‖L2(Ω) is equivalent to writing
the following equalities :

∫
Ωi

g(F (t))N i
k,p(F (t))dF =∫

Ωi

∑
j∈Ii

P i
jN

i
j,p(F (t))N i

k,p(F (t))dF∫
Ωi

∑
j∈Ii

P i
jN

i
j,p(F (t))N i

k,p(F (t))dF =∫
Ωi

g(F (t))N i
k,p(F (t))dF∑

j∈Ii

P i
j

∫
Ωi

N i
j,p(F (t))N i

k,p(F (t))dF =∫
Ωi

g(F (t))N i
k,p(F (t))dF

∑
j∈Ii

M i
k,jP

i
j = Si

k, ∀k ∈ Ii. (6)

M iP i = Si, ∀i ∈ {1, . . . , Nd − 1}, [7]. (7)

Where

M i = (M i
kj) k,j∈Ii

1≤i≤Nd−1
,

P i = (P i
j ) j∈Ii

1≤i≤Nd−1
,

Si = (Si
k) k∈Ii

1≤i≤Nd−1
,

WithM i
k,j =

∫
Ωi

N i
j,p(F (t))N i

k,p(F (t))dF and

Si
k =

∫
Ωi

g(F (t))N i
k,p(F (t))dF.

To calculate the P i, we will be interested in studying
the properties of the mass matrixM i.

Property 1. M i is a square matrix of order (p + 1)
which is symmetric, [7].

Proof. Knowing thatM i = (M i
kj) k,j∈Ii

1≤i≤Nd−1
, and that

card(Ii) = p + 1, M i is a square matrix of order
(p+1).Moreover,M i is a symmetric matrix because
M i

kj = M i
jk, ∀1 ≤ i ≤ Nd − 1,∀k ∈ Ii and ∀j ∈

Ii.

Property 2. M i is an invertible matrix, [7].

We will show thatM i is a positive definite matrix.
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Proof. Let Li = (Li
j)j∈Ii be a column vector.

M iLi = (λi
k)k∈Ii with λ

i
k =

∑
j∈Ii

M i
kjL

i
j

So we get :

(Li)tM iLi =
∑
k∈Ii

λi
kL

i
k

=
∑
k∈Ii

∑
j∈Ii

M i
kjL

i
j

Li
k

=
∑
k∈Ii

∑
j∈Ii

∫
Ωi

(
N i

k,p(x)N
i
j,p(x)dx

)
Li
jL

i
k

=

∫
Ωi

∑
j∈Ii

N i
j,p(x)L

i
j

2

dx

=

∥∥∥∥∥∥
∑
j∈Ii

N i
j,p(x)L

i
j

∥∥∥∥∥∥
2

L2(Ωi)

So (Li)tM iLi ≥ 0.

(Li)tM iLi = 0 =⇒
∑
j∈Ii

N i
j,p(x)L

i
j = 0 (8)

=⇒ Li
j = 0 because the

N i
j,p form a basis of P(p+1)(Nd−1).

=⇒ Li
j = 0, ∀j ∈ Ii

M i is therefore positive definite, hence M i is invert-
ible.

Property 3. invM i the inverse of M i, is a square
matrix of order (p+ 1) which is symmetric, [7].

Proof. M i being a square matrix of order (p+1), its
inverse is also a square matrix of order (p + 1). M i

being symmetric, we have : (M i)t = M i.

(M i)t = M i =⇒ inv(M i)t = invM i

=⇒ (invM i)t = invM i because

M i is an invertible square matrix

So, invM i is a symmetric matrix.

The properties of the mass matrix having been enu-
merated, we obtain from the relation 7 that P i =
(invM i)Si.

Computing an integral over Ωi amounts to com-

puting this integral over Ω̂i by means of the parame-
terization F , [11]. This integral over the parametric
domain is then brought back to the interval [−1; 1],
using a transformation. So, we get :

M i
k,j =

∫
Ωi

N i
j,p(F (t))N i

k,p(F (t))dF

=

∫
Ω̂i

N i
j,p(F (ε))N i

k,p(F (ε))Jac(F (ε))dε

=

∫
Ω̂i

N̂ i
j,p(ε)N̂

i
k,p(ε)Ĵac(ε)dε

because N i
j,p ◦ F = N̂ i

j,p and Jac ◦ F = Ĵac

M i
k,j =

pos2(i)∑
r=pos1(i)

lirN̂
i
j,p(ε

i
r)N̂

i
k,p(ε

i
r)Ĵac(ε

i
r)

With lir =
χi+1−χi

2 ωi
r then pos1(i) = (i−1)Npgs+1,

pos2(i) = iNpgs and 1 ≤ i ≤ Nd − 1.
Npgs is the number of Gaussian points per seg-
ment, the ωi

r and the ε
i
r are respectively the Gaussian

weights and knots.

Si
k =

∫
Ωi

g(F (t))N i
k,p(F (t))dF (9)

Si
k =

pos2(i)∑
r=pos1(i)

lirg(F (εir))N̂
i
k,p(ε

i
r)Ĵac(ε

i
r), [7]

3 Numerical solution
In the previous section, we approximated a function
g by a b-spline curve of degree p in the sense of
least squares on a domain Ω. Subsequently, we want
to validate the approximation in the sense of least
squares by verifying the inverse inequality 5, for l = 0
and s = 1.
For l = 0 and s = 1, inverse inequality 5 becomes :

‖u−πhu‖L2(Ω) ≤ Ch‖u‖H1(Ω),∀u ∈ H1(Ω), (10)

Where C is independent of h.
Therefore, we put in an array, the space step h, log(h)

and log

(‖error‖L2(Ω)

‖u‖H1(Ω)

)
. Then, we determine the

slope of the curve of the log

(‖error‖L2(Ω)

‖u‖H1(Ω)

)
as a

function of log(h). Then, we construct this curve in
each case.
Numerical tests are performed using Fortran and
Gnuplot.
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Experience 1. g(x) = ex, x ∈ Ω1 =]− 1; 1[

p = 2, ‖u‖H1(Ω) =
√
e2 − e−2.

The parametrization of Ω1 is given by :

1. The knots vector :

X = [0000.1250.250.3750.50.6250.750.875
111]

2. The control points : A1(−1;−0.75),
A2(−0.5;−0.25), A3(0; 0), A4(0.25; 0.5)
and A5(0.75; 1).

Step h log(h) log

(‖erreur‖L2(Ω)

‖u‖H1(Ω)

)
Rate

h = 0.125 −2.079 −7.556 -
h

2
−2.773 −9.270 2.47

h

4
−3.466 −10.996 2.48

h

8
−4.159 −12.727 2.49

Table 1. Results of experiment 1

Fig. 1: line of experiment 1

Experience 2. g(x) = x3, x ∈ Ω1 =]− 1; 1[

p = 2, ‖u‖H1(Ω) =
√

136
35 .

Step h log(h) log

(‖erreur‖L2(Ω)

‖u‖H1(Ω)

)
Rate

h = 0.125 −2.079 −6.518 -
h

2
−2.773 −8.249 2.498

h

4
−3.466 −9.982 2.498

h

8
−4.159 −11.713 2.498

Table 2. Results of experiment 2

Fig. 2: line of experiment 2

Experience 3. g(x, y) = x2 + y2, (x, y) ∈ Ω2,
the half-circle with center (0, 0) and radius 1.

p = 2, ‖u‖H1(Ω) =
√

π + 8
3

The parameterization of Ω2 is given by :
-The knots vector :
X=[0 0 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

1 1]
-The control points :

A1(1; 0), A2(1; 0.414), A3(0.707; 0.707), A4(0.414; 1),
A5(0; 1), A6(0; 1), A7(−0.414; 1), A8(−0.707; 0.707),
A9(−1; 0.414), A10(−1; 0), [7].

Step h log(h) log

(‖erreur‖L2(Ω)

‖u‖H1(Ω)

)
Rate

h = 0.5 −0.693 −3.497 -
h

2
−1.386 −5.020 2.19

h

4
−2.079 −6.555 2.21

h

8
−2.772 −8.386 2.64

Table 3. Results of experiment 3

Fig. 3: line of experiment 3
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Fig. 4: Half-circle with center (0; 0) and radius 1

Three numerical tests were carried out on domains
of IRd, d = 1, 2. The tables 1, 2 and 3 permit us to

determine the slope of log

(‖error‖L2(Ω)

‖u‖H1(Ω)

)
as func-

tion of log(h). In each case, the slope is quadratic.

This slope is observed thanks to Figures 1,Figure 2
and Figure 3.
The inverse inequality 5 was verified for each of the
three experiments, after performing a mesh refine-
ment. Moreover, with regard to the experiment 3, it
should be noted that the domain Ω2 is a domain used
for isogeometric method for 1D problems and not in

finite elements. The Figure 4was represented thanks
to domainΩ2. To getΩ2, we have built a parametriza-
tion of our domain. This parametrization is used only
in the framework of the isogeometric method. This
shows that isogeometric method allows us to correct
the shortcomings of the finite element method.

4 Conclusion
The isogeometric method approximates a function by

a b-spline curve on a domain IRd, d = 1, 2. Nume-
rical tests have been done to validate numerically an
isogeometric inverse inequality and show the neces-
sity of using the isogeometric method, to the detri-
ment of the finite element method, in one dimension.
In perspective, we can use the isogeometric method
with NURBS as the basis of approximation, to solve
the least squares problems in two and three dimen-
sions. We can use this approach for modeling prob-
lems. This project is currently ongoing.
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